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A quantum hard-sphere system bounded by two parallel rigid walls is studied at absolute
zero by numerically integrating the Schrodinger equation for the system. A very pronounced
layered structure in the density profile across the channel is observed. The numerical cal-
culations are performed on fairly small systems of about 64 hard spheres. It is also found

that the layered structure is very sensitive to the distance between the walls. A comparison
is made with the results of variational calculations which also show definite but less striking
layered structures. A classical hard-sphere Quid in a similar geometry again shows a
layered structure which is also sensitive to the distance between the walls. We suggest that
the occurrence of the layers can be semiquantitatively related to the oscillations exhibited

by the radial distribution function at the same density.

I. INTRODUCTION

Many experiments' have been conducted in an
effort to understand boundary and size effects on
the properties of liquid ~He. These experiments
have yielded some understanding of the effects
introduced either by a substrate or the walls of
a narrow channel. A difficulty in interpreting
the experiments is that up to the present no ac-
curate calculations of the structure and properties
of helium near a substrate or waG were available.
A very simple model of the density profile was
introduced some years ago. This assumes that
some kind of step-wise density profile is ap-
propriate near a substrate. To study the behavior
of the order parameter, the Hartree approxima-
tion has often been used. ' Since both these models
are based on very crude approximations their
reliability as an aid to interpreting data is con-
siderably in doubt. The main purpose of this
paper is to present the results of an essentially
exact calculation of the density profile of a fluid
boson system in a narrow channel. The model we
use, namely, hard sphexes between parallel hard
walls, is highly idealized and we view these cal-
culations as being exploratory. Nevertheless, we
have found some striking results which we believe
will be present in a more realistic model.

A recent paper demonstrates that the local
spatial structure (as revealed by the radial dis-
tribution function) in a uniform system of bosons
can be very accurately represented by a hard-
sphere model for the fluid (hereafter referred to
as 1). Indeed, at the appropriate density the

structure factor for the hard-sphere system is
almost identical with that measured by x-ray scat-
tering on liquid helium. Because the local struc-
ture is so well represented by the hard-sphere
model, we feel that the use of the same model to
represent liquid helium confined in a narrow chan-
nel is a good first approximation. %'e, of course,
shall emphasize the structure of the fluid. Ques-
tions relating to the binding of the fluid to the
substrate and the flow of the fluid over a rough
substrate require a much more realistic model.

ln a previous publication' (hereafter referred
to as 11) we presented the results of a variational
calculation using Monte Cax lo methods. It was
found that for the same model of hard spheres in
a channel that the density profile across the chan-
nel exhibits a layered structure. The loose analogy
between the density profile and the radial dis-
tribution function in a uniform system was pointed
out. In the variational calculation the order pa-
rameter also showed considerable structure. We
argued in II that the oscillatory behavior was ex-
pected, although it could also be argued that it
arose from the functional form of the trial varia-
tional wave function. The results of the exact
calculations which we present in this paper show
even more enhanced density oscillations than those
revealed by the variational calculations, thus
verifying that they are not an artifact of the varia-
tional approach.

The exact calculation is based on a numerical
method proposed by one of the present authors'
and recently applied in I to a uniform system of
hard-sphere bosons. The methods can give exact
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numerical results for the properties of hard-
sphere systems. The numerical methods used
for the channel problem are fundamentally the
same as those in I and the reader is referred to
that paper for basic details.

In Sec. II the numerical method as modified,
for the present study, is briefly described with
emphasis placed on the changes needed for this
problem as compared with the work reported in
I. Our results are presented in Sec. IG. Some
of the results found were so striking that we were
led to investigate, for purposes of comparison,
a similar system of classical hard spheres in a
channel. This comparison is made in Sec. IV.
Section V is devoted to a discussion of whether
our system finally reached a true equilibrium
state. This is an important question in this kind
of numerical work. The numerical experiments
we conducted show quite convincingly that we
did, indeed, achieve equilibrium. Section VI is
devoted to our conclusions and discussion of future
work.

II. HARD-SPHERE MODEL

N hard spheres are enclosed in a rectangular
box L„XL, x L, . Periodic extensions are made
in the x and y directions. The surfaces at z=p
and z =L are assumed to be rigid repulsive walls.
The Schrodinger equation for this system is (with
0=2m=1, and hard-sphere diameter =a)

It was demonstrated in paper I that if g~(B) is
the exact ground-state wave function, then the
method using important sampling with Pz(R) will
give zero variances in estimation of ground-state
energy. When $~(B) is a good approximate ground-
state wave function, the convergence will be
accelerated. For the present purpose, we choose
the optimal variational wave function we found in
paper II, i.e.,

where

f(r) =tanh[(r —I)/I) ],
A', (z) =h (z) =tanh[z(L -z)/dL, ] (7c)

The main differences between the present cal-
culation and that in I are given by Eqs. (2b) and (7)
and the removal of the periodic extension in the
z direction. These differences ean be incorporated
into the methods of I. For details on how the solu-
tion of Eq. (6) is found, readers should consult I.

From the solution of Eq. (6), one has a statisti-
cal sample whose population is proportional to
g~(R)(I),(B),g,(R) being the "exact" ground-state
wave function. To calculate expectation values
weighted with g(R), one may use the following
scheme.

Suppose (g, j is a complete set of eigenfunctions
of Eq. (4) with eigenvalues E~. Then one has the
completeness relation among them

with the boundary conditions

y(B)=0 if ~r, —r, ~

&a for all ix) (2a)

g y,*(B)y,(B') =6(R-R') .

This can be written as

z; ~0 or z; «L, for all i, (2b}

where B stands for 3N particle coordinates (r„
r„~ ~ ~, r~), and r; =(x„y;,z;). If we define
G(B, B,) through

- v'C(B, B,) =6(B-R,),
then Eq. (1}may be rewritten as

((E) Ef G(E, E')((=E') EE'.

If gz(R) is a trial function for importance sam-
pling, and if

y(B) = y, (B)y(R),

then Eq. (4) may be transformed to

i)(E) EJ [0 (E)Q(E, E=')(t '(E')] i)(E') EE'= Ei) .

(6)

y, (B' )y,(B)=6(R-R') .
)

If we apply the operator F defined in Eq. (6) to
Eq. (9) m times and integrate both sides over B',
then in the limit m-~, one obtains

q(B) = Iim F"6(B—R') dB'
75» co

g.*(R) E -, , „4.(»=lim P ( )
(t (B')dR'EE

k

(10)

Let jB,] be a population drawn from $J (B)g,(R).
Use q(B,), the asymptotic population obtained from
iteration starting with A&, as the weight. Then the
density of the weight occurring in the neighborhood
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N Jq,(R)g (R)5(r r, ) dR-

Jy,(R)y,(R) dR
(12)

It can be seen that sz(~) is an intermediate quantity
between the "exact" n(r) and that obtained from a
variational result, n„(r) computed from g~(R).
For clarity we shall keep these labels on the
density profiles whenever necessary.

In contrast to the bulk calculations reported in

I, we find some striking quantitative changes
between the variational results and those obtained
from integrating the Schrodinger equation. This
means that our trial function for the channel
problem is not as good here as those used in the
bulk fluid. It also implies that the convergence
required in Eq. (10) is slower and subject to more
statistical error than for the bulk. However, by
comparing results of n and n, , we can estimate
possible uncertainties for these weights. We find

of R, will be proportional to [g,(R)/$~(R)] gz(R)
xg, (R) =P(R). From this distribution one readily
obtains the density profile defined by

NJy', (R)5(r —r, ) dR

Jyt(R} dR

A subscript m will be attached if the weights are
obtained from Eq. (10) after m iterations.

For practical purposes, it is also useful to
compute average weighted with $~(R)g, (R):

that the difference between n4Q and nsQ is very
much less than the difference between either of
these functions and n„obtained from a variational
calculation. Next the difference between n«or
nBO and n~ is about 1-2%, which is very much
less than the 10-15%difference between n~ and

n, (this is shown clearly in Figs 1.and 2). In

other words, n4„n8Q, and n~ are all very close
to one another, and differ appreciably from n„.
Since n~ can be computed comparitively easily,
we shall confine our attention to the function for
most of our analysis.

III. RESULTS FOR QUANTUM HARD SPHERES

In Figs. 2-4, density profiles n ~(z) are plotted
for three different channel widths: L„=LQ
=6.84a; L, 2 3QLQ L 3 fQLQ The average density
is kept at pa' =0.2. This is equivalent to a density
of px' =0.34 in liquid helium. For comparison,
the results of our variational calculations n„(z)
are also included.

We point out two striking features in these
graphs. Firstly, a layered structure exists in
both the exact and variational calculations, but
the layers are much more pronounced and are
damped out more slowly in the exact treatment.
This is especially true for the layers in the middle
of the channel. Secondly, as the channel width is
reduced, the middle layer disappears for L, =L„
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FIG. 1. Density profiles for quantum hard spheres in
a channel for the density pa3 =0.2 and the channel width
L =L 0

—-6.84a, n40(z)/p, the solid line decorated with
dots, and nz(z)/p the undecorated solid line. See the
text for definitions of n4()(z) and n&(z).

FIG. 2. Density profiles for quantum hard spheres for
pa3 =0.2 and L, =L«. The solid line is n~(z)/p
from the present treatment. The decorated line for
n„(z)/p is from the variational calculation.
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FIG. 3. Densig profiles for quantum hard spheres for
pa = 0.2 and I, =-I ~0. The solid line for n~(z)/p is
from the present treatment. The decorated line for
n„(z) /p is from the variational calculation.

and L,=L„. As the number of layers drops for
these separations, the second layers from the
walls tend to increase their peak heights and at
the same time the layers are slightly broadened.
In the variational treatment, any such sensitive

2.000—

I .800—

I .600—

I.400—

1.200—

I.QOQ-
(I)

LLJ
O 8QQ-

.600:-

.400-

.200-

0,'

i i I I I I I

0.0 I.O 3.0 5.0 7.0 9.0 I I.O I3.0
Z

FIG. 4. Density profiles for quantum hard spheres for
pa =0.2, and I =&L -0. The solid line for nz(z)/p is
from the present treatment. The decorated line for
n„(z)/p is from the variational calculation.

dependence of structure on the channel separation,
can hardly be seen, since the structure of this
density profile is already damped out considerably.
This seems to suggest that the variational wave
function used in paper II though correct for the
over-all structure fails to describe some subtle
but significant correlations properly.

In view of the layered structures developed in
these systems and discrepancies between varia-
tional treatment and the present "exact" treat-
ment, we have tried to carry out a new set of
variational calculation in which we put into h(z)
an explicit oscillatory component,

h(z) = h, (z)[1+A cosh(z --,' L,)],
where h, (z) is defined in Eq. (7c). By varying the
new variational parameters A and k, we were not
able to detect any significant lowering of the
energy. This is not surprising because the h(z)
in Eq. (13) tends to increase the kinetic energy
This and our previous calculation strongly suggest
that one needs a much more complicated trial
function to describe these subtle correlations
found in the present calculation.

That our structure is not a crystalization effect
is verified by an explicit calculation of the dis-
tribution of atoms in a plane for a quantum crystal.
This distribution can easily be obtained from the
crystal configurations obtained in I. We find that
this distribution contains regions where the den-
sity is essentially zero. This result holds even
for individual configurations and arises simply
because the atoms are quite well localized on
lattice sites. A similar calculation performed
for the fluid in the channel generates a completely
random distribution of atoms in any one layer.
This distribution is also found for individual con-
figurations. We thus believe that there is no
evidence of any crystallization phenomena taking
place in the layers in the channel.

Finally we remark that the structure we have
found in our exact treatment of a fluid Boson sys-
tem, is qualitatively similar to that predicted
by Regge' in a recent publication on the free sur-
face of a Boson fluid. Indeed, he pointed out that
his method when applied to a channel would yield
an oscillatory density profile. We have not at-
tempted a quantitative comparison of his results
and our own.

We shall discuss thiS layered structure in more
detai1 in Sec. VI.

IV. COMPARISON WITH CLASSICAL HARD SPHERES

The pronouned layered structure we found for
quantum hard spheres suggested that we should
carry out Monte Carlo calculations for a classical
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hard sphere' system in a channel. We chose to
model a system with density pa' =0.7. The den-
sity has approximately the same ratio (0.74) to the
freezing density of classical hard spheres as
pa' =0.2 (the density used in our boson systems)
does to the quantum freezing density (0.23). In
Fig. 5 we give the density profile for 64 particles
in a channel bounded by two rigid walls. We see
a qualitatively similar layered structure to the
one we found in the quantum system, except of
course that the density is peaked at the walls for
the classical system. A series of calculations
in which the channel width was varied from —,

' to
4 of the one shown in Fig. 5, yielded similar
density profiles with la,yered structures, but the
number of layers changed from four to five to
six layers successively. Similar calculations
were carried out for the pa'=0. 5 case, where a
layered structure as well as the dependence of
the number of layers on the channel width was
again observed. This shows that the layered
structures exist at lower density as well. The
relationship between the channel spacing and the
number of layers is summarized in Table I. This
kind of density oscillation has also been reported
for a model of a one-dimensional fluid near a
rigid surface. '

V. STABILITY OF LAYERED STRUCTURES

As a test of convergence we use the idea that
if a system has reached stable (not metastable)
equilibrium, then if it is disturbed, it should
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always come back to the same equilibrium state.
To disturb a system in the context of our present
calculations, we force the equilibrium state into
a new state. Then if the calculations are started
from the new state, we should ultimately find
the same equilibrium state from which we started.

For the quantum hard-sphere system, we took
pains to verify that equilibrium can be restored
after a violent disturbance for the case L, y Lp.
The starting distribution was derived from a cal-
culation of classical hard spheres which gives
the density profile shown in Fig. 5. After re-
scaling the box size to give the desired average
density, Eq. (6) was iterated with this distribution
as an initial input. After about 600 iterations for
a population of approximately 300 configurations
the system readjusted itself to the equilibrium
state we found previously. For comparison, the
density profiles in Figs. 2-4 are the results of
1000, 500, and 500 iterations, respectively, for
about the same number of configurations. Thus,
when we start from a very bad initial state, re-
laxation to equilibrium is very slow.

For the classical hard spheres, the starting
configuration was obtained by imposing an ex-
ternal potential to force the particles to accumu-
late near the center of channel in a. highly localized
state. In less than half a million configurations,
the recovery to the previous (equilibrium) state
was complete.

VI. DISCUSSION

The main points that our calculations have re-
vealed are:

(i) In an exact 'treatment of a fluid Boson system
confined in a channel with ridged walls, we find
a very pronounced layered structure across the
channel.
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TABLE I. Dependence of number of layers m on the

channel width L for classical hard spheres in a chan-
nel at two densities, pas =0.5 and 0.7.
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FIG. 5. Density profiles for classical hard spheres in
a channel for pa3=0. 7, and L, =4.505a.
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3.38
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5.07
5.63

3.78
4.10
4.41
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(ii) A similar but much less pronouncedstructure
is known to be a feature of variational calculations.

(iii) The layered structure found in the exact cal-
culations is very sensitive to the channel width: the
number of layers changes abruptly as the channel
width is changed.

(iv) All the general features that are present in
the exact quantum treatment are also present in

a classical system of hard spheres confined in

a channel. .

Since the classical calculations are compara-
tively quick to perform, we have studied this sys-
tem in considerable detail to try to elucidate the
behavior of the system. We found two further
striking features.

(v) The number of layers present in the channel
is semiquantitatively related to the oscillations
in the radial distribution function for a bulk sys-
tem of hard spheres at the same density. The
relationship can be stated in the following way.
As the channel width is increased, a new layer
appears whenever the channel is just wide enough
to accommodate m layers (peak to peak), a dis-
tance l apart. Here l is the peak to peak spacing
of the oscillations in the distribution function

z(~)
(vi) As the channel width is increased beyond

the point at which a. new layer appears, the layered
structure remains stable, the central peaks broad-
ening to maintain a constant number of layers,
the outer peaks remain comparatively unchanged
both in width and height. No new layer appears
until the channel has widened by an amount l de-
fined in (v) above. These results were obtained
by studying a classical system as the number of
layers changed from four to five and from five to

S1X.

Turning now to the quantum system, we have
tested the results stated in (v) and (vi) for the
transition from four to five layers and the transi-
tion from five to six layers. We find that both
results are well verified, showing once again that
the quantum and classical hard-sphere systems
behave in a strikingly similar manner at the
correctly scaled densities.

These results can be summarized in the fol-
lowing way. As the channel is widened, and new
material added to the system to maintain constant
density, the system adjusts so that the total
number of layers remains fixed and the central
peaks are broadened. We speculate that this
phenomena may be very important in understanding
the behavior of thin films of liquid helium bound
to a substrate. If we are allowed to interpret the
free surface as providing a boundary condition
on the system, then after m layers are complete
if additional material is added then- it may not
form an additional partial layer but the whole
system may adjust by thickening some of the
interior layers and maintaining the t:otal number
of layers constant until the total thickness of the
film is such that an extra layer can be accommo-
dated.
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