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Statistical mechanics of Coulomb gases of arbitrary charges
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The Coulomb-gas activity expansion of Rogers and DeVhtt is extended to include more terms. This
is an expansion in the activities of electrons and nuclei, and it converges slowly in regions where com-
posite-particles are present. It is shown that by treating certain products of terms as composite-
particle activities, the convergence of the expansion is greatly increased. The important element of the
present work is the recognition that terms in the original expansion correspond to the Taylor-series
expansions of a similar expansion involving an augmented set of activity variables, i.e., the composite
particles enter the expansion similar to fundamental particles (electrons and nuclei). This reorganization
of the activity expansion makes it possible to calculate the equation of state for electron-nucleus gases
of any charge. All stages of ionization and dissociation are treated to the same order of approximation
in the new expansion. To illustrate these features some calculations for helium are given. To dernon-

strate the improved convergence properties, some calculations for hydrogen are compared with those
obtained by Rogers and De%litt.

I. INTRODUCTION

n a previous paper ' hereafter referred to as
it vt as demonstrated that the cluster (activity) ex-
pansion is the natural expansion to use for reacting
gases. However, for Coulomb gases, as is mell
known, each of the cluster coefficients b„diverges
in the limit V-~ so that the formation of binary,
trinary, ete. , composite particles cannot be han-
dled in a simple way. This problem was dealt with
in I, mhere it mas shown hom to expand the b„ in

powers of the potential and collect the resultant
terms such that all long-range divergences are
eliminated. ' The activity expansion thus obtained
mas reordered into an expansion resembling the
cluster expansion for an ordinary gas. A short-
coming of this latter expansion is that it eonverges
slowly in regions where composite particles are
formed. The purpose of this paper mill be to dem-
onstrate that the activity expansion given in I,
which only involves the activities of electrons and

nuclei, ean be rewritten in terms of an augmented
set of activity variables with improved convergence
properties. The formation of composite particles,
described in terms of the activities of fundamental
particles, is associated with exponentially increas-
ing Boltzmann factors e~~I ~~ at lom temperatures.
This exponential increase with decreasing tem-
perature forces the activities, through the density
constraints, to decrease such that the product of
the activities and e~~I ~~~ is of the size of the den-
sity of composite particles. This product of terms
acts as though it is of unit power in the activity.
As a result, terms involving the product enter the
expansion effectively. as the power of the product
rather than the power of the activities. In the nem

expansion these product terms are considered to

be the activities of composite particles. The utility
of the new expansion is that, by explicitly identi-
fying quantities that act like composite-particIe
activities, one automatically includes the Coulomb
effects in the original expansion that are important
at any stage of ionization.

The formal development mill be rigorous in the
limit that the ratio of the de Broglie wavelength
(X) to the Debye length (X~) approaches zero This.

comes about as follows: The logarithm of the grand
partition function,

InZ„=ln Tre

is expanded, for Boltzmann particles, using dia-
grammatic perturbation techniques similar to those
used in field theory. As discussed in I, this re-
sults in expressions mhieh resemble the cluster
coefficients of the dynamic screened Coulomb po-
tential, except because of the summation procedure
mhich eliminated the Coulomb divergencies, cer-
tain types of-terms are subtracted out. In addition
new types of terms are present which are related
directly to the presence of the plasma. The terms
that resemble cluster eoeffieients involve tmo
distinct quantum diffraction parameters @=X/Pe'
and y= A. /AD, but the purely plasma terms only
involve y. In the limit y-0, therefore, there is
a mell-defined region for which the many-body
plasma part of the problem remains classical
while the few-body part displays the necessary
uncertainty-principle effects at short distances.
In this limit the dynamic screened Coulomb poten-
tial goes over to the Debye potential (see Appendix
B of I) and all the propagators except those asso-
ciated with e 8" are classical. This limit is equiv-
alent to replacing the Boltzmann factors of the
classical theory, minus their appropriately sub-
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tracted parts, with a Slater sum. As a result of
the simplicity afforded by this correspondence, we
perform our preliminary analysis classically but
ultimately insert Slater sums at the proper places.

For two-body interactions it is far easier to
evaluate ~-space integrals over the Slater sum,
r.e.,

Tr(e sll2 e BHp)

using the Beth-Uhlenbeck procedure' rather tha. n

the perturbation expansion. For three- or more-
body terms there is no easy way to evaluate the
trace. However, the most important part of the
trace at low to moderate density, i.e., those states
for which at least n —1 of the n particles of the
cluster are bound, can be obtained relatively easi-
ly. This is done by first performing an accurate
variational calculation of a few of the lowest states
and from this determining an effective two-body
potential. Next the Beth-Uhlenbeck procedure is
used to perform the trace over single-particle ex-
cited states. The states that are ignored corre-
spond to processes in which three or more funda. -
mental or composite particl'es enter into a single
scattering event. This clearly limits our calcula-
tions to low and moderate densities, consistent
with the already stated assumption that y-0.
Nonetheless, the results are useful since they
yield an unambiguous Saha. result as the density
goes to zero and also include classical plasma
corrections, even in the presence of composite
particles. Since the z' terms require an explicit
consideration of three-body scattering states, the
analysis is carried only through z'~2 terms in the
activity.

II. ONE-COMPONENT GAS

Reorganization of the activity expansion for a
gas of electrons and nuclei, as mentioned above,
requires extensive analysis. For this reason it
will be useful to first illustrate the main features
with the simplest possible example, i.e., the one-
component gas. In this section we first consider
an ordinary reacting gas having only one basic
component, e.g. , hydrogen atoms, and show why
it is useful to introduce a new activity variable for
each possible bound state. Second, we consider
a hypothetical one-component Coulomb gas that
can have bound states, and show that the plasma
interactions arising from the composite particles
must be treated on an equal basis with those aris-
ing from the fundamental particles.

A. Ordinary gas

Because of their utility in the Coulomb problem,
we begin the discussion with the introduction of

the 8 and C expansions.
In I it was shown that the activity expansion can

be expressed according to

where the differential operator acts m —2 times
on (98/sz}", the classical expression for S is

) g ~ PJ 1-

the P~, are Mayer cluster integrals,

(2s + 1)g-peP Il!T

is the activity,

~ =(2''/muv y»

is the de Broglie wavelength, s is the spin, and
p. is the chemical potential. The activity is elimi-
nated from Eq. (1}by means of the density equa-
tion

s(J /ur)
Bz

Equation (1) is transformed to a cluster expansion
by grouping together all terms of the same power
in z, with the result

where

C2= F2 (4)

2

Equation (3) is written in terms of the activity of
a fundamental component. However, as shown in
I, it correctly accounts for the formation of binary,
trinary, etc. , composite particles. For instance,
at very low density the continuum-state interac-
tions are negligible so that Eq. (3} is equivalent
to the Saha equation. Since for an n„-component
Saha gas

.T-~ V

8F, z 8 8P,
4

— 4+Z +
~z ~z 3 t Bz Bz

etc. , and, in the classical case,
1' -=P, z /J.

In the quantum-mechanical problem the cluster
integrals are replaced with the appropriate traces
over exponential Hamiltonian operators. The C„
are related to the cluster coefficients b„according
to
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where N„ is the number of particles of type e, it
must be that N„/V =z "h„.

Defining z„as the n-body bound-state part of
z "5„, so that z„-N„/V as the total density goes to
zero, allows one to recast Eq. (3} into a form re-
sembling an n„-component cluster expansion, i.e.,

tf~I'
=Qz„+Q g z„z.b'„.+ ~ ~ ~,

n=1 n=l m=1
(10)

where zx —=z and the quantity z', b, has been divided
into its bound and free parts, m'hich are for Boltz-
mann statistics'

nN'
z =8 z'Q (2l +1)e z~~~'r

mkr n$

mh, 1

y Q (2I 1) I e 0/mk-r
dP

d& 2

0 dp
(12)

where E„, is the bound-state energy, P is the rela-
tive momentum of a continuum state, and &, is the
phase shift. Similarly, z'b, is divided into its
three-body bound-state sum z„ the part that in-
volves two particles in a bound state interacting
with a third particle in a continuum state z,z,b»,
and the three-body continuum-state part z,'5», .
The expansion (10}is the desired form for a react-
ing gas. (To be perfe'ctly general it is necessary
to define an activity for each bound state. ) The
leading term is equivalent to the Saha equation at
low density and the correction terms systematical-
ly take account of all two-particle, three-particle,
etc. , scattering interactions that can occur among
the various fundamental and composite particles
present in the gas at a given V and T. The main
purpose of the present paper is to obtain the result
equivalent to Eq. (10) that is appropriate for a
Coulomb gas.

S„=I/12zAn', A2o =AT/4ze~z,

S 2%8 +~ 'F 8~-=s =-a (X )+ IT 2 IT A.

(14)

8. Coulomb gas

In the Coulomb case, each of the cluster integrals
diverges in the limit V -~, but S(z) exists. Mayer
and Abe' have shown how to evaluate S(z}by ex-
panding the P~, in powers of the potential and
collecting infinite sums of particular types of terms
to obtain a new expansion in which the sum (2),
for a one-component Coulomb gas in a uniform
background, is replaced by

OO

S(z) =Ss+Z Sn~
N-2

where

B,(z )= 2m-f der'(e "'i"—1),

e2e-r/xn/~

(16)

Each of the higher s„, which are not explicitly
given here, have -B„(Ao)/(n —1) as their leading
term. The s„of Eq. (13) now replace the Yz in

Eqs. (4)-(6). Since the s„depend on A~, it follows
that ss„/sz o 0. This fact considerably complicates
Eq. (1) with the result that Eq. (3) is short of
terms. It was shown in I that the missing terms
can be expressed in terms of a function X,„, which
involves only ring-type diagrams, and the C„. A

partial result for this expression that was obtained
in I is

+ 2 (z2+zisii).
Bzg

(19)

Since &S„/&z, has a z', ' dependence on the activity,
the last term of Eq. (19) has a z', ~'z, dependence
on the activities. The introduction of the com-
posite-particle activity, thus, shows that this term
is of the same order as Ss(z, ). In fact it is equal
to the first-order term in the Taylor-series ex-
pansion of Ss(z, +2z, ). If this result carried
through to all orders it would mean that the com-
posite particles enter the plasma interaction in the
same may as point charges. For gases involving
electrons and nuclei it mill be shown later that a
Taylor-series expansion of this type does in fact
exist, but because of the polarizability of the com-
posite particles there are additional terms. The
existence of the Taylor series for the ring-type
diagrams amounts to a proof, after the activity
is eliminated, that the multicomponent Debye-
Huckel term is the leading interaction correction
to the ideal-gas pressure for partially ionized

=z+g&+~ C„+z " + ' ~

Bz Bz

where ys is the sum of all the terms in Eq. (1) in-
volving S, with S replaced by S„.

Because of the repulsive natuxe of the interac-
tion, the one-component gas in a uniform back-
ground cannot have bound states. However, for
illustrative purposes it is useful to pretend that it
does. To eliminate the short-range divergence
of the classical cluster coefficients, resulting from
the assumed attractive potential, we replace them
with their quantum-mechanical analogs. Proceed-
ing as in the ordinary-gas case, C, is partitioned
into its effective one-body part z, and its scatter-
ing 'state two-body part z', s». The leading terms
in the pressure expression, as given by Eq. (18},
are

I'
—zg+Sz+zg +(z~+z~s~ )ez ]
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gases, i.e., where

(20)

4@8 N + ZjPlj

n is the density, and g j is the net charge on ions
of type i. This is only the simplest example of
%'hat %'e wish to demonstrate.

The last two terms of Eq. (21) are new and corre-
spond to the m =4 cross terms. It appears from
an inspection of the equation that the cross terms
can be generated to all orders in a manner similar
to those terms that do not involve cxoss deriva-
tives.

. In the multicomponent case the function S(z) is
given in terms of the virial coefficients by

III. EXTENSION OF THE S AND C EXPANSIONS
FOR COULOMB GASES

The demonstratioL' that the Taylor series exists
for the electron-nucleus gas requires a more com-
plete two-component form of Eq. (18). To accom-
plish this it is necessary to first extend the two-
component version of the S expansion. Because
of the increasing complexity of S„with increasing
n, only those components of S for which n&4 will
be worked out. To utilize these S„we will need
to work out all terms in the two-component ver-
sion of Eq. (2) for m ~4, i.e., all terms involving
S four times. By inversion of the virial expansion,
as described in I, we obtain the following extended
result for the S expansion:

j- ebb

x +zz„,+ ', ' z,

(S{z)=-g B, z'/(Z--I),
J'=2

where J3~z~ signifies a multinominal expansion
such that

B~z =(B,—z, +gzI, +B,z, + )~

wiR the understanding that 8„B~B&~ ~ B~s&

multicomponent generalization of Abe's' nodal
expansion for a Coulomb gas then gives

S(z) =S„+QS„=Ss+ Q S&ga
j jism ~ ~

(23)

where each sum ranges over all types of funda-
mental charged particles present in the gas. The
nodal-expansion expressions for S„, through n =3,
were given in I. These terms plus the S, terms,
required in the present analysis, are

S„=I/12vA~D,

(21)

Xg) kT 4/8 j z j p

j -Je ybycye ~ e)

where $, is the charge on component i;

(24)

2
u & s * uu~ ~ Z &s "uh && fu 3&

"u&" fugue&)P=I 0

6

~JI4~a jg j g +1 +~jy~ j ga a g +1
P=I

(28)

3
yyft~ jy ~ga ~am~fftj (27)

whe~e @~8 = )&use " -"&/rk&, f« -e 'ne —1, and the sum over p represents the number of permutations
for the given structure.

The two-component generalization of Eq. (18) can be obtained in a straightforward, although tedious,
way. One simply substitutes Eq. (23) into Eq. (21) and then recognizes that the resultant terms can be
expressed in terms of X„and C„and their derivatives with respect to z. The two-compenent version of
the C expansion, which is sufficient to show convincingly that the aforementioned Taylor series exists, is
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RT ' + l —" ~~ (k —III}! (8z ) (98 ) 8g 8g' Bg 8z' (Bz ) (Ilz )

+ Z3 R

Bz&

B'S„BC2 B'Cg„ +~Z] ZgB, B, B, ~ B,

BZ

Bz]

B'S„BC~ B'C2

Bz» Bz~ Bz~ Bz'

BC B C2

BZ] BZ] BZ( BZ)

B'S„BC~ B'C~
dz Bz) Bz] Bz] Bz~

(28)

C2- —S2 -z', s„+2z, zy say+z y
s

z BSg. '
~z BS2

(28)

(30)

BS2- BS3 BS~ BS3
4 +Zg +ZQ

Bza Bz y BZ~ BZ ~

where Z„ is the sum of all terms in Eq. (21}in-
volving S, with S replaced with S~,

where

(2$ i 1)e nii"fj ij~
nl

2i&2' d&
s~ = 'i g (2l+I) dp

' e ~~"&i'r
71 p 6P

i 2g)Pg " —— '
A,D,

where

A.„.= (vt '/p, , kT)

(33)

(34)

BS2 BS3 B2S2
+ Z~zy

Bzfi BZ y Bzti BZ b

(31}

IV. RECONSTITUTED C EXPANSION

and s 8&
=—S„sz/z z8z&. We have not yet found a

general form for the terms of Eq. (28) that ex-
plicitly display S„. In the present work the a com-
ponent is an electron and the b component is a, nu-
cleus, which will be indicated by e and n, respec-
tively.

p, , is the reduced mass, s,',. and s, &
are the bound-

and continuum-state parts, and in the current
paper s;, is a member of the set (s„,s, , s„).
The bound states E„, for the screened Coulomb
potential' can be expanded in terms of inverse
powers of ~~. After division by kT, the expansion
is

nl
Z'e' p.,„Ze' e' anl

kT 25 kT kT~~ kT&D

Demonstrating that Eq. (28) is actually a Taylor-
series expansion of a similar expansion involving
an augmented set of activity variables requires a
great deal of tedious manipulation which of course
cannot be reproduced here. Instead we will give a
short introduction into how to start the analysis,
proceed to the final result, and then give further
details of how the result was obtained.

A. Preliminary analysis

We first demonstrate the appearance of com-
posite-particle effects in S„. Consider first the
quantum-mechanical expression for s, ~ [see Eq.
(40) of I] obtained by replacing the classical second
virial coefficient with its quantum-mechanical
equivalent valid in the limit &/&~ —0, i.e. ,

(38}

where Z is the charge of the nucleus, the a„, are
constants, and U =Z, +Z'z~. The first-order cor-
rection to E„,/kT is the same for all states and is
related to the derivative of S~ according to the
second form of Eq. (35). The terms of Eq. (28)
also involve derivatives of SR. This is no coin-
cidence, and is, in fact, the key for reorganiza-
tion of the C expansion.

Jackson and Klein' have concluded that the energy
levels of the static screened Coulomb potential
are not correct for low-lying states. Instead they
find that the energy levels should be shifted by
-Ze'/Ae; i.e. , the correct energy levels, divided

by kT, are
s„.=4(wt()~)' ' Tr(e z —e "0)

+ 2n)P~

=s' s~U~ (32)

E'„,/kT =E„,/kT —2Z sSR/BU. (36)

It is straightforward to show that the shifted energy
levels also enter Eq. (28}. Consider the first few
terms involving s,„. In terms of E„',/kT,
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2s' =2(2' 'g' )g (2I+I)e z3r~are-2zas„/av

If we define z, as
(38)

z „=2z z„2' A.'„2l+1 e ~n~

nl
(39)

the expression (38) is equal to the first term in a
Taylor-series expansion of S„(U+ (Z —1)'z,„)
about Ss(U). In other words, the -Ze2/A~ shift
in the energy levels should be considered as part
of the classical electrostatic term arising from
the existence of a new species of charge Z —1.

The activity, as given by Eq. (39), is a discon-
tinuous function of the interaction strength. This

(37)

Now expand the last exponential in s,„in terms of
2Z(BSz/BU). The second term in the expansion
together with the leading bound state parts of
z, (BSz/Bz, )(BC,/Bz, ) and z „(BSs/Bz„)(BC,/Bz „)gives

(Z —1)' 2z z 2' 'X P (2l 1)e j
BS

g U 43 CY

n1

discontinuity is compensated by the zero-energy
part of the phase shifts' which, after an integra-
tion by parts of s,„, subtracts a -1 from each of
the terms e ~n~ ~ . Instead of working with two
discontinuous terms it seems desirable to move
the phase-shift discontinuity into the definition
of z,„so that

z =2z z 2 X 2l+1 e +ng~ ]
nt

(40)

Actually each term (32l) in the sum z,„represents
a separate activity, z,"~, for particles in the stafe
(nfj.

Higher-order terms in the Taylor-series expan-
sion of Ss(U+ (Z —1}'z,„)can, with increasing
difficulty, be found in Eq. (28). This can be in-
terpreted as the replacement of Ae(U) with
Ae(U+(Z —1)'z, ). More generally it can be shown
that this replacement occurs in other types of
terms. The final result of this analysis, which
includes all terms involving the augmented set of
activities through —,

' powers, is

4i 8

(41)

where i- (z, , z„,z,"„,z23~, . . . , z,',"',z2,"„3,. . .), the subscripts e and & refer, respectively, to electrons and
nuclei of charge Z,

(42}

Sz~ = I /12w(AD*)',

kT X/2

4ve2['z, +Z'z „+(Z —1)'z,„+(Z —2)'z„„]

(43)

(44)

nln't'
Z kg ~ Z 4243 Pf

nln'! '

ztlln I 2z znl (21/2' )(21+1)

x(e ~ntn't' " —1)

E'„,(X,*)=E„,(X,*)-Ze2/Z,*,

(45}

(48)

(4V)

E'„,„, (&)'3) = ~„,„.g. (XD) —(Z —1)e'/XD, (48)

E„)„z,z is the energy of the second electron relative
to the energy of the fnl) state,

c,'= ggz, z, s2„, (49)
j

and s~& is the phase-shift-integral part of s„ that
results from an integration by parts. ' Unless there
are bound states s,.z =s,z. The s,j involving com-
posite particles are similar to Eqs. (25) and (32},
except, because of the shielding due to the core

electrons, the terms that are subtracted from the
virial coefficients are different. These terms will
be given later. It should be noted that the com-
posite-particle activities that appear in Eq. (41}
involve the screening length ~~, but, for simplicity
of notation the asterisk has been dropped. To
avoid confusion between S, components and higher
S„components when i or j or both correspond to
composite particles, we will designate the one-
electron-nucleus bound states as H instead of e&,
the two-electron-nucleus bound states as He, etc.
Since no confusion arises from the notation z, ,z„, etc. , we will continue to use it rather than
the corresponding notation z„, z„„etc.

Equation (41) has the same form as Eq. (28) ex-
cept that it involves an augmented set of activity
variables, i.e. , one for each fundamental particle
and one for each state of each composite particle.
The analogy is not exact, however, since the last
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term of Eq. (41) has no counterpart in Eq. (28).
This term is related to the polarizability of the
core electrons and is similar to terms appearing
in y~ . It is only the first in a series of terms3'
which have not yet been worked out. The leading
z dependence of this term is z' ' so that it is the
only one required at the present level of applica-
tion. Even though Eq. (41}is written in terms of
an augmented set of activity variables, z, and z„
are still the only independent variables. They are
determined through the density in the usual way,
1.e. ,

8 (P/kT) s (P/kT)
e e z e

0( C (50}

Inspection of Eqs. (40) and (46) shows that the
composite-particle activities appear on both sides
of these equations, so that the composite-particle
activities must be obtained by iteration at fixed
values of z, and z„.

At high temperatures where bound states are
unimportant, the z'~' expansion of Eq. (28} is
identical to that of Eq. (41). However, when the
temperature is reduced terms such as z,z, s,„,
which are of order z' in Eq. (41) actually corre-
spond to terms of order z' in the expansion of Eq.
(28). The terms that comprise the Taylor-seri'es
expansion of S~, that are important when various
types of composite particles are present, actually
come from throughout the entire expansion of Eq.
(28). At high density where An is less than .048a, /
Z there can be no bound states and the two expan-
sions are again identical to all orders in z.

Since the present analysis has avoided quantum-
statistical perturbation theory it violates the Pauli
principle. At low density this violation is only

important when bound states are involved. For
the interaction terms in the quantum-statistical
problem the violation of the Pauli principle is
corrected by the exchange diagra. ms. We shall
not attempt to sum these diagrams here; instead it

is assumed that a summation of the exchange dia-
grams, using the same procedure as for the direct
diagrams, will replace the classical b„(XD) with

their quantum-statistical analogs' which involve

the spin. This will have no effect on the bound

states of b, „(An), but will be quite significant for
the bound states of b„~(Xn) since the spin statisti-
cal weight when both particles are in the same
state is one instead of four, as in the direct case.
Consistent with the assumption of low density we

ignore exchange corrections to scattering states.

B. Extended analysis

z, z~ 1t 1s apparent that

obtaining higher terms in the Taylor-series ex-
pansion involving ze&~ zee&~ come from terms
of order z', z', . . . in the expansion (28}. Because
of the increasing complexity of the C„we will con-
sider in detail only those terms involving n ~4,
although we find it necessary to use some terms
for n&4. Consider now the expression for C,
given by Eq. (30). It has two complications not

present in C, ; the S, part involves integrals whose
quantum-mechanical analogs are not obvious and

the S, part involves derivatives, which because of
the screening-length dependence of S, , introduce
terms not present in the C„of an ordinary gas.

The terms in S, that are subtracted from -B,
can be given quantum-mechanical meaning by using
the convolution theorem to transform '.he inte-
grals, i.e. ,

(4w)' dk dr kr sinkr
(kT)' 2(2 )' (k' I/A. ' )'

4«~ «'f «k

(kT)2
' ' (m'A, ) drr'e " "o (e'&& ' —1-q /kT)$k

0
(51)

where fe„=f„q„/kT, and th-e last form comes
from an integration over k. The second form of
Eq. (51) is recognized as the derivative of s, , with
respect to U, with the result

y-0 limit) is

2 ~ ««~«k2 1 BS,,
31 ~ 4 Z eU

~ ~ ~

«i «f «k ikdr ~ lr kg ~ g kzo k=2
e BU

(52) (kT)' (53)

Clearly Eq. (52} is also valid if w, „ is replaced with
a Slater sum, so that an expression which is valid
for both classical and quantum mechanics (in the

where the sum over P indicates there are three
permutations. In a similar way the convolution
theorem can be applied to transform S4. Consider
the following integral that occurs in Eq. (25):



2448 F. J. ROGERS 10

J
r

dr„dr.,,dr, q.,,q, f,, f, f~„

-
Jl dr, ,q„f ar,. q, (Ii,.„—r, l)p;,

where

0,.= Jldr„ f„f.;(Ir,.- r„l)f;..

(54}

above. The last term in parentheses in Eq. (26)
can also be evaluated by convolution, giving terms
involving s's, &/BU' and ss, &/sU. These terms will
not enter our present ana1ysis since they corre-
spond to states for which two particles are bound

and two particles are free; i.e., only effective
two-body interactions are considered in the pres-
ent analysis. The transformed expression for
~g jkm is

It can be transformed by convolution exactly as

iiam i f ii m & iikm 4i ~ 4 + 4i ~qjiqfkqkmqmi ffe 4 (yT)4 De Z ~U
(55)

The forms for the S,» and S,i, given by Eqs. (53) and (55) make it possible to discuss the C, and C, in
terms of bound states and continuum states, which is a central part of the development being worked out
in this paper. It will be useful to divide each of the C„- into a part corresponds to a cluster coefficient
in the ordinary -gas case and a part that results from the fact that C„depends on AD. These two parts will
be denoted by C, „and C, „, respectively. The definition of C, given by Eq. (30) gives explicitly

C, , =z,'. (s„,+2s,', )+z'„(s„„+2s'„)+3z',z [si„„+s,', +4s„(sf„+s,' )+2(s~ +s,'„)']

(56}

C = ~ z, [2z s„.+2zi(&;, +&„)] z, +2zizi (sii+ ii)+;
]=fe,a)j&f

1,Bs, 8 ~ ~ Bs)g
+ zi +2zizi (sii+ ii)+z

2 8 Bz] 82]
(57)

where the superscript b indicates only bound states
and the superscript f indicates only continuum
states. Terms with no superscript cannot have
bound states. Next we divide C, , into a part in-
volving only continuum states, C. .. and a pari
that remains involving both bound states and con-
tinuum states, C," 3..

b 5se a ~got~

e 7F 8
A,

2 ——
kT D 2 k~

(60)

(6l)

(62)

+ z, z'„[3s',„+4s s~ + 2 (s~ )'], (58) (64)

B" Bb~s" = — '~~ + —'Z2
e(xc. (65}

(59)

where

In order to express C,", in terms of eigenvalues
and phase shifts, we need to eliminate the s„ to
obtain an expression in terms of cluster coeffi-
cients. This is accomplished with the substitutions

A„, = BE'/BU, and the b~~"' are the individual com-
ponents of b~~. The result of these substitutions
is
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2 e

2 1Te
2 2 2

(66)

where b"„and 5," are those parts of b„and
for the screened Coulomb potential that re-

main after the three-body continuum states are
removed. This. will involve three-body bound
states as well as states for which two particles
are bound and the third is free.

For equation-of-state purposes the three-body
states of interest can be calculated, with sufficient
accuracy, from a spherical-symmetric spin-inde-
pendent two-body potential. (The concept of an
effective potential is introduced solely for the
purpose of calculational tractability. ) By fitting
the eigenvalue spectrum for ~~ =, and solving
a two-parameter variational problem for ~D finite,
lt ls shown ln the Appendix that a satisfactory po-
tential for an electron or nucleus interacting with
a bound electron-nucleus pair is

l

with the second cluster coefficient for the potential
V",„', except that the factor 4 has been separated
out and states for which nl =n'I' have a weight 4

instead of 1. The expression for the C",~,. becomes

(2 l (). )Q(21 I) - „ l (69)

where

It is shown in the Appendix that the first-order
perturbation energy shift for two electrons inter-
acting with a nucleus through the static screened
Coulomb potential is -2(2Z —1)(»z/sU). Pro-
ceeding as in Eqs. (36)-(39), we define

where i is an electron or nucleus, H signifies any
electron-nucleus bound pair in the hydrogen iso-
electronic sequence, and g, is the charge of an i-
type particle. The terms in the brackets of Eq.
(66) are seen to correspond to the first- and sec-
ond-order perturbation terms of -B,„ in direct
analogy with Eq. (25). There are no terms sub-
tracted that correspond to first-order perturbation
due to the core, and even though the last term in

each set of curly brackets in Eq. {66)is of the
same type as the second-order terms of -B,„,
resulting from the core, these terms do not cancel.
Therefore, the analogy with Eq. (25) is not exact.
The potential V,„is only valid when H is in its
ground state and w'e must introduce a new potential
for each state (nl) of H. In the present work we

will consider, at the numerical level, only singly
excited states. This should be a very good ap-
proximation since the lowest doubly excited state
lies well above the series limit for singly excited
states, i.e., more than Z' Ryd above the ground-
state energy.

When the potential V,"„' is used to calculate the
energy levels and phase shifts of an electron or
nucleus relative to H the 5,",„and b,"„~pa, rts of the
cluster coefficients are given by

(68)

where the factor 4 corrects for the fact that not. all
of the particles are the same and b", „' is identical

.(+E:(") &n) +En)n ) 2(2 1)»~
kT kT gU

Next the shifted energy levels a.re substituted into
Eq. (69) and the exponential of the first-order
shift in the energy levels is expanded. The first
term in the expanded form of Eq. (69) together
with the leading terms of z, (sy„/sz, )sC„/sz, and

zq(sos/sz ~)BCge ~/sz ()t gives

This collection of terms is analogous to Eq. (38)
and is part of the first-order term in the Taylor-
series expansion of Ss{U+(Z —1)'z„+(Z —2)'z„„)
about Ss(U). To be consistent with our previous
definition of z,"~ it is convenient to subtract -1
from each e ~n& ' so that

x g (2/'+1)(e s'„i„, (, lar 1) (72)
n'1'

g8The -1 subtracted from e ~n~n' ~' ~~~ comes as be-
fore from the zero-energy part of the phase shifts.
In a crude way we can see that the -1 subtracted
from e n~ is probably present in the phase
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shifts: Assume that V,"H is independent of n/, which
is clearly not true in any rigorous sense; then it
follows immediately that ~ee& ~eo~eH
tion of I evinson's theorem to each cluster coeffi-
cient gives the desired result. In any case we

can always subtract the proper terms at densities,
beyond those of current interest, such that three-
body continuum states contribute appreciably to
the equation of state.

For later use we write C", ~ in terms of the z,"„':

Z +Z4n;, =z..e '*"Q -sz()+z* —[z]., )z,' ~ [(z —))' ~ sz —[)z],) q"' ) z."'„~ '
) 8 '*"

nl

x Q 2I" ~ "' z"' ~ ()+z'.)s I **"z-' —(z +z'z )e '*~'z-' Q )I" ')a"'A. 2 BC~ BC~ A.
g QT isCt isct,

BU ts Cf z yT 4sa-nl —nl

(73)

where I;=—SSE/SU, the prime indicates S/SU, and [ ], indicates these terms have been taken from
C, „«. This rearrangement of terms will prove to be helpful in piecing together the result being sought
here.

The analysis of C4 is similar, but more complicated, than the preceding analysis of C3n In terms of the
S4, C, , andC, itis

BC2 BC3, BC2 3,
2 BC~ B2C~ BC2 BC~ B2C2

C4 4 + 8 3gl 2)(tnl 2BZ) BZl BZ] BZl BZl BZ~ BZat Bg~BI)|

Only the C, , term will be considered explicitly:

Cn 4 ~ i( iii+6 ii iii 2 ii) 2 (2 2 i( iiii+4cii lii+6C;, C«, +2C„.C20 3

&=&a.~& f 2J+l

2 8 3 2 2—8Ciicil s Ci/ 8C(ici/ —8C((C./}

+En E n[68nnn~ + 4Cn(zcnzn+ 2Cnncn(z(z+ 4Cn~cn(zn(+ 2C(z(zcnnz( —12Cnncn(z- 12C(z(zcn(z —8Cn(z —8CnnC(zn(Cn(l] ) (75 }

where C„-=+~ „„(E),E„E„.)c„„„... and A., ii, v. . . each range over (e, n). Consider the C, „„„component.
Only those parts of C, „«which involve bound states are of interest in the present analysis. From Eqs.
(55), (53), and (30) we see that these parts of s„„are given by

s,'.„„=--,'a;,„„+2Z'(2Z —1)E(es/ur)~, b"„„+8Z(1 +Z')(bs. )2.

Proceeding as in the case of C," „„and C", ,„„,we obtain finally

2
m e'

C," „„„=E222 b,",„„+ 4(z —1)' ]]Es —4[(z —1)' —[4Z']ni) —„][E(b,'„)'
\

yb snl 2' n- e'-8[(z -1)'+~2z~]b,'„g "„' '" + 2z(z -2) „~;-z'(z -2)'—

(76)

+nln'l' ~eel,
nl n' l

(77)

where A„,„t,i =BE„,„., /BU. In its present form the
terms in the first set of large square brackets
subtracted from b" „„donot correspond exactly
to the first- and second-order perturbation terms
for the long-range part of the V„„potential. This
is rectified by transferring the -16zs()i/2)
x (es/kT)2](E term (indicated by [ ' ],i) to Cs, . It
will also prove to be convenient to transfer the
-16zb,'„QA„,b,'g'/bT terms to C", , The ex-
pression for C", , was written down with these
transfers in mind. More generally we will carry
out these transfers everywhere these terms appear
in the expansion.

In the present analysis only those parts of 5„„

4(21/2)P )g (2I y I)E-E l/2T(2n1/2)P )

Xg (2I) +1)e-E air/2T bnnln'l'
HHn'l'

8(2i/2](.s )Q (21+ I)e En, ('2T(2l/2Xs )-
Xp (2I) + I

}8-En)nil

i�
/2Tbnln'l

nHen'l'
(78)

that correspond to two-body interactions between
fundamental and composite particles, or between
composite particles, are of interest, so that
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where as before the bH'H"
' and 5"„'„",' are second

cluster coefficients for the effective two-body po-
tentials VH'„n ' and V"„'," ' except that they are re-
duced by the identical particle statistical factor.

Cr Znl ~ Zn'l' ~nln'l' 8-4SIg
a,ee&cf, ea ~ e& HH

nl n'r'

nln'l' snrnt t t &-2lnz-t&rn (~8)Q ee(x 0 He
nl n' l '

The i in Eq. (81) -{e,a}where s,„,comes from
Ca,eeet' If Z 2 then Ca eeet}t should be defined in
terms of a new activity Z«e~ according to the
above procedure.

The analysis of C, and C, provides the basis for
proceeding with the demonstration that Eq. (41) is
valid. The first few terms in the required deriva-
tives of y„are explicitly

where again -1 is subtracted from each Boltz-
mann factor and

2=z,. r, +-,z', r', +Ur r'+ ~" (82)

Sntn'1' bnln'l' {Z 1)2 y2
HH HH yr D

, ll e' ' (Z —1)'
)Y uT ' 2IT

Sntn l h l nl n(Z 2)2 l g2
iHe i He +

yT g

(80)

=Z', r,'+ 2Z'„r, r,'+Z', (z, +Z', Znl z „)(r,')'

+z', (z. +z', z,'z „)(r:) ~ ~ ~,

=z'r,'+z'r, r.' g'(z, +g'z„)(r,')'

+z'(z, +z'z„)r, r,", (84)

2 $2 where 2-{e,tr} and j22 i. The first few derivatives
of the C„are

2 BCg
zi

BZ i

nl

f znl zn'

nl

2gg4 2 pl nl ztof 2S T

kr

(85)

a'C' e'Cf, ~ A"'z."'

~ze BZct

Znl-z z {Z+z'}g "' ." e-"".
kTnl

The next step is to substitute these expressions in

Eq. (28) and collect terms.
The second-order terms in the Taylor-series

expansion of Ss{U+{Z —1)'z,„)about Ss{U), i.e. ,
the term (Z —1}'I",z,' /2, is composed of the
-2g(1+g2-g)I", z',„term from C2, , the Z', I",z', „/2
terms from znl(snlts/Bznl)(BC2 /Bz, )2, and the
Z'r,'z,'„/2 term from z, z { '

S/les szz)(BC,/8 )z
x {aC,/sz„). At this point all terms of the type
l",'z,'„have been accounted for. The third term in
the Taylor-series expansion of S„will involve C,
terms and has not been worked out. Expansions
for the remaining terms of Etl. (41) can also be
worked out to the same order of approximation,
although we are able to incorporate some parts of
the C„ for n & 4. In the new expansion we expect
that the definition of the screening length should
be changed sothat it depends on the augmented set
of activity variables. If so, terms of the revised
expansion, when expanded in a Taylor series about

U, must be present in the original expansion, e.g. ,

z, (U+ {Z —1)'z,„+(Z —2)'z„+ .)
=z,„(U)+[(Z-1)'z,„{U)

+(Z-2}'z„„(U)+"] '"+ ~ ~, (88)
BZ

which corresponds to a Debye length given by

ur Z/2

4lle2(z, +Z'z + (Z —1)'z,„+(Z —2)'z„„)

(89)

The (g —I}2z,„ez,„/BU term in fact corresponds to
the small curly bracketed term of Ctt 2 [Ell. (78)]
and presumably this more general definition of z,
can be carried through to any order.

Continuing, as above, the following extensive
but incomplete reordering of the terms in Ell. (28}
has been obtained:
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=z, +z„+z,.W+z„„+ S„+(Z-1)'r,z, W+(Z-2}'r,z„,+ r,'z',.
+ —,'(z, +Z'z„+(Z-1)'z, ) 1+ ' I',(Z- I}z..
' [(z, +Z'z +(Z —1)'z, ), (z, +Z'z +(Z-1)'z )'

(Z —1)'z. (Z- 1}'z.„
nl U z, +Z z~

5 BSf,nl BSnl

+ . z,[r, +(Z-1)'r,'z, „] —+z.[Z'r, +Z'(Z-1)r', ]

nl nl
(90)

where
The terms in '( }are terms in the expansion of

z,.W=z,.1-

is the first two terms in the expansion (88) and
A"' = SE'/SU. For reference purposes a label has
been put on the upper left of the curly brackets in
Eq. (90). The '( ] terms correspond to the Tay-
lor-series expansion of Ss [Eq. (43)]. The terms
in '( ) can be written in the form

Qzi
i =(ge gO, geCf)

(91)

which corresponds to the second term of Eq. (42}.
The terms enclosed by '{ j are the leading terms
in the expansion of the last two parts of gs, [see
Eq. (42)]. The terms enclosed by ( J are part
of the last group of terms in Eq. (41). The term
Cz corresponds to the C,* of Eq. (49) and is given
by

nl nl ~ nl ~ n' l' nln+2z~~z, ~s„H+~z,~~z, ~ s
nl nl n' l'

(93)

nln' l' nl n' l'

(92)
Equation (92) is missing the terms s„,„and s„,„,
required by Eq. (49). These terms come from
C,", and C," „respectively. Their form is already
indicated from the above analysis of C, and C4.
The terms enclosed by '[ ~ ) are the first terms in
the expansion

c, (U+(Z-I)'z, „)=c,(U)+(Z-I)'z, . , x
+ ~ ~ ~ .

On this basis we conclude that Eq. (41) is the
correct expression for P/kT when the composite
particles are treated on an equal footing with the
fundamental particles. In regions where com-
posite particles exist Eq. (41}automatically selects
the parts of Eq. (28) which are important. In the
present work we have considered in detail only
two-body scattering states in the sense that a
composite particle represents only one body. All
bound states are accounted for and the remainder
of the expansion involves only the correct treat-
ment of three- and more-body scattering states.
We have thus far ignored two aspects of the prob-
lem which may be important in regions where
three-body scattering states can be ignored. These
are diffraction corrections to the plasma terms
(see Appendix B of I) that result from a rigorous
quantum-mechanical perturbation treatment of the
Coulomb gas, and degeneracy effects that result
from quantum statistics. These modifications of
the present analysis will be the subject of a later
paper.

V. SOME NUMERICAL RESULTS

The reorganization of Eq. (28), which produced
Eq. (41), makes it possible to calculate the equa-
tion of state of electron-nucleus gases of any Z
for general conditions of ionization and dissocia-
tion (provided the density is sufficiently low that
three-body scattering is not important). The gen-
eralization to gases having more than one type of
nucleus is straightforward. We will give else-
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where extensive numerical calculations for a var-
iety of gases. In keeping with the tenor of this
paper we give only a brief account of these cal-
culations here.

Numerical calculations for hydrogen based on
Eq. (28) were given in I. In this case the forma-
tion of a hydrogen atom results in a neutral com-
posite particle so that the gas begins to take on
the features of an ordinary gas, in which particles
interact through short-range potentials. Because
of this, it was assumed there that all the C„ for
& ~ 3 could be calculated in the Coulomb limit,
i.e., X~- ~. Equation (41) indicates that the for-
mation of hydrogen introduces terms which are
~(Z-I)" which are, of course, zero since Z=1.
Inspection of the terms in E|I. (50) of I shows that
the term (Z-1)21',z, ~ (z, ~ corresponds to z, „with
Z=1) is properly treated. However, the term
(Z-I)'I", z~2/2 is not. This is because we discard-
ed the part coming from C& but kept the parts
coming from z&(ssz/sz&)(BC~/sz, ), where i-(e, n}.

Figure 1 shows PV/N, M' vs T for hydrogen
having a density 0.01 gm/cm'. The dotted curve
is the result given by Eq. (50) of I using the clas-
sical static screened potential and no electron de-
generacy corrections. The solid curve is the sim-
ilar result given by Eg. (41) and the dashed curve
is the one-level Saba equation with Debye-Huckel
corrections. The current calculation and those of
I are in substantial agreement down to V eV. Be-
low I eV the current values of PV/NPT lie below
those of I and have a slope very similar to the
Saha-Debye-Huckel curve. The cusp in the curve

obtained in I reflects the inconsistent treatment of
the t,z,'~ terms. The calculations for && 0.01 gm/
cm' given by Eg. (50) of I, and the present calcul-
ations ax e in increasingly better agreement as
&-0, since i",'-0. As a result, the range of val-
idity of the Saha equation with Debye-Huckel cor-
rections is even greater than reported in I. An-
& ther aspect of the reconstituted C expansion is
t3&at the corrections due to use of the quantum po-
tential, as reported in I, will be diminished. This
will be discussed elsewhere.

Figure 2 shows PV/NokT vs T for helium in the
density range 0.00001 =n ~ 0.1 gm/cm'. The bump
in the curve separates the ionization (recombina-
tion) regions of the first and second electrons
similar to the may the bump in Pig. 1 separates the
ionization (recombination) and dissociation (asso-
ciation) regions for hydrogen. As the density is
increased, the bump becomes less pronounced in-
dicating considerable overlap of the first and sec-
ond ionization (recombination) ranges. Also the
temperature at which recombination starts to
occur, as the temperature is reduced, moves to
higher temperature as the density is increased.
This effect will render the gas considerably less
degenerate than a completely ionized gas at the
same & and T. It is not plotted, but the one-level
(ground state for each species) Saha model with
Debye-Huckel corrections lies quite close to those
of Fig. 2. Higher-order interaction terms; i.e.,
those beyond Debye-Hiickel, are contributing =5%
at m=0. 1. Detailed comparisons for the densities
considered here and still higher densities will be
given elsewhere.

2. 0 VI. SUMMARY

The long-range divergences present in the clus-
ter expansion of a Coulomb gas were eliminated

0.5

0
0

I

12
I

16 20
1.0

FIG. 1. P V/Noh T vs T for hydrogen at a density of
0.01 gm/cm3. Dotted curve is that of Rogers and De%itt.
Solid curve is the result of the current work, and the
dashed curve is the result for the one-level Saha equa-
tion with Debye-Huckel corrections.
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FIG. 2. I'V/Noh T vs T for helium at various densities.
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by expressing P/kT in terms of the function
S(z, , zJ, where z, and z are the activities of
electrons and nuclei, respectively. A finite re-
sult for S(z, , z„)was obtained from a multicom-.
ponent generalization of the Abe nodal expansion.
The expression for P/kT in terms of S is not a
systematic expansion in the activities. By intro-
ducing some functions C„, which reduce to clus-
ter coefficients in the ordinary-gas case, an
orderly expansion for gases having no composite
particles was obtained. However, when composite
particles are formed certain terms involving pro-
ducts of &, and 2 act as though they are of unit
power in the activity. To obtain an expansion
having orderly convergence properties it was
found to be necessary to treat these terms as the
activities of composite particles. This introduc-
tion of the composite-particle activities greatly
simplifies the P/kT expression, since infinite
sums of certain types of terms in the fundamental
expansion can be recognized as the Taylor-series
expansion of analytic functions involving the aug-
mented set of activity variables. As a result
AD(z, , z„) in the fundamental expansion is every-
where replaced with +g (z, , z z, „,z„,. . . ),
where z, , ~„,. . . are the activities. of one-
electron, two-electron, etc. , composite particles.

The analysis given in this paper circumvented
quantum-statistical perturbation theory by first
working out the classical perturbation result and
then replacing those terms which have a classi-
cal short-range divergence, due to neglect of the
uncertainty principle, with their quantum-statisti-
cal mechanical analogs. This procedure is cor-
rect in the limit that the ratio A. /x~ - 0. For A/AD

t0 there are degeneracy and diffraction correc-
tions which will be considered in another place.
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APPENDIX: INTERACTION POTENTIALS

The numerical application of the results of this
paper requires the evaluation of some of the clus-
ter coefficients beyond the second. This is an
arduous task and, in fact, only very limited calcu-
lations of third cluster coefficients have been
given. " The interest in these papers has been
primarily with repulsive potentials that have no
bound states, and for which the three-body prob-
lem must be handled head on. The existence of
bound states allows one to partition the cluster
coefficients b„ into equivalent problems involving
fewer than n bodies. In the present work we are

e2 e2
V = —g ].} —e r.osvzrlao

eH (Al)

where H represents any of the ions in the hydrogen
isoelectronic sequence. The potential fits the aver-
aged 1s2s energy level of helium to within 6%,
which is pretty good considering that the 2S' and
2S' energies are split by 20%. However the 2S
energies are only about 5 the size of the ground-state
energy and are thus far less important. Further-
more, the spectrum becomes increasingly hydro-
genic with increasing n and l and is correctly re-
produced by the long-range part of the potential.
The eigenvalues for the ground-state energies of
He, Li', Be" as calculated from the potential
V,„are given in Table I. The agreement with ex-
periment is good.

The potential (Al) is only valid in the Coulomb
limit ~~-~, whereas a potential which is valid
for any ~D is required. The eigenvalues and phase
shifts for this situation must be obtained from cal-
culations. A variational procedure will be used to
obtain the ground state. It is well known that the
ground-state energy can be obtained to within, a few

TABLE I. Ground-state energies.

Calc. Energy
(Ry)

Expt. Energy
Ny)

1.807
5.650

11.497

1.807
5.536

11.261

only extracting those parts of the b„which are
equivalent to a two-body problem. For example,
in the case of b„we are inter'ested only in those
states for which an electron-nucleus bound pair
is interacting with the remaining electron.

In the case of two electrons interacting with a
nucleus we introduce a two body potential V,„,
which is spherically symmetric and spin inde-
pendent, and show that for equation-of-state pur-
poses the errors introduced by this approximation
are not large. In this physical situation the nu-
cleus is partially screened from the second elec-
tron so that, for ~~ =~, the potential is composed
of the part -e'g- I)/r, which cannot be screened,
and a part -e'f (Z, r)/r, where fg, r) is a screen-
ing function. The screening function is required
to reproduce the spectrographic energy levels.
Since only spin-independent potentials are to be
considered, it is necessary to statistically average
the spin splitting of the energy levels, i.e., E
=3E' +E&'. We have found that the screening func-
tion can be approximated by an exponential e "".
If r) is selected to give the (1s)' state of helium
accurately, the resulting potential is
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percent from the following two-parameter wave function:

~3
-er&/ae-zr~/I e-zr&/b z-r2/bq

v2 w(abP '[1 +64(ab)'/(a+b)~l
(A2)

64 (ab)'
( ~ b)'[1 ~ 5/Z ( ~ b)X,]')c 2 a' b' (a+b)', a(1+a/2ZXe)' b(1+ b/2ZXD)'

2X, +2 —
X SdX, —

8 Z (ab)' » ab
+

S ( b)5 Xab 2 +
ZA. ( + b)

X~~(n+ 12Xab+ 24Xay)

2 2
X, Xb

A,g

64(ab)'X', ,
Xn(a+b)'

The resultant energy when all the particles interact through the screened Coulomb potential is (in Ry)

(As)

where a and b are determined from

BE/Ba =0, BE/Bb =0,

E(&,Z) =E(,Z) —(2Z —1)/&, + ~ ~ ~ .

This result could easily have been obtained by
noting that

(A4)

e-~,blXD

ab

1 1 ab ~ ~ ~

r, b A.g A.g
(A5)

so that the first-order shift can be obtained from
adding up the terms from each interaction. Clear-
ly for N electrons interacting with a nucleus, the
first-order shift of the energy of all states is given
by

N

E.,„...(X„Z)=E.». ..(-, Z)- P ™,(A6)
m=1 g

where +y are the appropriate quantum numbers.
Since the number of bound states is:. function of

the screening length, it is of interest to know what
these values of the screening length are. Using
a one-parameter variational function, we find that
E(X~,Z) =0 at XD =1.26ao/Z. The corresponding
value given by the best two-parameter wave func-
tion is Xe =ao/Z, which is exactly the result given
by the best one-parameter wave function for a
screened electron-nucleus interaction. The cor-
rect value for the screened electron nucleus inter-
action is' Xe =0.840ao/Z; since the variational
energy is a maximum it follows that the critical

d =[1 —(a/b)'] ', X, =[1 —(a/2Z&D)']

X, =[1 —(b/2ZXe)'] ', X„=[1—[ab/ZXn(a+b)]') ',

c =[1 6+4(ab)'/(a+b)']

This gives in the limit Xe-~, E(~, 2) =1.755 Ry
compared to the experimental value 1.807 Ry. The
corresponding values for Li' are 5.496 and 5.536
Ry.

The first-order energy shift in inverse powers of
the potential given by Eq. (AS) is (in Ry)

I

screening length for the two-electron ground state
is ~0.840a, /Z but &a,/Z.

In Fig. 3 the variational energy as a function of
screening length for helium is compared with the
energy obtained from the following modified form
of the potential (Al):

= ((,e/r)(Z —1)e r/in+e &.0.67zr/ao (A7)
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FIG. 3. Ground-state energy vs screening length for
He with the Coulomb potential replaced by the screened
Coulomb potential. Dashed curve is the energy given by
a two-parameter variational calculation, Eq. (A3). Solid
curve is the energy obtained by solving the Schrodinger
equation for the potential of Eq. (A7). The energy is
relative to E&,(A,D).

It is seen that the potential function gives an energy
which agrees with experiment as ~~-~ and which
is always less than the variational energy, the
difference being nearly independent of ~D. This
suggests that the correlation energy is not affected
much by screening. Also to a good approximation
the core part of the potential depends only slightly
on Xe. The potential (A7) gives zero energy at Xe
=0.78a, /Z, which would mean that the two-electron
state exists at screening lengths for which the one-
electron state does not. This seems obviously
wrong. To avoid this problem the screening con-
stant is varied according to
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)7 = (1.067 + 0.087/Z~d(2e ) Z, (A8)

so that q = I/Ae at d)e =0.840ao/Z. In this case the
two-electron and one-electron states disappear at
the same value of the screening constant. Using
electrostatics the potential for a nucleus inter-
acting with a bound electron-nucleus pair is where

(A12)

where r =~X, -X,~. Taking the Fourier transform
gives

Va(H — Z V4f H. (A9) F, (k'}=— d're'" '
p, (r)

e
The H-H potential can be obtained from the static
Klein-Gordon equation" (A14)

V'V (r) —V(r)/ d'(= -4'(r), (A10) Integration over k gives

which goes to I'oisson's equation in the limit ~~
The charge distribution given by Eq. (A7) is

(Z —1) e e v~"dd (2Z —1)e2e
V„„(r)= r re, 1 e""

p(r) = Ze6-(r}+ rP ——,
4p z', r (A11) (A15)

The interaction potential between the two charge
distributions can be obtained from

e-rlkp
V (r) =

1
d'X, d'X, p, (r, —X,) p, (X, —r, ),

(A12)

So again we see that the core potential is not much
affected by the screening until Xo =I/rl. This re-
sult is very useful and indicates that for still more
complex interactions such as He-He we can take
advantage of the extensive work that exists on the

AD = effective interaction potential.

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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