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The Galitskii-Feynman T matrix, which sums the ladder diagrams for both particle-particle and

hole-hole scattering in a many-fermion system, is shown to have a singularity at negative values of the

c.m. energy of the interacting pair. The singularity appears as a first-order pole in the T matrix, the

position of which is a function of both the density of the system and the total c.m. momentum of the

pair, and corresponds to the formation of bound pairs in the medium. The singularity structure exists

in two distinct Fermi systems (liquid He' and nuclear matter), and detailed numerical results are

presented using a potential appropriate to liquid He'. The singularity in this case is shown to be

present at all densities above a certain critical density which is lower than the physical density.

I. INTRODUCTION

In any many-body theory calculation which ulti-
mately has its origins in perturbation theory, one

has to decide from the outset whether to work in a
time-dependent or a time-independent formalism.
Translated into the language of diagrammatic per-
turbation theory the choice made implies, respec-
tively, the use of time-ordered or non-time-or-
dered diagrams. The first formalism leads to the
linked cluster perturbation series of Goldstone, '
and the associated time-ordered diagrams are
known as Goldstone diagrams. The usual starting
point for the time-independent theory is the
Green's-function formalism of Galitskii and Mig-
dal, ' which grew from the relativistic quantum
field theory techniques initiated principally by
Feynman, ar4 the associated non-time-ordered
diagrams are usually known as Feynman diagrams.
Both formalisms provide equally valid frameworks
for calculations and in the context of calculations
of the ground-state energy of dilute Fermi sys-
tems, the connections between, and the relative
advantages of the two methods have been discussed
by one of the present authors. '

For virtually all physical systems of interest, a
straightforward use of perturbation theory in either
formalism in powers of the potential is fruitless
because convergence would demand a prohibitively
large number of terms. Progress is then only
made by a rearrangement of the series, in which a
partial summation is made of a suitable (and nor-
mally infinite) subset of the diagrams. The poten-
tial is thereby eliminated in favor of the function
which performs the summation, and a reordered
perturbation series is obtained in powers of the
new function, in which hopefully only a few terms
will suffice for convergence. Perhaps the best-
known example of this procedure is the summation
of the so-called "ladder diagrams" which sum the
repeated two-body interactions between a pair of

fermions imbedded in the many-body background,
to obtain a T matrix. In the time-dependent for-
malism this procedure leads to the Bethe-Gold-
stone4 equation, and in the time-independent for-
malism to the analog of the (ladder approximation
to the) Bethe-Salpeter' equation for the respective
T matrices appropriate to each method.

This particular procedure of summing the ladder
die.grams is (as is well known) necessary for sys-
tems wherein the interparticle potential contains
strong short-range repulsion, as is the case for
nuclear matter and liquid He'. In particular, fol-
lowing the original work of Brueckner and Gammel'
on the liquid He' system, several extensive calcu-
lations' ' have been performed, all within the con-
text of the Brueckner-Bethe-Goldstone formalism;
a similar situation prevails for nuclear matter and
other many-fermion systems. The overall motiva-
tion for the present work derives from the fact that
the time-independent formalism has received little
attention, and we have accordingly embarked on a
series of calculations, for these systems, using it.
In this context it is natural to initially focus atten-
tion upon the T matrix which sums the two-body
scattering series (the ladder diagrams) inside the
medium, using non-relativistic time-independent
perturbation theory, and which we shall henceforth
refer to a.s the Galitskii-Feynman (GF) T matrix.
The relationship between the GF T matrix and the
corresponding qua. ntity in the Bethe-Goldstone (BG)
formalism has been documented elsewhere, and,
in particular, calculations have been performed
using both for the model case of purely repulsive
potentials, including the extreme hard-core limit. '
The restriction to purely repulsive potentials was
necessary to eliminate any complications associ-
ated with the possibility of Cooper-pair" forma-
tion, leading to a superconducting state of lower .

energy than the normal ground-state. On the other
hand, when dealing with real many-fermion sys-
tems, one has to handle potentials containing both
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short-range repulsion and long-range attraction,
and accordingly this work presents some results
on the GF T matrix for real physical systems. In
particular we present detailed numerical results
for a potential appropriate to liquid He', and we
show that the QF T matrix contains a singularity
in the bound-state region. Insofar as the singular-
ity will have consequences for later calculations of
physical observables, particular emphasis is
placed on its properties and behavior as the rele-
vant parameters are changed.

Our over-all philosophy is twofold, namely, that
the detailed results for a physical system like liq-
uid He are interesting in theii' own right, and sec-
ondly that a knowledge of the behavior of the
bound-state singularity is necessary for a full cal-
culation of the thermodynamic functions of the sys-
tem, within the framework of the GF formalism
that we outline. In addition, the intermediate
states in the diagrams that are summed to give the
QF T matrix consist of Rn 1ndefinlte number of
pairs of either particles outside or holes inside
the Fermi sea. In this way one sums compactly a
considerably larger class of the analogous Gold-
stone diagrams than by solving the Bethe-GO1. dstone
equation for the corresponding T matrix, which
sums only repeated scatterings between two parti-
cles outside the Fermi sea. The numerical inves-
tigation of pair states in a many-body medium is
of interest in its own right, and we feel that a com-
parison between results in the GF and BG formal-
isms can be used to shed further light on this top-
ic. In particular, the singularity structure found
for the QF T matrix with our liquid He' potential
appears to be absent for the corresponding BG T
matrix.

In the next section we outline the formalism of
the GF T matrix and its connection to the proper
self-energy, from which the self-consistent sin-
gle-particle energy spectrum and the thermody-
namic functions can be obtained. Details of the
potentials used for the numerical study and the nu-
merical techniques themselves are presented in
Sec. III. In Sec. IV we give the results of the cal-
culations focussing particularly on the singularity
structure and its behavior as a function of the total
momentum of the scattering pair and the density of
the medium in which they are imbedded. The re-
sults are summarized in Sec. V and possible con-
sequences of the singularity structure are exam-
ined, together with a discussion of the merits of
the GF formalism in these cases.

II. T-MATRIX FORMALISM

to an integral equation which is the analog of the
Bethe-Salpeter equation ln the 1Rdde1 approxima-
tion. In terms of the incoming and outgoing mo-
menta of the interacting pair, p„p, and p,', p,', re-
spectively, we define relative and c.m. momenta as

p=k(p, -p.}, p'=-'(pl-p, '),
P = l(p, +p.) = k(pl+pl},

and we similarly define 2Po to be the total energy
of the pair. We further let s/M be the relative en-
ergy of the pair in the c.m. frame, "

s =M(2P, —P'/M)=P, —P',
since P /M ts 'the energy carried by 'the C.m. it-
self, where M is the mass of each (identical) fer-
mion. In this representation, the fully off-shell
GF T matrix has the form T(p, p'; s, P)
=(p

~
T(s, P)

~
p'), and written in operator notation

in the c.m. frame of the interacting pair, the QF
T matrix equation is

T(s, P) = u —u[q(P)go(s) —q(P)go (s)j T(s, P),

where u=MS 'V= —,'V, and where operator multi-
plication is defined in the relative momentum rep-
reSentatiOn RS

(i &» li'& = (2~&
' f«&i I

& I && (& I ii le&.

The operator q (q} is equal to unity if both parti-
cles are outside (inside) the Fermi sea, and zero
otherwise; and g, (s) = (2H, —s —iq) ' is the free
two-body propagator, where II, is the relative ki-
netic energy operator of the pair and q is a posi-
tive infinitesimal in the scattering region (s & 0)
and zero elsewhere. If the operator q in Eq. (I)
is replaced by zero, the corresponding form of the
Bethe-Goldstone equation is obtained. The propa-
gators g, and g, associated with the two-particle
and two-hole states, respectively, define the cor-
responding boundary conditions at infinity to be
outgoing and incoming waves, as is required by the
general formalism of the one-body Feynman
Green's function.

With the QF T matrix so defined, one can asso-
ciate a generalized fully off-shell wave function
operator X(s, P) and a two-body propagator in the
medium g(s, P) by the definitions

T(s, P) =uX(s, P); g(s, P) =X(s, P)g, (s). (2}

Using these definitions in Eq. (I), it is trivial to
show that g has the expected form

g -'(s, P)=-,'a, -s+(q(P)-q(P})u=-f.(P)-s,

For scattering via a two-body potential V, the
GF T matrix is readily shown' to be the solution with the appropriate factors of wig inserted on in-
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I y. (P)&& e.(P)l
g S, P

(Iy)
1J

V

or in the momentum representation

d& 4X(p, P)N(p', P)
(2s}o k'

~ el (P P)4 (p'
s, (P) —s

(5a)

(5b)

where the symbol - indicates equality when the
relevant factors of wig have been inserted as de-
manded by the boundary conditions, and after any
non-completeness of the eigenfunctions due to any
pathological behavior of the potential as discussed
in Ref. (12), is taken into account. In the usual
case of a non-singular potential, the completeness
relation

version to take account of the required boundary
conditions. It is obvious that a knowledge of any
one of T, X or g suffices to trivially determine
the other two. It is useful to introduce the dual
sets of wave functions I P„(P)& and & g„(P) I

which
are the right and left eigenfunctions for the oper-
ator L defined in Eq. (3),

L I y. (P)& = s.(P) I y. (P)&,

L'
I g. (P}&=s*.(P} I y, (P}&,

with the appropriate boundary conditions deter-
mined by Eq. (1}, and with the eigenvalue s„(P).
The index v includes both a continuous scattering
spectrum (labeled v-k, s„-k') and any possible
discrete boundstates (labeled v-i, s, -s, &0,
i=0, 1, 2, . . . ). The dual set of functions form a
bi-orthogonal set of eigenfunctions, in terms of
which g has the spectral representation

g and T at values s =s, (P), the bound-state energy
eigenvalues, the residues at which are easily cal-
culated and seen to be factorizable in p and p' in
the' momentum representation. Using either time-
reversal invariance or Eq. (1) directly, the T ma-
trix is symmetric in this representation;

T(p, p';s, P)=T(p', p;s, P),
and hence the residues at s =s;(P) must also be
symmetric factorizable functions of p and p'.

The GF T matrix is not amenable to direct phys-
ical observation, but within the ladder approxima-
tion it leads simply and directly' to the proper
self-energy function Z (p, po) from which one can
obtain the self-consistent single-particle energy
spectrum as the solution to the equation"

p, =p' +&*(p, p.)

The solutionjo=e(p}+iy(p) is in general complex,
and y(p} is a direct measure of the quasipartiele
lifetime. From the spectrum, one then easily
makes contact with the thermodynamic functions.

For these reasons, we have chosen to study the
GF T matrix for some potentials of physical inter-
est, and, in particular, for a potential appropriate
to liquid He, as detailed in Sec. III. The starting
point for the calculations is the GF T matrix Eq.
(1}. Unlike the case of free scattering, the GF T
matrix depends on the vector P, and in order to be
able to make a decoupled partial-wave expansion,
it is necessary and usual to make the approxima-
tion of replacing Q and Q by their angle-averaged
values. In this approximation Eq. (1) can be re-
written

T(p, p'; s, P) = g (2l+1)T,(p, p'; s, P)P, (p p'),

g I P.(P)&&&„(P)l =1

holds true. These bi-orthogonal sets of wave func-
tions are thus seen to diagonalize g, and the T ma-
trix itself is easily expressed in terms of them. .

The scattering eigenfunctions I pI(P)& are them-
selves easily related to the half-off-shell value of
the generalized wave function X(s, P). From Eqs.
(1) and (2), we find

(L(P) —s) X(s, P) =g, ',
with appropriate boundary conditions, and com-
parison with Eq. (4) shows

&p I
x(k', P} I

k& =&p I yT(P}& =- yk(p, P).
As can be seen from Eqs. (5} together with the
easily derived relation

Zo 8Ão =So —(Q —Q)T~

the bound-state. eigenfunctions lead to poles in both

x T, (k, p'; s, P),
1

Q(k, P) = —' dp Q(k, P),
-1

q(k, P)=e(IP+&I-k )e(IP-&I —k ),

(6}

A A

where p. = k P, and Q is defined similarly under
the replacement 8(x)-1—8(x), where 8(x) is the
unit-step function. The function T, is also an im-
plicit function of the Fermi momentum k~, defined
in terms of the particle density n for identical
spin- —,

' fermions as kz ——(3v'n)'~'.
We have examined both Eq. (6}and the BG equa. —

tion, which can be obtained from it under the re-
placement Q-0, for several two-body potentials

" k2dk
T, (p, p'.; s, P)=u, (p, p')—,u, (p& k}

0 1T

q(k, p) q(k, p)
k' —s —ig k' —s+ ig
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of interest, both in the scattering region (s & 0}and
in the bound-state region (s &0). Details of the po-
tentials used and the numerical techniques em-
ployed are given in Sec. III.

III. DETAILS OF THE CALCULATIONS

Most of the detailed calculations reported in this
work concern S-wave results for the modified
Frost-Musulin (MFM) potential, "applicable to
liquid He',

V (r) = -e [1+c(1 r,/r)] exp[c(1 r/r, )),
e =12.54'K, c=8.01, r, =2.9 SA, (7)

with the value k '/2M = 8.0425 'K A'. We have also
investigated both the higher partial waves for this
potential, and the isotriplet S-wave soft-core Reid
potential" appropriate to nuclear -matter calcula-
tions. Neither of these potentials supports any
bound state, although both would need only a small
increase in strength to do so.

The integral Eq. (6) is solved numerically by
first discretizing it using an N-point quadrature
formula, and then inverting the resulting matrix
equation. In the bound-state region the equation is
nonsingular, the T-matrix is real, and this pro-
cedure is applied directly to an N~N matrix. In
the scattering region, the integral equation is sin-
gular and we have preferred to solve for the (real)
K matrix obtained from Eq. (6) by letting q -0 and

regarding the resulting integral as of principal-
value type. In this case we subtract from the inte-
gral a term (which is identically zero) which has
the numerator evaluated at the point k=+s' ',
thereby replacing the principal-value condition by
a smooth integrand. ' The real and imaginary
parts of the T matrix can then be found from the
K matrix by using a generalized unitarity relation.
For the numerical results reported below the inte-
gration variable has been mapped on to the interval
(-1, 1}suitable for Gauss quadrature by the trans-
formation k = tan~ v(1+ x). The numerical tech-
niques were first checked for the case of free scat-
tering obtained from Eq. (6) by letting Q-l, Q-O,
and in this limit T&-t&, the free two particle t-ma-
trix. In particular the fully on-shell t matrix can
be parametrized in terms of the phase shifts 6, (p),
and we found that for the MFM potential the func-
tions 6, (P ) are smooth and extremely stable against
changes in N for N&48. In the calculations re-
ported in Sec. IV we use N=96.

IV. RESULTS

Using the MFM potential initially an investigation
of the GF T matrix was then undertaken. The T
matrix was found to be a smooth continuous func-
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FIG. 1. S-wave GF T matrix for the MFM potential
as a function of s, for four values of the diagonal relative
momentum.

tion of all of its arguments in the scattering region,
but exhibited singular behavior in the bound-state
region for certain values of the arguments, and it
is this behavior which is reported.

In Fig. 1 is plotted the S-wave GF T matrix at
zero c.m. momentum for a typical value of k~,
over a range of negative c.m. energies, for several
different values of the diagonal relative momentum

p. Near s =0 the T matrix is negative, and as s is
decreased the T matrix goes through infinity and

becomes positive. That the singularity is a first-
order pole in s is confirmed by obtaining the resi-
due, and for a given value of P and k~, the position
of the pole is independent of the relative incoming
and outgoing momenta. This behavior is typical
for a wide range of values of the parameters P and
k~.

The position s, of the singularity can thus be ob-
tained as a function of the two parameters P and

k~, as displayed in Fig. 2. For a given value of
P, there exists a critical density or equivalently a
critical Fermi momentum, k~, below which the
singularity disappears. The function k~ (P) is

C

smooth and monotonic, with a value at P =0 of
0.7146 A '. By contrast the density of real liquid
He' at zero temperature corresponds to a value
k+=0. 'l9 A '. The surface s,(P, ks) appears to be
very rich in detail. In particular the behavior at
P = 0 is very striking, where s, appears to attain
a set of discrete values only, as a function of k~,
as can be seen clearly from Fig. 3. Moreover, as
one moves away from the P =0 plane, for a general
ks[& k~ (0)], at each of the discrete values s, there
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FIG. 2. Position of the singularity so in the S-wave GF
T matrix for the MFM potential as a function of the c.m.
momentum P, for seven values of kz.
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exists a small horizontal "ledge, "where s, is
reckoned to be plotted vertically. The width of the
ledge appears to be a periodic function of k~. At a
value of k~ which corresponds to a point where s,
has just flipped to a new discrete value the shelf-
width vanishes, and as k~ is further increased the
width first increases to a maximum and then de-
creases to zero at that value of k~ which marks
the next flip to a new value of s,. From Fig. 2 one
also observes that the s,-vs-P curves exhibit os-

cillatory behavior which dies away rapidly with
increasing k~. The extrema however appear to
occur at values of P which are independent of k~.
We also have some preliminary results which indi-
cate that the pole whose behavior is plotted in Fig.
2, may not be the only pole present for' the S-wave
MFM potential. However any other pole certainly
only appears at considerably higher values of k~,
and hence probably outside the density region of
interest for liquid He'.

The singularity structure detailed above does not
seem to be present in the higher partial waves for
the MFM potential, nor does it occur in the S-wave
BG T matrix equation. We have however examined
the GF T matrix for other potentials, and in par-
ticular have located a similar behavior in the iso-
triplet S-wave soft-core Reid internucleon poten-
tial." In this case however, the critical value

k~ at zero c.m. momentum of the pair occurs
C

around 4.1 F ', which is considerably higher than
the physical value of 1.35 F ' appropriate to nu-
clear matter.

The positive identification of the pole structure
plotted in Fig. 2 with a bound state can be made by
reference to the remarks in Sec. II (and by analogy
with free two-particle potential scattering) and the
numerical observations that: (a) the residue has
the sign expected for an S-wave potential, (b) the
residue is factorizable in the sense that

(s —s,)T(P,p'; s, P) = f(P, P)f(P', -P),

and (c) the pole s, moves when only the strength of
the potential is varied. Also, in the extreme high-
density limit (ks- ~) for P =0, it is readily seen
that the GF T matrix approaches the negative of
the free-scattering t matrix for a potential —V.
Insofar as the negative of the MFM potential does
support bound-states, it is perhaps not surprising
that the bound-state structure persists at finite
densities.

The results reported here are summarized in
Sec. V and possible consequences are indicated.

V. DISCUSSION AND SUMMARY

IO 0.0A

10
10 IO 10

-s.tA')
10

FIG. 3. Fermi momentum kl vs the position of the
singularity so in the S-wave GF T matrix for the MFM
potential, for three values of the c.m. momentum P =0.0,
0.1, and 0.3 A ~, for which the critical values kz are,

C
respectively, 0.7146, 0.7158, and 0.7375 A, ~.

The numerical results of Sec. IV indicate that
for the MFM potential, the GF T matrix (which de-
scribes the interaction to all orders in the poten-
tial between either a pair of particles outside or a
pair of holes inside the Fermi sea, propagating
freely in intermediate states except for restric-
tions due to the exclusion principle) has a singu-
larity in the lowest partial wave at densities of
the order of and lower than the physical density of
real liquid He'. This is seen to be caused by a
bound state of the pair in the medium which forms
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above a certain critical density, which itself de-
pends on the total momentum of the pair. The cor-
responding Bethe-Goldstone T matrix which allows
for only interactions between two particles outside
the Fermi sea has no such singularity for the same
potential. A similar pole structure was observed
in the GF T matrix appropriate to the soft-core
Reid internucleon potential in the S-wave isotriplet
channel although only at densities appreciably high-
er than ordinary nuclear matter. Both the GF and
BG T matrices can be used as the starting points
for calculations of the properties of a many-body
system, and the former has summed more terms
of the complete perturbation series. 'This is gen-
erally "a good thing", although it is certainly not
obvious that this necessarily results in an im-
proved value of the ground-state energy, or of any
other quantities. What is true is that in principle
either T matrix can be employed to calculate the
higher-order cluster terms. The GF T matrix has
the added attraction of treating particles and holes
symmetrically.

In a different context a generalized GF T matrix
has been examined by Emery. " The T matrix ex-
amined by him is identical with ours except that
the free two-body propagator g,(s) in Eq. (I) is
modified to a self-consistent Hartree-Fock propa-
gator in which each member of the pair travels in
its own Hartree-Fock field. With this modification,
Emery was able to show that this version of the GF
T matrix is singular if and only if there exists an

energy gap in the energy spectrum of the type di-
rectly associated with the BCS theory of supercon-
ductivi, ty." Emery" has also shown that the crite-
rion for the existence of a singularity in the corre-
sponding self -consistent Hartree-Fock version of
the BG T matrix appears to be quite distinct from
the criterion for the existence of an energy gap.
These results are intuitively reasonable since in
contrast to the usual Brueckner-Bethe-Goldstone
approach, the Galitskii formalism and the BCS
theory both treat particles and holes in a symmet-
ric manner. In this sense one might also expect
that the simple GF formalism used by us could

provide a better description of the normal state
than the usual BG approach insofar as it may con-
tain the essential physics and detail of a more
general theory. Within a different theoretical
framework Goldberg and Puff" also discuss the
generalized (in the Hartree-Fock sense) GF bound-
state wave functions analogous to our eigenfunc-
tions

~ P, (P)) discussed in Sec. II. They show that
the BCS gap function A(k) is given by

k(k) Jdq (k —q)(q~ P (0))

when they employ the-correct BCS form of the fer-
mion distribution function in place of our step-
function form, and the self-consistent Hartree-
Fock two-body propagator in place of our propa-
gator g, (s). It is worth noting that in our ca,se this
relation would imply a very direct link between the

gap function and the T matrix, since the right-hand
side of the above expression is trivially related to
the T matrix.

We are presently investigating the potential de-
pendence of the singularity structure in a system-
atic way and are extending the present results to
finite temperatures using a temperature-dependent
formalism. Results of these investigations and a
calculation leading to the thermodynamic functions
for a system wherein the two-body interaction
leads to a pole structure of the sort discussed
here, will be published elsewhere.

In summary, it is our belief that the simple GF
formalism outlined in this work forms a simple
starting-point for real calculations, and one which
already has the possibility of containing the impor-
tant physical elements of pairing in zeroth order.
It is probably too early to fully answer the most
interesting question of whether the pole structure
in the T matrix observed by us is of merely
mathematical interest, or whether it will really
herald the onset of some physical phenomenon —in
the sense that we have discussed above and that
one knows, for example, that the Cooper pairs
responsible for superconductivity manifest them-
selves in a similar fashion.
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