PHYSICAL REVIEW A

VOLUME 10,

NUMBER 1 JULY 1974

Photoelectron statistics and autocorrelation of Rayleigh scattering

T. Aoki, Y. Okabe, and K. Sakurai
Department of Pure and Applied Sciences, University of Tokyo, Meguroku, Tokyo, Japan
(Received 14 August 1973)

The statistics and autocorrelation function of the light scattered from polystyrene latex
have been studied with a light-detecting system on-line with a small digital computer. The
distributions of photoelectric counts have been measured during count intervals from 5x 1075
to 5x107% sec. The results were well accounted for by the approximate theory of Mandel.
The factorial moments have been measured to sixth order and the results were in excellent
agreement with theoretical calculations. For the first time, we have directly measured the
autocorrelation function without using a clipping or scaling method. With this direct method,
the comparison between the results of the composite measurements and the theoretical pre-

dictions can be quantitatively discussed.

I. INTRODUCTION

The statistics and the autocorrelation of photons
have been theoretically studied by many authors.! ™3
Although the statistics of the laser light* and
pseudothermal light® have been intensively in-
vestigated, those of a Rayleigh scattering have
not been measured. While the autocorrelation
function has been obtained for various systems
by using the clipping or scaling method, the direct
measurement of it has not been given.®"”

Here, we report the composite experiments of
the statistics and the autocorrelation for a Ray-
leigh scattering by a new and precise method using
an on-line computer system and we present the
comparison of the results with the theoretical pre-
dictions.

When the intensity-stabilized and narrow-band
light is incident on the medium of which refrac-
tive index is undergoing a thermal fluctuation,
the scattered light reflects the statistics of the
fluctuation. The distribution of the counted num-
ber of photoelectric pulses from a photocathode
which is illuminated by the scattered light is given
by a Bose-Einstein distribution assuming a count
duration much shorter than the correlation time
of the thermal fluctuation. On the contrary, when
the duration becomes much longer than the corre-
lation time, the correlation of the scattered light
will be smoothed out and the observed photoelec-
tric distribution is expected to have a Poisson
distribution. For a count interval between the
above extreme cases, the distribution becomes
a function of the count interval and the correla-
tion time of the fluctuation. We made a direct
measurement of those photoelectric distributions.

One may more quantitatively grasp the fluctua-
tion by the factorial moments than by the immedi-
ate distributions of the counted numbers. We mea-
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sured the factorial moments up to sixth order for
count intervals from 107! to 10? times the correla-
tion time of the scattered light. With modified
software of the counting system, we measured

the autocorrelation function of the photoelectric
pulses.

It should be noted that although we actually dis-
cuss the statistics and the autocorrelation func-
tion of the photoelectric pulses, they are intrin-
sically equivalent to those of the scattered pho-
tons.® The theoretical treatment of the clipping
or scaling method of the measurement of the auto-
correlation®'!° is rather complicated, while that
of the direct measurement can be made more
straightforwardly.

II. THEORY

The brief summary of the theory relevant to
our experiments is presented as follows. Further
detailed treatment shall be referred to the excel-
lent review by Mehta.!!

A. Probability distribution

The fluctuation of the light intensity is usually
inferred from the photoelectric measurement.
The probability P(z) of detecting » photoelectric
pulses in a time interval T is related to the prob-
ability density P(W) of the integrated light inten-
sity W as'?

p(n)=fw %e-awp(wmw, 1)
t+T/2
W= yar @)

t-T/2

where a is the quantum efficiency of the detection
and I(¢) is the light intensity. In the case of the
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count intérval much shorter than the correlation
time of the light fluctuation, 7., the probability
P(n) of a Gaussian light becomes a geometrical
distribution,?

n

P i, T T (3)
where (n) =a(W). Here (W) and () are the en-
semble averages of the integrated light intensity
and the number of photoelectric counts, respec-
tively. On the other hand, when the count interval
is much longer than the correlation time, P(n) be-
comes a Poisson distribution,

(n)"e‘("’

P(n)=—"r—,
The probability P(r) of the intensity stabilized
light is also represented by the Poisson distribu-
tion.

When the count interval is comparable with the
correlation time of the fluctuation, P(z) is not
given in an exact form since no explicit expres-
sion is available for P(W). The approximate
formula of P(W), however, had been obtained by
Mandel'® for an arbitrary value of T as

I'(z+1/F(2))
nIT(1/F(2))

> T, . (4)

P(n) =

% 1 1
(L +(nyF@)]} /@ [1+1/n)F2)F’
(5)

where I'(x) is a gamma function and F(2) is a nor-
malized factorial moment of second order which
will be introduced later.

B. Factorial moment
For the photoelectron distribution, we define
the normalized factorial moment of kth order as

_(n®)
P =y

Since the following relation holds between (n(*))
and (W*):

(n®) =a*(Why | (7

-1. (6)

the kth factorial moment F (k) is represented by
the integrated light intensity as

F(k)=(W") /(W)* =1 . ®)

With the aid of the statistics, (W")/(W)" is given
by the cumulants of W14

W
éwy? 2 !Hnlll . ©)

where K, represents nth normalized cumulant and
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the summation includes all the possible combina-
tions of positive integers which satisfy the condi-
tion

kR

i=1
The nth normalized cumulant «, is calculated

from the first-order correlation function C(‘)(T)
of the Gaussian light field by the next equation!3;

__(m-1) T
“n=TrCO0y ), dt,---dt,,
><fdt,,c‘“(t1 —)CW(t, =t ) Ot 1)
(10)
where
CH ) =(ECOEC @t +1)) (11a)
CO)=(EMED @)y = (1) , (11b)

and E*) and E(-) are the positive and the negative
frequency parts of the electric field. From Eqgs.
(8) and (9), the first six F(k)’s are calculated as

F(1)=0, (12a)
F(2)=x, , (12p)
F(3)=k,+3k, (12¢)
F(4) =k, +4K,+6K, +3K2 | (12d)

F(5) =K, +5K,+ 10K, + 10k, + 10k K, + 152 | (12€)
F(6) =Kg + 6K, + 15K, + 20K, + 15k, + 15K K,
+10K2 + 60Kk, + 15k3 + 452 | (12f)
For the light field for which the first-order cor-
relation function is known, those factorial mo-

ments can be readily evaluated from Eqs. (10)
and (12).

C. Autocorrelation function

For the stationary light field, the second-order
correlation function G(Z)(‘r, T) of the photoelectric
numbers registered during the time intervals of
T at the times ¢, and {, depends only on the time
difference 7(=|#, —¢,|). It canbe, furthermore,
related to the correlation function of the light in-
tensity as'?

G (1, T)=(nn(t))
T/2 T+T/
=a fr/z f, (I(tl)l(t2)> dt,dt,,

T>T (13)

where % and #(7) are numbers counted at the prop-



er-time origin and time 7, respectively. For
Gaussian light, the correlation function (I (¢,)I(Z,))
is related to the first-order correlation function
of the light field by the next expression':

TEI(,))y=CHO) +[CV(, -1,)[2 . (14)

We studied experimentally the light scattered
by polystyrene spheres suspended in water. They
have no rotational diffusion and their translational
diffusion constant D can be given by the Stokes-
Einstein relation'®

D=kT,/6mr , (15)
V]

where % is the Boltzmann constant and T, 1 and ¥
are the temperature in K, the viscosity of the

solvent, and the radius of the sphere, respectively.

The spectral profile of the light scattered by the
particles undergoing a Brownian motion is
Lorentzian'® when the incident light is mono-
chromatic. The spectral half-width ¥ of the scat-
tered light can be given by

y =DK? , (16)

where K is the scattering vector of the scattered
light. The correlation time 7, of the scattered
light is defined to be the reciprocal of 7,

Te =1/’)/ N (17)

III. EXPERIMENTAL APPARATUS

The system of the experiments is composed of
a photoelectron counting system and an autocorre-
lation measuring system. Both systems are on-
line with a minicomputer model YOHPAC 2100 by
Yokogawa Hewlett Packard and the counted num-
bers are processed during and after the counting.
The light source used was a 4880-A argon laser
model 52G-A by Coherent Radiation which was
mode selected with a temperature-controlled
etalon plate. The experimental arrangement is
shown in Fig. 1. We observed the light scattered
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|
|
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| —_— e —
|
H
Inter- CPU
Amp Disc tace 8 K

FIG. 1. Experimental arrangement.

10 PHOTOELECTRON STATISTICS AND AUTOCORRELATION OF... 261

by polystyrene spheres through two irises at right
angles with the direction of the incident laser light.
The scattered light illuminated the photomultiplier
with the second iris, 150 um in diameter, which
was 80 cm apart from the first iris in front of the
sample cell. We used the first iris with a diameter
of 150 um for the measurement of the factorial
moment and the autocorrelation, and with a diam-
eter of 600 . m for the measurement of the probability
distribution. The photomultiplier used was a Hama-
matsu TV R464, from which dark pulses were a
few per sec with our discriminating level. Photo-
electric pulses were amplified by two wide-band
amplifiers'” and discriminated by a EG&G T105/N
discriminator. The output of the discriminator
was standardized to TTL level. The final shape

of the pulses had a 2.5X1078-sec width. Those
pulses were counted by a counting circuit on an
interface card in the computer. The total count-
ing speed was systematically limited to less than
30 MHz by the TTL counter used. The dead time
of the counting system was, therefore, about
3x107® sec. An external clock prepared strobe
pulses for transferring every counted number
from latch memories and clear pulses for every
beginning of count intervals. The details of the
counting system and the processing procedure

will be reported elsewhere. Polystyrene spheres
of diameter 1090 A with a standard deviation of

27 A were suspended in water.

The laser was carefully aligned in order to os-
cillate transversely in the TEM,, mode and longi-
tudinally in a single mode. A part of the output
of the laser was detected by a photosensor which
was coupled to the feedback circuit and the dis-
charge current of the laser tube was controlled
in order to stabilize the laser intensity. Because
the high-frequency part of the incident laser light
causes the reduction of the amplitude of the corre-
lation of the scattered light and a fluctuation of
the frequency comparable to the correlation time
may cause an error of the measured correlation
time, it is desirable to eliminate the fluctuation
of the incident laser light. The polarization ratio
of the laser light was measured to be 100:1 for
the electric field. It is, therefore, thought that
the theoretical treatment with an assumption of a
linear polarization well accounts for our experi-
mental results.'®

IV. EXPERIMENTAL RESULT
A. Probability distribution

The probability distributions which were obtained
are shown in Fig. 2 for the count intervals 0.05
Xx1073, 2%x1073, and 5%x107% sec [marked as (a),
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(), and {c), respectively, in the figure]. The
distribution for the incident laser light was also
measured and is shown in the figure [marked as
(d)]. The sample number is one million for the
cases (a), (b), and (d) and 200000 for that of (c).
The values of F(2) and () were evaluated from
the obtained distributions and substituted into

Eq. (5) to calculate the theoretical distributions.
The solid curves in the figure show them. The
approximate theory well interprets the measured
distributions. The experimental value 25.44 of
(n) for the laser light was substituted into Eq. (4)
and the resultant curve of the Poisson distribution
was also plotted in the figure.

B. Factorial moment

Before the calculation of the cumulants, let us
consider the effect of the spatial coherence on the
measured values of F(k) and G?)(r, T). For the
amplitude of the second cumulant, the correction
factor was derived by Jakeman et al.'® Itis a
function of the radii of the employed irises and
the distance between them. According to their
results, our correction is calculated to be less
than 0.002% for the measurements of the factorial
moments and the autocorrelation function and
0.022% for the probability distributions. The ef-
fect of the spatial coherence is, therefore, safely

10!
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FIG. 2. Probability distribution. (a) Scattered light,
T =0.05x107°% sec and (n)=25.39. (b) Scattered light,
T=2x10"% sec and {(n)=24.91. (c) Scattered light,
T=5x10"3 sec and {n)=26.52. (d) Incident laser light,
T=0.05x1073 sec and (n)=25.44. The solid lines show
the theoretical curves.
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neglected.

When the incident laser light fluctuates by a
small but wide-band residual modulation, the
spectral density I(w) of the laser intensity is ex-
pressed as

my,
z(w)_zo(u —m)6(w - “’°’*m> ,

(18)
where w, and I, are the center frequency and the
total intensity of the laser light, respectively,
and m is a fraction of the total fluctuating intensity.
In the above equation, the noise spectrum of the
laser light was assumed to be Lorentzian with a
half-width of y,. The spectral density I (w) of the
scattered light is, therefore, given by the integra-
tion over the laser frequency,

b Y
LWL i)

mY, ’
(@' = wo +73] )d“’ ’
where y is the intrinsic spectral width of the scat-
tered light, which is given by Eq. (16) for the
light scattering by a thermal fluctuation.

The first-order correlation function CV(¢, - ,)
for the scattered light is obtained by the Fourier
transform of I (w),

C(l)(tr.'tz):(Is)ff eiw(t =ty)
0

-— ! — ——ﬂn—
x<(1 T ) e )

X ((1 —-m)b(w' = w,) +

Y '
M@= w0 ¥177] dwdw’ .

Integrating the right-hand side of the above equa-

tion, one obtains the final form

CV(t, = t,) =(L) [(1 - m) +me=7o f1=t21]

X e~VIt =ty 1+iggl, —ty) (19)
When the noise spectrum is so wide that the con-
dition
'yol t, - tzl >1

is satisfied, the above relation is given by a sim-
ple expression

c(l)(t1 - tz) =(1- m)<13> e~V lti-ta I +iwg(t ~t3),
t,#t, . (20)

The next equation is also, of course, obtained
from Eq. (19):

c0)=(Z,) . (21)
From Egs. (10) and (20), it is easily seen that the
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nth cumulant is reduced by a factor of (1 -)".
The apparent form of the cumulants is calculated
straightforwardly from Eqs. (10) and (20). The
first six cumulants are obtained as follows:

k=1, (22a)
2 2
k=2 fas(em-1)] (220)
3
Ky= lzzf (e"‘ +1 +% (e”® - 1)> , (22¢)
4
K= IZ{ <4e'“+ _la_Q(Ze-a +1)
Lo oo - 29)) , (22d)
5
Kq =2ng ( e+ '7‘02'6-“ +¢11§(e_2a +20e7 +7)
+%.(e-24 +12¢7° - 13)) , (22¢)
2

+ 2—5(32'2“ +25e~¢ +7)+%(e‘3" +66e729

+495¢™° - 562)), (221)

10°

107 |

10? G

10

107 107 10° 10 10?
COUNT INTERVAL T (10 sec)

FIG. 3. Factorial moment. Solid lines show the theo-
retical curves evaluated with the values f and 7, obtained
by the measurement of g (7, T).

where

a=2yT=2DTK? (23)
and

f=1l-m . (24)

The factorial moments F (k) for k=2 to 6 were
measured with the same experimental system
as one for the measurement of the probability
distributions but for the smaller first iris.

The measurements were done for several

count intervals from 2X107° to 5X1072 sec. The
experimental plots are shown in Fig. 3. Each ex-
perimental point has several hundreds of thousands
data for the shorter count intervals and several
tens of thousands data for the longer count inter-
vals. In order to compare the theoretical expres-
sions (12a)-(12f) to the experimental results, one
must be given the values of 7, and f. They were
experimentally determined to be (421.6+3.2)X107°
sec and 0.96, respectively, from the measure-
ment of the autocorrelation function. By substi-
tuting these values into Eqs (22) and (23), the
first six cumulants were evaluated. The theoreti-
cal curves of F(k) are shown in Fig. 3. They are
in good agreement with the experimental plots.
This agreement implies that the factorial mo-
ments and the autocorrelation function were con-
sistently measured.

2]
T

g( (%, T

2)

1 1 1

0 2 4 6 8
DELAY TIME (1073 sec)

FIG. 4. Autocorrelation function. Each point consists
of five million samples. Solid line shows the most prob-
able curve of the experimental points from which the
correlation time and the value of f were found to be
(421.6+3.2)x107% sec and 0.96, respectively.
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C. Autocorrelation function

The first-order correlation function for a Gaus-
sian-Lorentzian light was given by Eqgs. (20) and
(21). Substituting Eqgs. (20) and (21) into Eq. (14),
one obtains the expression

<Is(t1)Is(t2)> =<Is>2 +(1- m)z(ls>2e-zyl it !,

(25)
From the above relation and Eq. (13), the normal-

ized second-order correlation function g (7, T)
is obtained

g(z)(.r’ T) - (n<:§72-)) =1 +fz(Sin:/(t21/2) )ze-aT/T ,

™>T . (26)

Figure 4 shows the experimental plot of g (7,T).

The count interval for each experimental point
was 2X107° sec. Each point consists of five mil-
lion samples. The average number of photoelec-

tric pulses was typically 0.74. The correlation
time was obtained as (421.6+3.2)x107® sec by a
least-regression method for the decay slope of
the experimental plot. The Stokes-Einstein rela-
tion predicted the correlation time to be (421.6
+3.6)x107® sec, which was evaluated by the sub-
stitution of our physical quantities into Egs. (15)
and (16). The theoretical prediction of the corre-
lation time, therefore, fits the experimental value
well. By the extrapolation of the experimental
plot to a zero time difference, the value of f was
obtained to be 0.96. The fraction of the noise
power of the laser light used was, therefore,
estimated to be 4%.
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