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We present a formalism for the description of many-particle systems when the particles are themselves
composites of several elementary constituents. We investigate specifically the case of composites made up
of two fermions, the method being easily extended to more general composites. The formalism, although
its development is guided by the knowledge that there are fermion constituents in the composites, is
given entirely in the composite language and requires no reference to these underlying fermions. Thus,
the procedure maintains all required symmetries at every step. Composite field operators satisfying all
symmetries are defined, these fields obeying neither Bose nor Fermi commutation rules, but more
complicated ones. The many-composite dynamics is studied via the Green s functions formed from
composite operator products. A Hartree-Fock-like approximation is introduced and leads to the
generation of composite wave functions describing the distortion of the composite internal states by the
presence of other composites in the system.

I. INTRODUCTION

The theoretical construction of composite parti-
cles from "elementary" constituents has within it
a number of formidable problems, especially when
formulated in the context of many-body (in this
case many-composite) methodology. If one as-
sumes the constituents to be either bosons or
fermions, it is intuitively clear that the compos-
ites themselves can be treated as elementary
bosons or fermions when the average intercom-
posite distance is large compared to the range of
the particle-particle interaction and when the
average wavelength associated with the composite
center-of-mass motion is also large compared
with this range. ' For example, traditional treat-
ments of liquid helium, at laboratory densities
and temperatures, completely ignore the internal
structure of the helium atoms. ' However, in
many systems of interest it has become necessary
to consider the nonelementary nature of the com-
posites, their spacial extent, and their excita-
tions. The effect in nuclear matter of the first
nucleon excited state (at 300 MeV} has been shown
to manifest itself through an effective three-body
force which contributes a sizable fraction (I MeV)
of the binding energy per nucleon. ' Moreover, in
many systems where two-body bound states are
known to be important, e.g. , Cooper pairs in
superconductors, 4 it is very useful to treat the
medium in terms of composites rather than in
terms of the electron constituents. Another type
of problem in which composite effects have been
studied and shown to be important lies in the
coupling of atomic gases and a radiation field. '

The primary conceptual and practical difficulty
in attempting to formulate a theory of interacting
composites, and the chief question to which we
address ourselves below, arises from the require-
ment of symmetrization between members of dif-
ferent composites. That is, the fact that the full
Hamiltonian is symmetric under interchange of
constituents implies symmetry under (i) inter-
change of constituents within a composite (internal
parity), (ii) interchange of two composites, and
(iii) interchange of a constituent in one composite
with that of another. In the case of elementary
fermions, where full antisymmetry of the states
under constituent interchange is required, the
equivalent requirement in composite language is
(i} the composites have internal negative parity,
(ii) the states are symmetric under composite
interchange, and (iii) the states are antisymmetric
under interchange of constituents from different
composites.

If one works with the constituents themselves,
the proper symmetrization is easily achieved
through the standard method of second quantiza-
tion, with the constituent field operators satis-
fying elementary commutation relations. Within
the framework of these constituents, however, it
has proven extremely difficult to describe even
the clustering of tightly bound two-body compos-
ites in the low-density limit in problems where
it is physically obvious that two-body bound clus-
ters are important. In such a system with strongly
bound two body compos-ites (composed of fermions}
one expects that in the low-density limit (n-0) the
energy per fermion 8 z6p with E'p the lowest-
energy eigenvalue of the two-body system. This
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physical solution, condensation into two-body
bound states, is quite different from the free-
particle result, 8 ~n' '. Yet a perturbative solu-
tion built up from the free-fermion system which
satisfies all the required symmetries and which
yields that latter result for 8, can never achieve
a physical condensation into bound composites.

Several different approaches to this symmetriza-
tion question have been explored. These ap-
proaches have utilized the second-quantization
procedure in some form. The essential element
of each lies in the definition of the composite-
particle field operators and in their resultant com-
mutation relations. The hitherto most extensive
development has been that of Girardeau. ' In that
procedure the state vector for an N composite
state with given internal properties is constructed,
and field operators acting on these state vectors
are then defined ad hoc. These field operators are
assumed to satisfy elementary (Bose or Fermi)
commutation rules. The additional symmetry
(interchange of constituents in different compos-
ites) is then imposed as a subsidiary condition,
via a projection operator which retains from the
set of solutions of the dynamics only those sym-
metric (or antisymmetric depending on the as-
sumed nature of the composites) under this ad-
ditional symmetry. The net result of this pro-
jection operator, applied back on the Hamiltonian,
is to generate a modified Hamiltonian in the form
of an infinite series, the nth term corresponding
to n-composite correlations arising from this
symmetry. As yet, the projection operator and
the modified Hamiltonian have been explicitly con-
structed for n =2, i.e., to include two-composite
symmetry correlations, and are applicable in the
regime of low density where three- or more-
composite exchange effects are small. This pro-
cedure thus utilizes simple commutation rules and
places the burden of the additional symmetry on
the dynamics of the system. '

An alternative procedure, espoused by Sahlin
and Schwartz, ' defines the composite field oper-
ators, for a given internal state of the composite,
directly as a product of the constituent fields
weighted over the internal wave functions. This
is intuitively attractive since it clearly maintains
all required symmetry at the start and since it
begins with the composites in their correct non-
interacting physical states, and would hence form
a logical basis for a perturbation expansion. The
interactions are thus separated into two types,
those which give rise to the formation of the com-
posites and those which give correlations between
composites. The field commutation rules are then
interaction dependent (in part placing the burden
of the dynamics on the symmetry), and further

these commutation rules and also the Hamiltonian
are not written in terms of the composites only,
but explicitly involve the constituents.

In the procedure to be described below, a third
method of defining c;omposite field operators is
given. With this definition it is clear that here
also all symmetry requirements are satisfied at
the outset. However, this definition is independent
of any interactions and the commutation rules,
while not elementary, involve no dynamics. Sec-
ondly, these commutation rules and the Hamil-
tonian can be given entirely in terms of the com-
posites, with no reference to the underlying con-
stituents. It is in this spirit that we wish to study
the many-composite system.

In this paper we consider as a model composites
constructed of two spin-~ fermions. Although the
specific results obtained here pertain only to this
model, their generalization to n-fermion com-
posites is straightforward albeit lengthy. Section
II contains the exact mathematical formulation of
the composite field operators in terms of their
fermion constituents. ' Further, the dynamical
equations of motion are rewritten in terms of the
composites only, allowing then disregard of their
underlying structure, while still maintaining all
symmetries. Although this procedure when ap-
plied to one-composite states recovers the two-
body problem, the operators defined differ from
those of Ref. 8 in that they may be defined with
no reference to the interaction potentials. By de-
fining the Green's functions analogous to those
used in standard many-body theory, it is then
shown how all observable quantities of a many-
composite system may be calculated within this
formulation. As an example of the techniques,
and as a guide to appropriate approximation meth-
ods this formalism is applied to the case of no
interaction, recovering from the composite theory
the Fermi distribution for free fermions.

In Sec. III we give a factorization approximation
for the Green's function, similar to that leading
to the Hartree-Fock equations in many-fermion
systems, and correct in the limit of low density.
Within this approximation the composite Green's
function contains both a "condensed-mode" term,
which embodies the physical composite formation,
and a self-consistent "T-matrix" term similar to
that obtained in conventional treatments of the
fermion many-body dynamics.

II. MATHEMATICAL FORMULATION

We develop here the formalism appropriate to a
system of N composites, each composed of two
spin- —,

' Fermions. The fermions interact through
two-body central potentials. In terms of the Fer-
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mion coordinates, the Hamiltonian is
2N 2 1 2N

H=Q 2' + —Q V/ (2.1)

H=g ' a,"a, + —g (12~V~34) alta2a4a2,

In order to confine the eigenstates of (2.1) to the
Hilbert space totally antisymmetric under inter-
change of fermions, we rewrite (2.1) in second-
quantized form, in momentum space,

the space of allowed states would be larger than
that required by the full set of symmetries, i.e.,
only (i) and (ii) are satisfied, and one must then
attempt a projection as proposed by Girardeau. '

Instead, to motivate a choice of pair creation
operator, we write

«2 1 «2 «2

1 1 2

(2.7)
1234

(2.2) Noting from (2.3) that

where the subscript i on a, refers to both momen-
tum p,. and spin projection s, (s,. =+—,'), and (2N)1/2 ~ I I (2N)1/2

1

2N=Q a~a, . (2.3)

Consider the kinetic energy only. From Eq. (2.1),
this can be written in the form

we have

1, 2

1 «2 «2 y 1 y 1
Iaa ' ' 2/N I/N ')

(2.6)

(2.4)

where Pf and qf are the momenta conjugate to
R/= —,'(r/+rN+/) and p, =r,. —r„,/. In this tran-
scription a particular method of pairing has been
used, but Eq. (2.4) follows for any choice of
pairing. We wish to second quantize the kinetic
energy in terms of pair creation and destruction
oPerators B. and Bp-P'qs sI 2

P qsls2 y

N = Q (a, IWN
a, ) ( , /2ao2)

Thus, if we write

T = (PI'+ P2 )cI2CI212m1,2

+- Z C»C12

(2.9)

(2.10)

(2.11)

T=
P2 «q2

+
Pqsls2 P qsls2 y

P qsls2

¹ B B
P qsls2 P qsls2

'

(2.5)

(2.6)

1,2

we should identify a composite operator

c»=aI 2~ a, . (2.12)

From this fermion-constituent identification the
commutation rules follow immediately

If B (and Bt) satisfy Bose commutation rules, and
if Bp „,, = Bp 2, , (-internal antisymmetry), [C»I CI a2 a] —[CI21 Cla2 a] —0 I (2.13)

[c ct. ]=121 I 2 2(2N+ 1)
i[511 522 511 p2 2 522 pl'IJ l 12421 512 pl 2 521 p2 Ig 4CI 2 CI2] a

(2.14)

where the operator p» is (p„)=(n(1))5„ (2.16)

P12 = ~ ~ C13C23 (2.15) if that Hamiltonian conserves both total spin and
total linear momentum. In this case, the full
Hamiltonian is given by

According to (2.12), the operator p» is to be
interpreted, in fermion language, as the number
operator for fermions in state (plsI), i.e., n(1)
=p„. Moreover, any average of p12 taken over
eigenstates of the Hamiltonian, has the diagonal
form

12 1234

(2.17)

where el =pI2/2m and

H =Q (el + c2)ct2c»+ Q (12 ( V( 34)clt2(2N + 1)c„,
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&12 I vl34& = —6p, p, p P Q (22sls213~ ) (22s2s213hf )&2(P1- P2) I c212(P2- P.)& 1

g, N

(2.18)

with &q lv2 lq') the Fourier transform v2(q —q')
=f d2r e "q q "v2(r), the local two-body potential
in spin state S.

It might be imagined that the commutation rules
and the Hamiltonian, Eqs. (2.13)-(2.15), (2.17),
and (2.18), form a complete theory, equivalent to
the original constituent formulation. This is not
the case, as is seen from the dynamics of the c
operators. If we evaluate [c», H], using only these
equations above, we must impose the additional
subsidiary requirements,

c» = -c» (internal antisymmetry),
I

~ a
C12 = [C121H] (2.21)

in the Heisenberg picture, with

[c„,H] = g &12 lb l34)c
34

-g [&16 I vl34&p„c„+&62 I VI34&ps, c24]

The commutation rule for [c, ct], Eq. (2.14}, is of
course, quite complex while the Hamiltonian is
rather simple. In spite of the complexity of (2.14),
the equations of motion are also rather simple;

C» 34
= Cy3 C42 y

(2.19)

S(P1S1) Pll Q C12C12
2

(2.20)

in order to obtain the same result as that pro-
duced by the fermion identification [Eq. (2.12)]
directly.

Equations (2.13)-(2.19) form a complete theory,
in the sense that there is a complete isometry
between the solutions of (2.13)-(2.19) and those
generated from the conventional formulation in
terms of the constituent fermions. Further, the
formulation requires no reference at all to those
"elementary" fermi'ons. In fact, the properties
of the operators c» and c„could be deduced solely
from the requirement of complete antisymmetry
of the states ct,ct, IO), again without reference
to the underlying fermions.

It is clear how to extend this composite-operator
definition to the case where the composites con-
tain more than two constituents. Equation (2.12) is
generalized by writing as many a~ operators as
there are constituents, each separated by the fac-
tor N '" (N is the number of composites), and in
addition there is a normalization factor fixed by
the equivalent of Eq. (2.11) (for the case above,
this factor is —,'). To rewrite the Hamiltonian in
terms of these c's, one applies the identity cor-
responding to Eq. (2.3) as many times as neces-
sary to obtain the composite operator. The number
of subsidiary conditions [corresponding to Eq.
(2.19)] increases, of course, with increasing com-
posite complexity.

If one could solve the equations of motion gen-
erated from (2.13)-(2.19), and if one further
recognized the fermiology underlying the com-
posites, one could deduce from the composite
formulation all properties of the fermions. For
example, the operator representing the number
of fermions with momentum p, and spin projection
s, is given by

(2.22}

P32 41 —P34C12 (2.24)

which follows from (2.19).
If we first consider one-composite states, X=1,

the Hamiltonian is trivially diagonalizable by the
transformation

cl2 ~ Q (22sls2I3~)&12(q)c-»

cp ~ Q Q (22sls2 131}f)g2(q)c»,
Sy82 q

(2.26)

where $„2 refers to the set of functions satisfying

(2.26)

together with the orthogonality and completeness
relations

1
6qq II g PX, ( 2)PCS�(q}'

(2.2'I}

This, of course, is simply the solution of the two-
body problem. One may see here the relationship
between the c operators and the operators defined

(12 I h I 34) = (e, + e2) 5»62~+ &12 I vl 34& . (2.23)

To obtain (2.22) without the underlying "Fermiology"
one must use the condition
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by Sahlin and Schwartz, ' which may be labeled
II» (P, X). When operating on a state of N, com-
posites, iN, &, we have

c;„,„iN, &
= [2(aN, —1)]-'1211,„(p,X) iN, &,

while any average, taken over states which con-
serve both total spin and total momentum, will
be given by

&[c12~Bl 2 )) [6lli622 612 621 ~ )

~~~
2

~ ~ c~
~ ~

c
4ppg ~~ 8 8N PXSu

+2 Q &Xicsix'&ct„» Nc;„,,„
Pxx'
SN

(a.as)

and the resultant states differ only by a normal-
ization factor. There is, however, no simple
relation between the operators themselves; when
two c's operate, the resultant states have en-
tirely different normalization factors.

If we now use the exact one-composite states as
a basis for the N-composite system, we obtain
the Hamiltonian

where we have used the interpretation of (p») pro-
vided by Eq. (2.16).

The averages of interest here are thermo-
dynamic averages with respect to a density matrix
e 's l'~/Tre s'» "~ In. this case, tl is the Gibbs
free energy per composite and serves to fix the
average number of composites in exactly the way
as is done in conventional statistical mechanics.
The average (p»& can be simply related to
+2&Blt2c»& by differentiating (p») with respect to
p, , holding temperature (P

' =hsT) and volume
fixed. Recognizing that (n(1)& =(p»&, we find

(n)))) =1 ~ (I; &2L~,.)+(~0))-2
~ (nO))) .

&& I csl&'& = —„.Q eh(q)&ql uslq'&eg s(q') .
CO

Blt 2
=- 2(2N - 1)c, 2 . (2.30)

This quantity, which can be noted from (2.12) to
have the fer mion representation a, .2~NQ, . Satis-
fies a simple commutation rule with c~. Thus
from (2.14), we find the very simple result

[c12)Bl 2'l g611 622 611'p2 2 622&pl 1)

It would appear from (2.28) that the interaction
between composites is independent of their mo-
menta, and depends only on their internal states.
Although the Hamiltonian is simple, the com-
mutation rules of the c's produce in themselves a
dynamics which contains the proper pair inter-
action [see Eq. (2.22)].

In order to utilize the dynamics [Eqs. (2.21) and
(2.22)] to evaluate quantities of interest, we wish
to introduce Green's functions formed from aver-
ages of time-ordered operator products. The
time derivative of such time-ordered products
[A(t)B(t')], will contain a term 6(t-t')[A(t), B(t')),
and we would like to define the appropriate func-
tion in such a way as to make this commutator
term simple. Although we do not require a c-
number commutator, at least we can seek a
formulation which produces an easily interpreted
average for this commutator.

To this end, consider the operator

8i —+ tl c„(t) = [c„,Ii], (2.34)

where the commutator is given by Eq. (2.22).
Consider now the one-composite Green's oper-

ator

(2.33)

This result couples the quantity to be calculated
by Green's-function methods (i.e., &Btc&) to the
single-constituent momentum distribution (n(l)&.
Again, we emphasize that, as a result of Eq.
(2.32), the dynamics will supply another equation
for &B c& which will involve (n (1)), and that a self-
consistent solution becomes necessary. 5'ithout
a hnouledge of the underlying "vermiology", &n(I)&,
or more properly (p»&, is merely a parameterin
the theory which must be determined self con-
sistently in order to specify equilibrium proper-
ties. [In many ways, our dynamical equations
will resemble those for the spin-operator Green's
functions in magnetic systems, ' where the 6(t-t')
term contains the magnetization. Equation (2.33)
is then the analog of the thermodynamic magne-
tization relation which must be coupled to the
Green's function to find the actual degree of mag-
netization. )

Because of the particular average taken here,
we choose to modify the time dependence of all
operators by introducing the additional phase
factor e')" in c»(t) [and e '~' in c1~.2.(t')]. Thus,
instead of Eq. (2.21), we now have

(612 621 612 Pl 2 621 P2 1) g, (lat; 1'2' t') =- (c„(t)B,'„.(t')), , (2.35)
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where ( ~ ~ )+ indicates time ordering of the oper-
ators (earliest time to the right). The dynamical
equation, according to (2.34) is then

i —,+P g,(12t; 1'2't') =i5(t-t')[c„(t),B,'...(t)](
-8

depends only on t-t ', and in addition p, + @= p,'+ p,'.
These properties follow from momentum conser-
vation and the cyclic property of the trace.

The boundary condition in time on 6, can be
derived in the usual manner. " Vfe find the per-
iodic (Bose) condition for complex temperature
and time

(2.36) G,'(-i P - t') = G,'(o - t ), (2.36)

The thermodynamic average, or the Green's func-
tion

G,(12; 1'2'; t-t') —= (gl(12t; 1'2't'))

=e(t t')c,'-+e(t'-t)c,'
(2.37)

where the time t-t' lies along a line in the com-
plex plane such that (t-t ')/(-i p) is real and
ReP & 0. The solution for real P and (t-t') is then
obtained by analytic continuation. At no point in
the development of this Bose boundary condition
are the commutation relations used. The com-
mutation relation enters only in the condition

[G'(l2; 1'2', 0) —G'(l2; 1'2'; 0)]= ([c»,BIIi, i])

(2.39)

From Eqs. (2.36), (2.3V), (2.32), and (2.22), we have

i —+ p 5,A, -(12~h ~34) G,(34;1'2'; t-t') = j5(t-t')[5„5„—5».5„][1—(s(l)) -(n(2))]
34

—Q [(15)V(34)5„+(52[ V)34)516]((p„(t)c34(t)BII., (t')),) .

(2.40)

Higher-order equations in the hierarchy, relating
(pcBI), to a three-composite Green's function,
can be obtained in the usual way. Approximate
truncations of the hierarchy, in particular the
"composite Hartree-Pock" truncation, wiLL be
explored in Sec. III.

Finally, we note that (n(1)) is coupled to G,' by
Eq. (2.33). Thus, from (2.33) and the definition
of G„we see that

Gl'(0) e ~"~"2 "'=G,'(0), and Eq. (2.39) demands

c,'(l2; 1'2'; o) =([c„,BI...])f,(~, + ~, —tI),

(2.43}

where f))(~) is the Bose function (e8'-1) '. The
I'elatloll fol' 'tile commutator avel'age (see 2.39)
together with Eq. (2.41), then gives

G'(12; 12; O) = [1-(s(1))-(n(2))]

(n(()) = Q a;(12; 12; 0) ~ (n(1))--= (n(l))) .

(2.41)

It is instructive to solve our "fermion-free"
equations for the case of no interaction. The solu-
tion to Eq. (2.40), with V=O is

x (1—512)fs(el+ t2- tI)

(II(1)) = g fB(e,+e, T)-1
2

(2.44)

G,"(12;1'2'; t-t') =G,' (l2; 1'2'; 0}

xexp[-i(e, +e, —tl)(t —t')] .

(2.42)

The boundary condition, Eq. (2.38), then implies

(2.45)

Recognizing that Q, -QJ [&t'p, /(2)l}']Q, , we see
that there are terms of order Q/(N) and of order
(Q ' in (2.45). Equating coefficients, we have the
two equations:
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(n(1)& =—g 2', f, (e, +e2 P—)
$2

&& [1—(n(l)) —(n(2))], n =-
(N& /0 (2.46)

fs(el+ &2- P) =f(&1- 2P)f(&2 —2P)

&& [I-f(el — p)-f(e2 —2p)] ',

where f(x) =(e2*+ 1) ' is the Fermi function. Then,
we have

d3
(n(1)) =

2 g 2
22f(e2--2p)

S2

1-(.(1)& —&n(2))
I -f(e, ——,'p) -f(e2 —-'2p)

Recognizing the normalization 2n=g, f[d'P, /
(2w)2](n(2)), we see that

(n(p, s )) =f(e ——.P) . (2.48)

Thus, (n(1)) is the familiar distribution for free
fermions.

Equation (2.47) is a first order diff-erential equa-
tion in p and a boundary condition in p is required
for a unique solution. The appropriate condition is
the known classical limit for large negative chem-
ical potential, or the limit of small fugacity

lim (n(1)& =e 2'lee~ ' (2.49)
f7~

With this boundary condition, the solution of (2.47)
is then just Eq. (2.48). Note that —,'p plays the role
of the ordinary chemical potential p. in these equa-
tions.

It is interesting to observe the sort of error one
makes if c and c~ are assumed to have ordinary
Bose commutation rules. If [c», ct, ] = 5» 522

then [c12 B, 2i]=2(2N+1)5» 522 +4c, , c», and the
noninteracting solution is, according to (2.43),

G'(12; 12; 0) = [2(2N+ 1) +4(c»tc»)]f2(e, +e2 —P)

(2.50)

instead of the correct result in Eq. (2.44). Clearly,

(n(1)) --
8

(n(1)& =[1-2(n(1))]f2(2e, —P).2 a

P ~P
(2.47)

Either (2.46) or (2.47) is sufficient to determine
(n(1)). In (2.46), we note that

the use of ordinary Bose commutation rules allows
an enormous overcount of allowed states to appear
in the thermodynamic average, and this overcount
results in errors of order (N).

The zero interaction problem is, of course,
much simpler to solve with conventional methods.
Formulation in terms of our basic Eqs. (2.38),
(2.40), and (2.41) certainly obscures the simplicity
of the free-fermion result in Eq. (2.48). Such a
formulation is appropriate only when there are
interactions such that formation of true composites
is physically realizable.

Finally, we should note that the total energy can
be expressed quite simply in terms of our basic
Green's function and (n(1)). Equations (2.15) and
(2.30) allow us to rewrite the Hamiltonian of Eq.
(2.17) in the form

1 1
P»el+ 2 Q P22e2

+ —Q (12 ( V~ 34)B1~2c24,
1234

(2.51)

so that the total energy can be expressed in terms
of (n(1)) =(p»& and G,'(34; 12; 0). On the other hand,
we would like to have an expression for the aver-
age energy which depends only on G,', so that the
coupling to p» does not appear explicitly. Such an
expression can be obtained by noting from (2.34)
and (2.22) that

1 ~ llm2~.. . ,
gg

+(12
~ V~ 34) c~,(t') c, (t) .

t —+tl+e, at(t')a, (t),
1 . 8

1

where a,(t) is a fermion annihilation operator with
an added phase factor so that [i(B/Bt)+ p. ]a,(t)'
=[a„H]. This familiar fermion operator expres-
sion is used, for example, in conventional many-
body theory to express (H) in terms of the single-
fermion Green's function.

By differentiating (H) with respect to p at con-
stant volume and temperature, using (2.52), (2.30),
and the definition (2.37), we find

(2.52)

It should be observed that this is quite analogous
to the expression

(H& 1 1 . . 8 (H) 2 8 (H)
a 2(N& 4tl, +

lim p t—+p+E +E 5 5 +(12~V(34& G'(34'12 t-t')+ ——— (2.53)n p&p. nu ' ' 34-
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a result which is formally quite similar to (2.41).
Analysis of (2.53) for the case of no interaction
between constituents is then no more difficult (and
no simpler) than the analysis following (2.41).
The correct free-fermion result is obtained, of
course.

The physical interpretation of the diagonal ele-
ment G'(l2; 12; 0) is clear. Since

hand side of (2.40) is ((p,(3(t )c34(t)B2~; (t')),'&. This
function can be evaluated exactly for the case of
no interaction via methods similar to those used
to obtain the noninteracting G, in Sec. II. The
result is

((p„(t)c (t)B,, (t')),&=(p„(t)&G,(34;1'2';t t'-)

+ (p„(t )) G, (63; 1'2'; t —t')

1 ~ t 2N'(2N 1)u&u- —= n
12

(2.54)
+(p„(t )& G, (46; 1'2'; t —t').

(3.1)

is the number of independent constituent pairs, or
the operator representing the total number of ways
of constructing composites from pairs of ele-
mentary constituents, we see that (rt&

=2+»G'(12; 12;0) represents the expectation
value of this number. Thus n» =KG,'(l2; 12;0)
represents the average number of independent
composites with constituent momenta and spin
pisa~ p2s2 ~

III. FACTORIZATION APPROXIMATION AND
STATISTICAL CORRELATIONS

BETWEEN COMPOSITES

The dynamical equations for higher-order
Green's functions, analogous to Eq. (2.40), are
lengthy but simple to construct. Without construct-
ing any of these in detail, we anticipate that the
lowest-order approximation is one which main-
tains only statistical correlations between com-
posites and that there is a simple factorization
for the higher-order functions in this approxima-
tion. The specific function appearing on the right-

This expression maintains manifestly the full set
of necessary symmetries and is exact for the non-
interacting case. We take Eq. (3.1) as an approxi-
mate factorization for the problem with interac-
tions, where (p;&(t)& and G, are not the free-parti-
cle solutions, but are determined by solving thb
coupled equations (3.1) and (2.40). We emphasize
that precisely this factorization procedure appears
in ordinary Hartree-Fock theory for boson or
fermion cbnstituents. In that case, the Green's
function formed from two a's and two a 's (the
conventional two-particle Green's function) fac-
tors into a sum of two single-particle function
products, again maintaining proper symmetry.
The factorization (3.1) contains three terms, but
the rationale is identical. We will see that this
analogy with ordinary Particle Hartree-Fock
theory can be carried further. That is, a self-
consistent comPosite wave function, analogous
to the self-consistent single-constituent wave
function of traditional Hartree-Fock theory, plays
an important role.

Inserting the approximation (3.1) into Eq. (2.40),
and using Eq. (2.16), we find

—+ti —tp -tp) 3, 3 —(1.—(n(1)}—(tt(2))] (12
~

tt~ 34) t, (34; 1'2'; t —t)'. a

3,4

=t [5„5„—5„5„][1 —&n(1)) —(n(2))] 5(t —t'), (3.2)

with

e)~ = e2+ p [&13 I vI13) —(13 I vI31&] (n(3)) .
(3.3)

G, (12; 1'2'; t —t')

=5» —,—,
' s,s2 SM,

We recognize that e~ is the ordinary Hartree-
Fock energy for a constituent fermion with mo-
mentum p, and spin projection s,.

We define total and relative momenta 0 =p, +p„

tion G,(12; 1'2'; t —t') conserves total pair mo-
menturn P = P' as well as total spin projection,
sy + sp = sy + s2 and total spin. We therefore de-
compose G, into its spin components

x(—', —', s2' s,' I
SM )&" I ss (P, t —t')

I
k"& (3.4)

As required by rotational invariance, & p»&
= &n(p2s2)& is independent of s2 and will be denoted
by n(p, ). Its normalization is then

&N &
= Z n(p, ) . (3.5)

Pg

Furthermore, the single-constituent Hartree-Fock
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energy is also independent of s, and, according to (3.3) is given by

f ""(p,) =eg+ 2 (g 5g, o+ 2 5g, y)& 2 (p( p2)i U, +(-I)'U;* i-.' (p, -p, )& n(p, )
p2S

=~, +n Z &2(P, -p, )IIII'(p, -p, )&s(p,),
P2

(3 6)

where (kiv~ ik'& = v~(k-k') is the Fourier transform of the spin-singlet (S =0) or spin-triplet (S =1) two-
body interaction, and (kivP ik'& =(kivz i-k') is the corresponding exchange potential. The spin sum in
Eq. (3.6) defines the function

& k
I
Ulk'& =-2 (t 5. .+-' 5s, ()&k I ~. +(-I)'t's Ik'& . (3.7)

Equation (3.2) can then be written as an expression for 9~. Using Eq. (3.4), we have

i —+p —e~(—,'P+k) —c (-,'P —k) 5), q
——[1 —n(-,'P+k) —n( —,'P-k)]&kivziq& (qi9z(P, t-t')ik'&

Q

=I [I-n(2P+k) —n(—,
' P —k] [5k ), +(-1) 5), ), ] 5(t- t'), (3.8)

and the coupling of G, to n(p, ) given by Eq. (2.41) can be written in terms of 9~ in the form

n(P) =
&(&) (p (-' &,~,'5, )(-,'(p, -p) I C(p, + j„o)I-', 8, —p)) +n(p) —— n(p)),

Sp2

while the analogous expression for the total energy [Eq. (2.53)] becomes

(3.9)

(If& 1 t 1 . [ . a — P2 k2

n 2 I (58 a+358 i} llm Q I +I+ + 5k, qn 2 N (4n ' ', ~,+ at 4m m

+ —&ki~siq& &qi9s(»f —t')Ik& + (0) 2 a &ff&&

n ' ' ' n pa& n~'

(3.10)

Equations (3.6), (3.8), and (3.9) now form a coupled set to be solved self consistently, using the boundary

condition (2.38). The solution to Eq. (3.8) for no interactions is then

2 2

&k i9~''(P, t- t') ik'& =+[5),-„+(-1) 5), -„]f)) w +——p [1 —n(-,'P+k) —s(2P-k}]

2 2P k
xexp. -f + ——p (t —t')

4m m
(3.11}

where the upper and lower signs refer to 9 and
9', respectively Simultane. ous solution of (3.9)
and (3.11) gives the full free-particle solution for
n(p, ) described in Sec. II. We note again that si-
multaneous solution of (3.9) and (3.11) is by no

means the simplest method for obtaining the free-
fermion solution for n(p, ); the method involving

Eq. (3.9) and a solution for Qz is helpful only when

actual composites can form; for free constituents
we merely complicate the algebra.

In order to investigate the structure of Eq. (3.8),
we follow a procedure familiar from conventional
Green's-function analyses. We extend the time
t-t' and inverse temperature p into the complex

plane, restricting Rep&0, and T =z (t —t')/p real
in the interval (-1, 1). The solution obtained with-
in this region is then analytically continued to the
physical region of real time and temperature.

We expand 8~ in a Fourier series in this com-
plex time domain

&kl9s(P, t-t')lR'& =&ki9s(P t-I')lk'&

+(k i F,(P) i
k'&, (3.12)

with

(k i9, (P, f t') ik'&-
&ki9, (P, f vs/P)ik'&e-""'. (3.13)P., „
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The periodic boundary condition, Eq. (2.38), is
satisfied by this Fourier series for any value of
&k ~Fz(P) ~k'&. Such a constant term, for ordinary

boson Green's functions, signals the onset of Bose
condensation. It will play a similar role here.
From Eq. (3.8), we see that F~ and 9~ satisfy

&kl9s(P, z)lk'&=fX(»k z)[»«+(-1) 6««]+X(P k z) —Z&kloslq&&ql9s(P, z)lk'& (3.14)

with

(3.15)

and

&k ( F,(P) )k'& =X(P, k, 0)—Q &k l~, lq&&q I Fz(P)lk'& . (3.16)

Equation (3.16) is an eigenvalue equation for p. , and we shall see later that a nonvanishing F ~ implies a
Bose condensation into self-consistent composites. 9~ is then the "noncondensate" part of the Green's
function.

Equation (3.14) for 9~ is, in fact, equivalent to a T-matrix equation

&kiss(»z)lk'&=&klvs+(-1)'vz"lk'&+ g&kl~zlq&X(P, q, z)&qlTz(P, z)lk'&, (3.17)

with

(k
~ Qz(P, z)( k'& = iX(P, k, z)[6««. + (-1) 5««]+ (i /0) X(P, k, z)(k

~ Tz(P, z)~ k'&X(P, k', z ). (3.is)

The numerator in X(P, k, z) plays the role of a
projection operator common to T-matrix theories,
and the energy denominator in this case contains
only the single-particle Hartree-Fock energies.

In ordinary-particle Hartree-Fock theory, it is

advantageous to discuss the Hartree-Pock wave
functions. Analogous self-consistent wave func-
tions are useful for the composite problem. We
see that the wave functions which diagonalize the
T-matrix satisfy

[e""(—'P+q)+ e»(—'P —q)]p- (q)+[1—n( P+q2) —n(-,'P —q)]—g &q~vz~q'&Q- (q') =E- Q- (q},
~g
q

(3.i9)

together with orthogonality and completeness,

(3.20)

Equation (3.19) follows directly from the factor-
ization, Eq. (3.1), and clarifies the physical pic-
ture corresponding to this approximation. Each
member of a pair travels in its own Hartree-Fock
field and interacts with the other member of the
pair, not through the two-body potential, but

through this potential modified by over-all sym-
metry requirements. The internal composite
states are not the free composite wave functions
but are affected by the presence of other com-
posites. For example, although p is an internal
wave function for the composite, it depends on
the composite center-of-mass momentum P. As
ordinary-particle Hartree-Fock theory neglects
dynamical correlations between particles, this
factorization neglects dynamical correlations be-
tween composites.

The T-matrix and 9~ can be constructed im-
mediately from these wave functions. From Eqs.
(3.14}-(3.20) we have
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(k ~
T (P s)

~

k, } g + P - ""
(2P +k) -e""(-,'P - k)

1-&(-,'P+k) - s(-,'P —k}

and

xp y (k) ~» } ~ }[1+( 1)~7)]y+ (k~)
V ps@

(k (Qq(p, g) ~k') = —Q» ~~» [1—n(2P+k') —n(~P —k')],

(3.21)

(3.22)

and from (3.13)

(kl9~"(P &)Ik') =+ —g ' ~~" [1—n(-'0+k') —n( —,'P —k')]e "sos
V ~ V 8 (Sp~ -P)

(3.23)

where m is the reflection operator, vQ(k) = Q(-k}.
Thus only the odd-parity states appear for the
triplet (S = 1) and even-parity states for the singlet
(S =0). Further, from Eq. (3.16) it follows that
(k ~F~(P) ~k') vanishes unless P is one of the eigen-
values E~ „ofEq. (3.19). Thus,

(k~F~(P) ~k') =(const) g 5& s P (k)

it approaches the lowest self-consistent pair
eigenvalue E~~, . If we assume that the pair energy
increases with center-of-mass momentum P,
this minimum occurs at P =0. Only when p.

reaches the value E,~ will there be a contribu-
tion to 9 from I'. For this value of P., we then
have

(k (Fz(P) ~k') =(const)5~, g 5& z P,»(k)
x —,'[1+(-1)'v]y* (k'), (3.24)

where the factor —,'[1+(-1)~w] is needed to pre-
serve the original symmetry requirements on

G, . p, is a thermodynamic quantity, a chemical
potential used to fix the average number of com-
posites. At high temperature p will be large and
negative (classical limit). As temperature is de-
creased, for fixed density, p will increase until

x —,
' [1+(-1)~m]g*,»(k'), (3.25)

when

Emin
OS@ (3.26)

The above F term then produces a contribution
to n(p, ) [Eq. (3.9)] which is given by

"(p|)=
4(/ Z (~80+3~8 1)los (pl) [12+( 1) vie*os-(pl)5p, z

Syll

and a similar contribution to the total energy (H)/ 0 [Eq. (3.10)]

(3.27)

H

( )
—Q (5, , +35,)-,'[1+(-1) m,]5~ Q*„,(k)

R, S,v

x g [(@+k'/m)5k -+ (1/Q)(k Iv& lq}]g», (q) . (3.26}

We have denoted this contribution by the super-
script c because it arises physically from Bose
condensation into the self-consistent composite
ground state. Likewise, Fz(P) gives a contribu-
tion to the average of q, the operator representing
the total number of independent constituent pairs.
From the definition (2.54), Eqs. (3.4), (3.12), and

(3.20), we see that the expression (3.25) for F
yields the contribution to (q),

('g)'=(const)
2 g(5z 0+35&,)—,'[1+(-1)~v„]5&s

S, v

(3.29)

where the (const) factor is that appearing in (3.25).
Note that (5~, +35~,)-,'[1+(-1)~v,]=—Dz„ is the full
degeneracy factor for the state p,~„ including the
fact that only even-parity states contribute for
S=1 and odd parity for S=O. Note also that this
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same factor appears in (3.27)-(3.29). Combining
(3.27) and (3.29) so as to eliminate the (const)
factor, we have

J
3

(2 )', n'(p, }=yn, p =E, „.
Similarly, Eq. (3.28) can be written

(3.32}

&q)
2 s, Ds bus I 0' os (Pz }I

Q

&n)'
2&N)Q

&q)'=2y(N) = y s[2&N)(2&N) —1)] . (3.31)

Thus, we may write the contribution of E to n(p, )
in the form

n'(Pi} =
D Z Ds. bo.sos, I los. (Pi) I',

Sv

D= Dsvbp, Z
. Sv

(3.3O)

where D =ps„Ds, b& s is the total degeneracy
OSv

of the minimum-energy composite state. The
quantity &q)'/2(N)Q has dimensions of a density,
and we can write

&e)' yn
Q D Q so o, s oso2QQ Aosl/(k)

S,v

xg F+ —
5T, o+

Q
(klqs lq) yo», (q)

k2 ].

q

(3.33}

The parameter y is to be interpreted, according
to (3.31), as that fraction of the total number of
independent composites which are distributed with
equal weight among the D self-consistent com-
posite states with energy p =E,s„. The value of
y, which plays the role of a "condensate fraction"
or order parameter in the theory, is yet to be de-
termined. However, if temperature and density
are such that P(P, n) lies below the minimum eigen-
value E Os„ it is clear that y =0.

When p, lies below E,s, and y =0, we must solve
Eq. (3.9), using Qs in place of Qs. Qs is in turn
given by Eq. (3.23). This "noncondensate" contri-
bution to n(p, ) will be denoted by n"'(p, ); it is, of
course, the full contribution when p, &Eos, and
y=0. Thus, we have

PgS v
(3.34)

Thus, y is determined by

d3
(1 ) Pl oog )n (2w)' (3.35)

Below a certain critical temperature, obtained by
setting y =0 and solving for the temperature at

[note: P =p, +p„k =-,'(p, —p, ) ].
At zero temperature (P-~), condensation into the
lowest self-consistent state is complete in this ap-
proximation, and n"'(p, }-0 while P =E,s„and
y =1. The full ground-state problem is then solved
by finding the (possibly degenerate) ground-state
wave function /os, (p, } with eigenvalue p, according
to Eq. (3.19). The full n(p, ) is then given by Eq.
(3.32) with y= l.

At nonzero temperature there is some depletion
of the lowest composite state, and some exitation
to the higher states. In this case, n(p, }= n'(p, )
+n"'(p, }with condensate and noncondensate parts
given by Eqs. (3.32) and (3.34), respectively. The
quantity y is determined by normalization

d P1 fdP~
(2„)s n(pl)=yn+

~ (2„)o
" (pl).

which (3.35) is satisfied when p =E,s„ there
exists some degree of condensation into the lowest
self-consistent composite states. For lower temp-
eratures, p, remains equal to Eos and the pa-
rameter y is determined from Eq. (3.35). Above
the critical temperature, y=0, there is no con-
densation, and Eq. (3.35) then determines p, (P, n)
+ E Os as a function of density and temperature.
These observations parallel similar results for
the free Bose gas, of course. However, in the
free-Bose-gas problem, one need not solve a
set of coupled wave (or Green's) function and mo-
mentum distribution equations; only the normal-
ization of a known form for n(p, ) is involved.

In many problems of physical interest, particu-
larly in cases of low density, one expects that
the composite internal wave function P (Eq. 3.19)
for the many-body medium resembles closely the
free composite function g (eq. 2.26). Although Q
clearly approaches f as density goes to zero, the
deviations are of interest, and the free composite
states form a convenient basis for examining the
structure of these deviations. In particular, we
may use the g basis for examining Bs.

We may express &klQs(P, t}lk') or (klQs(P, z) lk')
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in the free composite basis by

&k(9z(P, t) (k') =—g t/)q z(k)(A ( 9z(P, t) I
4]'& [1+(-1) s) pq z(k') [1-n(zP+)4") —n(zP —k')], (3.36)

with the same relation between (k (9z(P, z) Ik') and &&(9z(P, z) (]].'&. Equation (3 14), together with (2 26)
and (2.27) then implies immediately

&] (9.(P, z)I]'&=&](9.(P, z}l&'&+ Z &&(9.(P, z)I&"&.&&" IK. (P)I&"'&&&"(9.(P, z)I&'&, (3.37)

where

&X(9,(P, z) (~'&, -=~P
refers to the free composite solution, and the integral equation kernal Kz(P) is given by

2

&«[~K (P)lk') = P 4' (k) —- ) [n(-,'P+k) ~ (-', P —k)]

(3.38)

+ —P (-,'(k —q) I
U

I
—,'(k —q))[n(-,'P +q) +n(-,'P —q)] g&, (k), (3.39}

with the potential (1c(U(k ) defined previously in Eq. (3.7). The function Kz(P) is small for low density,
and approaches zero as density goes to zero. An iterative solution of Eq. (3.37) then provides a density
expansion, the first term of which represents the free composite solution.

Thus, the Green's function 9z(P, 0) is given by

&klq, (P, O)lk'& =4„f,(4 tv„—«)+ —g [l&k((&Pv«IO)l,
k

k& —&k[12, (P,
'

nlq)lk'& Iv '""' . (24O)
"even .

The first term of this expression, together with

Eq. (3.36), now produces a result for
&k(9z(P, O}(k'& identical in form to the general
result (3.23), but with (t& replaced by ]I) and Ep~
-p'/4m+(d „. 2

Finally, Eq. (3.34) can be written in the free
composite representation

«"'(P, )=2 p (o Z 2 (k)(2[2;(P, o)lk'&
PyS

x D . $„(k)[1—n(p, ) —n(p )]

+ n"'(p ) ——=n"'(p ), (3.41)1
p g~ 1

where Dz&,
—= (6z, +36z 2}—,'[1+(-1) 7(„and we

again recall that P and k refer to p, +p, and
—,'(p, —p, ), respectively. Again, use of the first
term of (3.40) in (3.41) produces an expression
like (3.34), with the zero density replacements
(t&- t[ and E- (Pq/4m)+(d.

The specific composites discussed here have
been fermion pairs and the composite formulation
adopted is designed to retain the correct over-all
Fermi symmetry. Thus, the "composite Hartree-
Fock" approximation generates a pair wave func-

d3

2„~ & k(~. (q& A...(q), (3.43)

with a an arbitrary constant, we see from (3.42)
that 4(k) satisfies

d3
t) (q) (3 44)

This is indeed the BCS gap equation, provided that
the fermion distribution n(q) has the form appro-
priate to BCS theory, i.e.,

n(q)=-((+ '
f[tv(q)] ~ — '- f[-tv(q)]

2 (4) q

tion P whose use in the many-body theory main-
tains this Fermi symmetry. Since "pairing with

proper symmetry" is also a feature of the familiar
Bardeen-Cooper-Schrieffer (BCS) theory, ' it is
perhaps useful to make a comparison. If we con-
sider the ground-state solution to Eq. (3.19),
assuming a singlet state and taking p, =Eppp we
have

24(k)O„,(k)v[) —2n(k)]j,(kin, lq)O, (q) =0,

(3.42)

with e(k) = e~(k) ——,
'

p, . Defining the quantity
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with &u(q) = [e'(q) +b, '(q)]"' and —,
'

p, in e(q) the usual
fermion chemical potential ]L(, . In this case, the
factor [1 —2n(q)]/2e(q) becomes simply tanh ,'P—u&(q)/

2u(q), and Eq. (3.44) takes on its familiar BCS
form.

The point, of course, is that "pairing with proper
symmetry" is achieved by utilizing the composite
Hartree-Fock function P in Eq. (3.42). The same
information is contained in Eq. (3.44) for 6, and
"properly symmetric pairing" is independent of
the specific form for n(q). [The n(q) noted above
together with the interpretation of 6 as a gap in
the single-particle energy spectrum is, of course,
peculiar to BCS theory. ] In other words, "pairing"
with self-consistent "Hartree-Fock composities"
whose wave function enforces over-all Fermi
symmetry is a concept quite independent of the
specific form for n(q). In the weak-coupling
superconductor, n(q) is close to the "Fermi-sea. "
form, and e(k =0) can be both positive and nega, -'

tive. On the other hand, a system with a strongly
bound two-body state can exhibit complete con-
densation in the composite Hartree-Fock approxi-
mation, and n(q) =n

~ P„,(q) ~' at T =0 for density
n sufficiently low so that e(k =0) is always posi-
tive. This latter situation is described and illus-
trated with a simple two-body potential in Ref. 9.

IV. CONCLUSION

We have given a conceptually complete formal-
ism for the composite language description of
many-particle systems. Although the specific
formalism discussed is applicable to composites
of two-fermion constituents, its extension to
more general composites is obvious. The com-
posite fields are neither Bose nor Fermi; rather
they satisfy more complicated commutation rela-
tions which reflect the internal structure. It is
meaningless to ask whether the composite opera-
tors exhibit elementary Bose or Fermi behavior
(i.e. , elementary commutation rules) in any pre-
scribed limit. To recover the Ehrenfest-Oppen-
heimer limit, ' one need show only that the ex-
pectation values of certain operator products,
carr esponding to physical observables, approach
at low over-all density the value one would have
obtained had the composites been truly "elemen-
tary. " Hence, the operators themselves need
not embody any simple "low-density limit. " Hav.-

ing defined the composite-field operators, we
have then constructed a Green's-function pre-
scription for calculation of physical observables.

The formulation given here is, of course, com-
pletely equivalent to the usual quantization in
terms of fermions, and if one starts with the
composites and all their symmetries, one would
be led inevitably to the fermion language. In fact,
one of the quantities appearing in the composite
dynamics is (p»), which is given in terms of the
composites but which has physical significance
only in the fermion language, i.e., the fermion
momentum distribution. Although the energy,
e.g. , Eq. (3.10), does not formally depend on (p»),
the determination of G, which does appear, re-
quires an evaluation of (p»). In the special case
where the composite is very tightly bound, and
where ( p») «I, explicit evaluation of (p») is un-
necessary, the energy and other microscopic prop-
.erties are then independent of the internal com-
posite structure, as one would expect. The com-
posite language is appropriate when a dominant
feature of the system is the tight binding of two or
more of the elementary constituents, and this lan-
guage does facilitate approximation methods which
include correctly all the symmetries, and which
further include this tight binding aspect.

Such an approximation is that given in Eq. (3.1),
a Hartree-Fock-like factorization which neglects
dynamical correlations between composites. This
approximation leads to a simple physical picture
of how the composite internal states are distorted
by the. presence of the surrounding composites,
with their enforcement of the necessary sym-
metries.

Numerical results for a model problem using
this formalism and this approximation appear in
Ref. 9. Specifically, it is shown there how a sys-
tem with an available two-body bound state con-
denses into this bound state at low density and
zero temperature, and how as the density is in-
creased the binding becomes weaker as a result
of the intercomposite symmetries. This is one of
the types of problems for which the methods given
here would prove useful. The analysis of such a
system is being extended to nonzero temperature
and to larger densities such that the bound state
has, in fact, merged with the continuum. Results
for this problem, of some interest in itself, will
be reported in a subsequent article.
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