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The solution of the isotropic n-component spin models by expanding in powers of 1/n has been very

helpful in studying static critical phenomena. The limit n ~ ao is the spherical model. There are many

possible generalizations of these models for studying dynamic (time dependent) critical phenomena. In

this payer we study the propagation of sound waves and heat diffusion near the critical point in a nl2-
component complex-spin (each complex component has two real components) model in the limit of

large n. This model is a particular dynamic generalization of the spherical model and is equivalent to

a system of bosons obeying quantum mechanics.

I. INTRODUCTION

Recently, dynamic generalizations of the static
spherical model and I/n expansion have been
studied by several authors. ' ' A particularly sim-
ple generalization is the model of a —,'n-component
complex field, i.e., a Bose field, with very large
n. The dynamics is given at the microscopic level
by quantum mechanics. The simplicity of this
well-defined model suggests that a detailed analy-
sis would lead to useful qualitative information
concerning critical dynamics. Much attention has
been received. '

The main purpose of this study is to investigate
how the phenomena of sound waves and heat dif-
fusion are realized in this model. In this study,
only the leading order in I/n will be kept. Thus,
the status is analogous to that of the spherical
model in the static I/n expansion.

We want to emphasize that dynamics is vastly
more complicated than statics. One can make

many different generalizations from the static I/n
expansion for studying critical dynamics. The
model studied in Ref. 2 and here is just one of

them. The exploration of other models is impor-
tant, but no effort will be made here in that direc-
tion. In this paper, we report only some straight-
forward calculations concerning sound waves in

this model and the physical picture which follows.
The results are quite simple and easy to under-
stand. The calculations will reflect some com-
plexities in I/n expansions of dynamics.

There are two rather undesirable qualities of
our approach. First, the calculation will be based
on a perturbation e'xpansion. The solution is ob-
tained by a formal counting of powers in I/n and

then dropping all but the lowest power of 1/n.
Without a rigorous mathematical foundation, this
approach is not guaranteed to give the true solu-
tion.

Second, the solution to the leading order in I/n
may not contain some of the information of interest
to critical phenomena. Let us illustrate this point
in more detail. Suppose that a physical quantity

Q behaves near T, like

Q =A, ~T —TJ '&+A2~T —I'c~ '2+, a, &a &

H =Q (k'a",„a„+-,u, p, p, ),1

k, o

where

(1.2)

Suppose that, for n ~, Q =O(1). The most im-
portant term is the first one as far as critical be-
havior is concerned. The most important quantity
we want to calculate is a, . Now we calculate Q
in I/n expansion and keep only the leading term,
i.e. , O(1). Then we shall get a, only if A, =O(1). If

A, =O(1/n) and A, or A, =O(1), then we would be out

of luck. Thus one must be extremely cautious in

interpreting the results.
The dynamics described by the leading order in

I/n turns out to be essentially that of a system of

linearly coupled modes. The information input

to this linear-coupling scheme will come from
the statics of the spherical model. The simplicity
allows an easy visualization of the basic features of
first and second sound and heat diffusion. However,

along with some other important features, the non-

linear mode-mode coupling of Kawasaki'and Kada-
noff and Swift' can be realized only if higher-order
terms in I/n are kept.

Let us introduce the model and summarize brief-
, ly its important features. The model describes

a complex vector field g,(x), v=1, 2, . . . , —,'n, in a
d-dimensional cube of unit volume with periodic
boundary conditions. Let a„be the Fourier com-
ponent of g,(x) of wave vector (or momentum) k.
We assume the Hamiltonian
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p =— dxe ' "px,

p(x) -=g 0'.(x)0.(x), (1.4)

e-8(H- pN) (1.6)

in the usual notation. This model observes the
local conservation law

sp/at=-i[p, H]=-v j,
where

i g—[/~VS~ —(Vg~)g~]. (1.8)

This conservation law is, of course, fundamental
to our discussion and results.

For large n, we take g, as O(1). Then p(x)
=O(n). In order that both terms in H be of the
same order, i.e. , O(n), we take u, =O(1/n) Thu.s,
the coupling between bosons is small but the total
interaction energy is not small.

Now we have defined a model at a microscopic
level. What remains to be done is "a straight-
forward calculation" to bring out the collective
phenomena of interest from first principles. Such
an approach eliminates questions associated with
artificial cutoffs, over-counting of modes, etc. , in
a semimacroscopic phenomenological approach.
On the other hand, introducing the small param-
eter 1/n at a microscopic level is dangerous. In
the process of calculation, terms which are for-
mally small for small 1/n are thrown away. Some-
times, it is not easy to prevent important physics
from being thrown away. The interpretation of
results becomes difficult too. Such danger is less
serious in a phenomenological approach, where
much of the physical information is put in at a semi-
macroscopic level.

For static phenomena, the present model gives
the same results as the spherical model. There is
a Bose-Einstein condensation below a certain tem-
perature T,. The order parameter is the complex
field g. The solution of the model is given by the
Hartree approximation and is easily understood:
While each g, can fluctuate a lot near T„ the frac-
tional fluctuation of p(x) about its average is small
since p(x) is a sum of —,'n g, g, 's. Approximating
p(x) by its average is precisely the Hartree ap-

and u~ is assumed to be a smooth function of k
with u, &0. The dynamics follows quantum mechan-
ics and the commutation rule

(1.5$

This model is conveniently regarded as a system
of bosons of mass ~. The statistical averages will
be taken over the grand-canonical ensemble

ck ——,'iI'k'+O(k'), -iD k'+O(k'), (1.9)

respectively, where k is the wave vector and D~
= «/C~. C~ and x are the specific heat at constant
pressure and the thermal conductivity, respec-
tively. We find that c, the speed of sound, I', the
damping coefficient, and z are nonsingular and
finite for small T —T, to O(T —T,) Below T„ th. e
frequencies of the first and second sounds are

c,k ——' i I;k' +O(k~),

c,k ——,'ii;k'+O(H),
(1.10)

respectively. We find that

I; = (const. )((T, —T) ln[(const. )/(T, —T)]) '+I",

and that c» c'„F,', and I, are nonsingular to
O(T, —T). Also, we find

proximation.
The Hartree approximation is a self-consistent

approximation in which bosons move independently,
i.e., are effectively noninteracting. If we took it
for dynamics, we would never get the sound waves
or heat diffusion. We must examine carefully the
order of magnitudes involved in the dynamics of
interest.

The interaction between two bosons is very weak
because u„=O(1/n). The scattering cross section
is proportional to u~2=0(1/n'). Since the popula-
tion of bosons is of O(n), the collision rate and the
inverse mean free path of a boson are of O(1/n).
Therefore, the frequency and wave number of in-
terest are in the range of O(1/n). Later it will
become evident that the Hartree approximation
would give the correct description of the dynamics
in the 1/n-0 limit if the frequency or the wave
number were counted as O(1).

Thus, as far as collisions are concerned, the
system behaves as a weakly interacting system.
However, as we noted before, the interaction ener-
gy is not small. In fact, the restoring force
against a change in density is strong. The com-
bination of these two features is what makes this
model interesting and results nontrivial.

Our program is to look for long-lived collective
modes with frequencies and wave numbers in the
range of O(1/n), for temperatures near T,. Indeed,
we find the sound wave and the heat diffusion above
T„and below T, the first and second sounds are
found.

The temperature dependence of associated physi-
' cal quantities are examined. The results are sum-

marized as follows.
For T&T„ the frequency of sound and that of the

heat-diffusion mode are
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(1.12) of a noninteracting Bose gas in a self-consistently
determined uniform potential. Let the effective
chemical potential be

(1.13) —r=p. —gN. (2.1)
There is little resemblance of the temperature
dependences listed above to those for liquid helium
near the X point. " Various reasons will be dis-
cussed.

The outline of this paper is the following.
Section II: Thermodynamic properties of the

model are summarized and the mathematical pro-
gram is outlined. We introduce a dielectric func-
tion which is proportional to the inverse of the
density-response function.

Section III: Much of the discussion will center
around an integral equation which is a result of
graph summation supplied in Appendix A. This
integral equation is simply a linearized Boltzmann
kinetic equation and reflects the weakly interacting
nature of the system. The solution of the integral
equation is then used to construct the dielectric
function, whose zeros determine the frequencies
of sound waves and the rate of heat diffusion. The
strongly interacting nature of the system is taken
care of by the dielectric function. The discussion
is restricted to T & T, .

Section IV: The effect of Bose-Einstein conden-
sation below T, on the results of Sec. III is ex-
amined. The propagation and damping of the second
sound are discussed.

Section V: Further discussion of the results are
given. Features missed by the leading terms are
discussed. We shall also show why this model
would not be very helpful in studying spin diffu-
sion (i.e. , the dynamics of P).

Appendixes A and B sum up some technical de-
tails in deriving the integral equations used iri the
main text. No background on the graphic expan-
sion at finite temperature (Matsubara method) is
needed in reading the main text.

II. PRELIMINARY

A. Review of statics

The model is completely defined by (1.2)-(1.6).
It describes a strongly interacting system in the
sense that the kinetic energy is of the same order
of magnitude as the interacting energy, even though
the coupling constant u, is of O(1/n). By virtue
of the large number of components, the fractional
fluctuation of p(x) is expected to be small although
the amplitudes g (x) may fluctuate considerably.
For n- ~, p(x) may be taken as a constant, (p(x)}
=N, and the interaction Hamiltonian is approxi-
mated by a constant ~uN" (u =—uo). This is the Har-
tree approximation. The physical picture is that

Then the population distribution follows:

(a', ,a„&=f,= I/( e-"& —1),

Ep: P +1'.

If T & T„ there is a Bose-Einstein condensate

(a»a& p) No.

(2.2)

(2.3)

(2.4)

The condensate acts as a reservoir of bosons.
Thus the gffective chemical potential r vanishes:

(2 6)

The population excluding the condensate is then

N' =-', g&2w) Jd p f, (2.6)

N'+N =N. (2.7)

For T ~ T, , N, =0 . All thermodynamic formulas
follow from (2.1)-(2.7). We collect them in Table
I. Their derivation is easy. and omitted here. The
quantity II,(0) appearing in Table I is defined as

II,(0) = — (2«) " d'p f~. (2.8)

Note that for T —T, very small we have

ra. (T T )2~&'&

II (0)~r'~' '
(2.9)

Thus II,(0) blows up at T, . The quantities C», C~,
and (sP/BN)r are nonanalytic functions of T —T,
and show a cusp behavior.

We define a correlation length g as

(=r ' '~(T —T) ", v=1/(d —2). (2.10)

It should be noted that for T & T, the specific heat
apparently has no singular behavior, in contrast
to that above T[(c outs. ) —(const. )(T —T,), o-
= (4 —d)/(d —2)j. However, if one includes the next
order in 1/n, he would find a term (T, —T) below

Tc '

B. Mathematical program

As we have mentioned in Sec. I, the Hartree ap-
proximation would not be adequate for dynamic
calculation. To get results from first principles
we shall rely on the finite-temperature perturba-
tion theory (Matsubara method). The large-n limit
will be exactly (at least formally) accounted for by
an infinite set of graphs. However, to those read-
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ers who have not been exposed to the Matsubara
method, some of the technicality will not be trans-
parent. Fortunately the result of the graph sum-
mation simply leads to an integral equation which

is easily visualized as a linearized Boltzmann
kinetic equation. Apart from some details this
kinetic equation can be guessed on intuitive grounds.
Since the technical details are not our main con-
cern, we shall consider the details of graph sum-
mation in the appendixes. In the main text we

shall appeal to intuitive arguments.
We begin with the density-response function de-

fined by

The speed and damping of sound waves and the
rate of heat diffusion are determined by the poles
of F(k, &u}, analytically continued to below the ~-
real axis. The poles of 5 are the zeros of the
dielectric function c;

e(k, &u) =I+-,'null(k, &u), (2.12)

where II is related to 7 via P =-—,'nil/e. A more
convenient form for c will be obtained to replace
(2.12) by taking advantage of the conservation law

(1.7). This will be done shortly. Thus the non-
trivial part of the program is the calculation of e

to the leading order in 1/n, namely to O(1). This

S(k, e) = -t
J

dt d'x e' ' " ' ([p(x, t), p(0)]) 8(t),

(2.11)
with Im»0, and

p(x t} elltt p(x) e isc

would be trivial if the frequency & or the wave

number k can be considered as quantities of O(1).
However, as we have mentioned before, the range
of interest is of O(1/n). There is a class of graphs
which are of higher orders in 1/n, but contribute
to the dielectric-function powers of (1/n}tu ' or
(1/n)k '. Such contributions must not be excluded.
Thus we need to sum this infinite set of graphs to
obtain e(k, tu) to O(1). The summation leads to a
kinetic equation in the intermediate stage, and the
dielectric function can be obtained from the solu-
tion of the kinetic equation. The collision term of
the kinetic equation accounts for the scattering
of two bosons. For T ( T„another collision term
appears to account for the absorption and emis-
sion of bosons. The new processes appear as a
consequence of the Bose-Einstein condensation.
The standard procedure in kinetic theory will be
used to obtain the solutions to the kinetic equation.

We would like to emphasize that the kinetic equa-
tion is not a complete description. Solving the
kinetic equation is only an intermediate step. In

particular, the sound-wave solutions of the kinetic
equation do not describe the sound waves of the
model. This is evident since, for example, the

speed of sound given by the kinetic equation is that
derived from the thermodynamics of an ideal gas,
not that of the Hartree approximation. Nor will
the kinetic equation give the second sound below

T,. It is crucial that we substitute the solution of
the kinetic equation into the dielectric function and

then locate the zeros. This last step will give the
correct sound waves, including the second sound.

TABLE I. Thermodynamics at n -~ limit. The critical temperature T, is given by T,
=47r[2N/«(2d)] ". The symbols N', No, K, E, S, P, and C„represent the uncondensed den-

sity, condensate density, kinetic energy, total energy, entropy, pressure, and specific heat
at constant volume, respectively. We have defined F~(r) =g& &e

+~+~. Then F~(O) = &(m}

where & is Riemann's ( function. r is defined by N = 2n (T/4~$i~F& /&(r).

Thermodynamic
quantity

No

C„

N = total density

Tend(T/4m) F«2+&(r) =N |', P )

K + quN2

(2/d + 1)K/T +N r/T

(2/d)K + ~uN2

2N
Nu +

( d + 1)K/T d N [2Tn II 0(p)]

T&T

as (&/4sl"'t (-'d)

Tend(T/4x) f(pd~1) =N' Q )
K i 2uN2

(2/d + 1)K/T

(2/d)K + 2uN2

(2d + 1)K/T
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C. Conservation of bosons and the dielectric function

The mathematical task is to find the zeros of the

dielectric function (2.12) in the (d plane. The func-
tion --,'nII is sometimes called the "polarization
part. " It is just the density-response function F
with only "irreducible" graphs included (see Fig.
I }. Previous experience showed that, for dynamic
calculation, current-response functions are better
behaved and easier to calculate than density-re-
sponse functions. ' The reason is that singular
behavior often comes from the large boson popula-
tion with small momenta. The current is propor-
tional to the momentum. Therefore the small-
momentum bosons would affect the current re-

.sponse less than they would affect the density re-
sponse. Let us define the longitudinal current-
response function as

d" (2, ) =-i Jdtd'2 ([2 ((2, t)2 ~ )(0)),)

F — - +

+

FIG. 1. Full density-response function written as a
geometric sum of the "polarization parts" —2~.
Dashed line denotes the interaction u.

would be good enough for large n if k or is of

O(1). However, as we pointed out, the range of
interest is ~, k -O(1/n). Consequently, an infinite

set of graphs must be summed to obtain Ildi to O(1).
This summation of graphs is discussed in Appendix

A. Here we shall write down the results first and

then show that they are easily visualizable and

almost self -evident.

x g(f)ei(dt ik' x- (2.13)

where k' is the unit vector along the direction of k.
It follows from the continuity equation (1.7) and

the commutation rule

A. Ki»etic equation

First, let us specify some notations. Define

s =—s~ = 2 sinh-,'Pc~, (3.1)

(2.14) (PX)=(22) '
, (d'Ps 'P(P)X(P), (3.2)

(d'F = k'(2N+ 722). (2.15)

This identity also applies to the irreducible part,
1.e. ,

where y and X are any functions of P. Equation
(3.2} defines a "scalar product" in the vector space
of functions of p. Note that

-(d'll = k'(2N —
k nil i)i2 /n (2.16)

(3.3)

Thus the dielectric function (2.12) is then expressed
as

Then the result of summing graphs of leading order
1S

e (k, tu) =1 —(uk'/(d')[2N ——,'niii'(k, ~)]. (2.17) ,'nII" = 2N ———,n p&u(2p ~ k, (i) ), (3.4}

Thus the nontrivial mathematical task is to deter-
mine Ilia to the leading order in 1/n. Note that

(2.17) evidently is not useful for static problems,
i.e. , for =0. However, since for our purpose of
extracting zeros of e(k, u)) we are interested in

finite , this formula is very useful as previous
work has shown. '

III. SOUND WAVES AND HEAT DIFFUSION ABOVE T,

In this section we shall determine Ilia to O(1),
substitute it in (2.17), and then determine the zeros
of e(k, (2)). The speed and damping of sound waves
and the heat diffusion coefficient are then obtained.

If we simply take the nonipteracting gas contribu-
tion to II~', we shall get the so called "random
phase approximation" or "time-dependent Hartree
approximation" to the dielectric function. This

where y is the solution to the integral equation

((d —k i )y = 2p k —i Xrp, (3.5)

with v =-V~e~=2p, and the integral operator 3'. is
defined by

Ptas-=-', (2 ) Jd'2'd'2" d'2"'s(s's"s") '

&«(PP'P "P'")[~ (P)+7i(P') —0 (P") 0(P"')], —

(3.6)

and R is proportional to the rate of boson-boson
scattering,

R(pp'p "p"') = (2)i)""6(e+ e' —e" —e"')

&&6(p+p' p" -p"')lu(p p",e -- e")I'-
(3.7)

Some details of the effective scattering amplitude
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u are given by (A10) and (A52) and will not concern
us until later. In the above formulas,

etc. , s -=s~, s' =- s~t, etc.

(3.8)
Of course, xt)(p) is a function of k and (d as well
as p.

These results can be visualized as those of sim-
ple kinetic theory. Let us write the boson distribu-
tion function as

we want are not those given directly by the solu-
tion of the Boltzmann equation (the poles of II~'),
but by the zeros of the dielectric function.

B. Speed of sound

In order to compute (2p k, xt)} in (3.4), we need
to solve (3.5). The solution is obtained by inverting
the operator —k v+ i3'., and

f(v, p, t) =f, +6f(x,p, t), (3.9) (2p k, xt)) =(2p ~ k, ((v —k ~ v+ tX) '2p k). (3.16)

where the deviation 6f from the equilibrium dis-
tribution is caused by an external field (coupled
to the current} which generates a force

S=-V'V, V=~p ke" -~ '

We expect f to satisfy a Boltzmann equation

s6f sf
Bt

+v V5f+E ~ V f =
P

C

(3.10)

(3.11)

(j( )), p=-*' (x ) J&p()i(xp (»p p, (x»).
where ( ), means the expectation value at time t.
By (3.12), we have

where we keep only terms of first order in the
small parameter A. Now we relate 6f to (t) by

6f(x, p, t) =-A.ps '(2p ~ k —(vs))e' ' ' '. (3.12)

Then a little algebra will reduce (3.5) to (3.11).
Note that Vpfp=-2pps ' and Xp'k =0. We have not
said anything about (sf /St), in (3.'11). Presumably
one can get every detail of (3.6) by kinetic-theory
argument through (Sf/St), . However, from (3.7)
and (3.8), it is already clear that X describes the
effect of collisions. Here we are only interested
in the physical picture behind (3.5), not its de-
tailed derivation, which is supplied by Appendix A.

Having linked (t) to 6f by (3.12), we can easily
understand the result (3.4). The longitudinal cur
rent generated as a result of the external distur-
bance (3.10) is

(k ~ v —t X}(jj),= (x), (t), .

Then (3.16) can be written

(3.17}

2p'
(2p ~ k, (t) ) = Q (3.18)

f

We shall determine (2p 5, Q, ) and (d, as power
series in k, following the standard steps in kinetic
theory.

First, let us set k =0. Then (3.17}is just the
eigenvector equation for 3'.. We shall use the sym-
bols ~, , X, for the eigenvalues and eigenvectors of
Xy

3X] =~] X]. (3.19)

The properties of 3'. are conveniently expressed by
the quadratic form

(X, RX) = lx(px) "Ip'p X'p' p'p" Xxp" (x 'x'x"')-

"-' (pp'p "P"')t}t(p}+)t(p')—)t(p") —X(p")j'

(3.20)

obtained from (3.6). It is evident that X is sym-
metric and positive definite and invariant under
rotation and inversion in P space. It is also clear
from (3.20} and the 6 functions in (3.7}that X has
a (d+2)-dimensional "null space" (i.e., the space
of eigenvectors of zero eigenvalue) spanned by

Suppose that there is a complete set of orthonormal
eigenvectors (t), such that

gj jet'&'r —k ~f
2 (3.14)

where we have made use of the fact that

( j(x)) k=-X—'npK2p k, 2p ~ k}—(v(2p k, p)]e' '

Xq =Ai Pay a=1, . . . , d,
-X/2

)t, =A 't'(p' —dA, /Ao},

(3.21)

(3.22)

(3.23)

2nP(2p k, 2P k) = 2N (3.15) where the A's are normalization constants,

and (3.4}. Thus --,'nil is the longitudinal current-
response function predicted by the Boltzmann equa-
tion.

As we have emphasized in Sec. II, the Boltzmann
equation is not the whole story. The sound waves

A, = Tll, (0),

A, =T(d+2)(P')N/ dn'A', /A„
A, , =TN/n

(3.24)

(3.25)

(3.26)

One could write eigenvector's of 3: in terms of
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0 0 Po

k v= 0 0 p. , k, (3.27)

hyperspherical harmonics in d dimensions, but

there is no need to do it for our purpose. As soon
as we turn on the k.v term in (3.17), the spherical
symmetry is reduced to a cylindrical symmetry
around k. We shall only need to discuss eigen-
vectors which are cylindrically symmetric. Thus,
we shall use X, in (3.22) to denote A, ' 'p S.

To find , to first order in k, we use the first-
order degenerate perturbation theory. This means
diagonalize k ~ v of (3.17}in the three-dimensional
space spanned by Xo, X, and X, . The matrix rep-
resentation of k v in this space is

(k. v —&u, —i &)Qp, = (&u, —k v) Pp, ,

from which we can solve QQ, to O(k),

QP, =-iQ(1/X)Qk vs, ,

(3.39)

(3.40)

for u, =O(k). If ur, =O(l}, it would not contribute
to the terms of interest. Substitute (3.40) back into

(3.39). We obtain an equation for PP, ,

[Pk v —iPk vQ(~1/St)Qk v]P~ Q&
—

&o, PQ& (3.4. 1)

The operator on the left-hand side of (3.41) has the
matrix representation

excluding the null space of 3'. and P =-1 -Q. We then

write P, = (P+Q)Q, in (3.17}to obtain

where

u. =(X„k vX, )=2(A, /A. )",
u, =(X„k vX, )=2~ '(A, /A, )"

(3.2s)

(3.29)

~, =0+0(k'), (3.30)

The eigenvalues v, and eigenvectors P, are then

easily deduced from (3.27);

where

0 0 p,

0 -zkT,

—gkT~

k,

1
(X„k vX, )',

i

1
Xq~

' vX
f

(3.42)

(s.4s)

(3.44)

~, =+c,k+O(k'),

(2p k, y, )=O(k),

(2P k, Q, ) = (2A, }'i'+O(k),

where [using (3.24)-(3.26}],

c', = rj, oo+ p, ', =4(A, /A. ,+A, /d'A, )

= (4/d)(2/&+ I)&p'&

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

Substituting this in (3.4) and then (2.17}, we get

Taking & as of O(k} in (3.18}, the above results
enable us to obtain P~(2p k, rp) to O(1). Note that
because (2P k, P, ) vanishes unless i = s, (3.18) is
simply

(2p k, y) = 4A, ~/(&u' —coko).

ooo = iDok'+O(k'), - (s.45)

~,= ~ok —iv, k'+O(k'), (s.45)

(2p k, Qo) =2A,' '(V, ,/poco)iDok+O(k'), (3.47)

(2p k, P,}=+(2A, )'~'(1 + ikv /2c, }+O(k'}.

The sum excludes X, in the null space of 3'. Equa-
tion (3.42) is just (3.27) with an O(k') correction.
The eigenvalues and eigenvectors of (3.42) are
easily determined. The dielectric function is then

obtained to one more order in k. The zeros give
us the heat-diffusion coefficient D~ and the sound-
wave damping coefficient I' as well as the speed
of sound. The algebra is straightforward. Let us
record a few intermediate steps. Equations (3.30)-
(3.33) now become

e = 1 —2NQk'/(a&' —c'k )

whose zeros are given by

=c k2 c =2NQ+c

(3.36)

(3.37)

The new symbols are defined by

o= ~ &o/ o~

(s.4s)

(3.49)

These zeros give the sound-wave speed C. By
(3.34), (3.37}, and (sP/sN)o in Table I, we see that

T ~
= o (T~ k Tq p, o/co).

The dielectric function is

(3.50)

co = 2(BP/BN)o, (3.38)

as expected. Note that 2 comes from the fact that
the mass of a boson in this model is 2.

C. Damping of sound and heat diffusion

We now examine the O(k} terms in (2p k, y, }and
O(k') terms in ~, . Let Q be the projection operator

e (k (ar ) = 1 —2Nuko 1 +

1
X

(g2 2k2 2 T ~k2
0

M P, 20CO M+iDok
(s.51}
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The zeros are

~ = -~D~k',

.w, = +ck --'zI"k',

witg

Dr 7, (2——Nu+ V, 2O)/c = x/C~,

r =7, +7, p', /c',

(3.52)

(3.53)

(3.54)

(3.55)

Xy = vg+K (3.57)

where v is simply the coefficient of y(P) in (3.6);

vectors y„and eigenvalues are "decaying modes"
with decay rate ~„. The important modes are
those with small decay rates, .as (3.43) and (3.44)
indicate.

Let us write X in the standard form of kinetic
theory"

and c' is supplied by (3.37). The thermal con-
ductivity x defined by Dr =x/Cp can be obtained
from (3.54) and Table I. We find

z=v, C„. (3.56)

Note that C„/C p = 2(SI'/SN)r/c' and p', =4N/[nil, (0)] .
We have thus completed our description of the

phenomena of sound propagation and heat diffusion
in the large-n limit. We now turn our attention
to the temperature dependence near T, of the vari-
ous quantities associated with these phenomena.
W'e are mainly interested in the nonanalytic de-
pendence on T -Tc The quantities c2

I 20 p, 2f

and C~ are thermodynamic derivatives and their
leading temperature dependences are shown in

Table II.
There are still two quantities in (3.54) and (3.55)

which are not yet calculated, namely Ty and ~, ,
defined by (3.43) and (3.44). The calculation is
very difficult. What we shall do is to make a qual-
itative estimate of their temperature dependence.
It is quite nontrivial even to make such an esti-
mate. As suggested by (3.43) and (3.44), we need
to know the spectrum of X better.

D. Spectrum of X

So far we know that the lowest eigenvalue of X
is zero and we know the null space quite well
through the conservation laws. The other eigen-

v(p')-=s-,' (2w) Jd'0'dp" &'0"'(s's "s"'} '

x It (PP 'P "p"'), (3.58)

s = P(p'+r) for small p, r, (3.59)

and the integral in (3.58) approaches a constant
for small P and r. Note that p'+r is the energy of
a boson of momentum p. It is a characteristic
feature of a Bose system that the collision rate
(the imaginary part of the self energy) is propor-
tional to the energy. This is very different from
the case for a classical dilute gas.

For T-T„we have r-0, and therefore the
continuous spectrum would start immediately

which is the mean collision rate of a boson with
momentum p. KX is the rest and is an integral
operator. Note that v(p') is not an integral opera-
tor; it is just a multiplicative factor. The integral
defining K is well defined owing to the (s's "s"') '

factor which vanishes exponentially at large mo-
menta. A counting of powers shows that K is also
well defined for small momenta. In general, the
spectrum of the sum of an integral operator and a
multiplicative factor will consist of a continuous
spectrum and a discrete spectrum. The continuous
spectrum extends over possible values of v(p').

The minimum of the continuous spectrum is v(0),
which is proportional to r. This is because v(P')
is proportional to the factor s in front of (3.58);

TABLE II. Critical behavior of quantities derivable from thermodynamics for n ~. Const.
= constant 0 (1). It may contain positive integral powers of (T —T~ ). c is the speed of sound
above T~, c& the speed of first sound below T, , and c2 the speed of second sound. y= 2/(d-2),
n = (d —4)/(d —2).

Quantity

as
v/n& p/n ~

T

T&,T

(const. ) (T- T~ )&

(const. ) (T —T~ )

(const. ) —(const. ) (T —T )

(const. ) —(const. ) (T —T )

const.

const.

cg

C2

const.

const.

(const. ) (Tg —T)
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above zero.
The eigenvector X, of an eigenvalue v(q') in the

continuous spectrum is not normalizable. In gen-
eral X, has the form

~ = (I/2T')v,

(P' & ~'x )'

(3.62)

(3.63)

x,(P)"5(P q)-+rl, (P) (3.60)

E. Temperature dependence of v, and V

We shall estimate the leading temperature de-
pendence of x and I using the qualitative conclu-
sions reached above concerning the spectrum of 3'..
We would like to emphasize that, for computational
and perhaps other purposes, the set of eigen-
vectors X, of 3:are often not the most convenient
basis, especially because the eigenvectors for
the continuous spectrum are not normalizable,
and very difficult to calculate. It is easier to use
the matrix representation of g, over a known con-
venient discrete basis and then compute the in-
verse to obtain v, and 7,.

The essence of the argument belom is just power
counting. The spectrum of X mill serve only as a
vehicle.

Before we begin, let us factor out from (3.43)
the nonanalytic temperature dependence of X, .
Since (l, t& kX )=(2P'& X.)=0 we have

(X„I vX&)'=A, '(P', & vX, )',

where A, is given by (3.26) and has a nonanalytic
term in T —T,. It follows from (3.43) and (3.56)
that

The physical meaning of such a mode is very sim-
ple. The & function describes a stream of bosons
of momentum q, and q, (P) describes the distribu-
tion of scattered bosons. Gf course, the damping
rate of the stream is just v(q'), the collision rate.
The special feature is that slow streams are long
lived near T,.

Note that, mathematically, (3.57) resembles the
Hamiltonian operator in a SchrMinger's equation
in momentum representation. The "kinetic energy"
corresponds to v(P ) and the "potential" corre-
sponds to K. The energy eigenvectors of the Schro-
dinger equation consist of scattering states (with

eigenvalue =kinetic energy) arid bound states (with

discrete eigenvalues). The above qualitative con-
clusions concerning 3:are thus quite obvious.

The discrete spectrum can appear only between.
zero and the minimum of the continuous spectrum,
since the continuous spectrum has no upper limit.
There may be none,

' a finite number, or an in-
finite number of them. We cannot say anything
definite without a more detailed study. However,
since K is well defined at r =0, we expect that there
will be no discrete spectrum if x is small enough.

Note that g2 =4A, /d'A„A, = (2/n)T'C„.
We proceed to estimate 7. We assume that there

is no discrete eigenvalue between zero and v(0).
I,et us also drop q, (p) in (3.60). Then X, is simply
a ~ function. The proportionality constant is deter-
mined by the condition

X =
Xq Xq g X (3.64)

We obtain

x, (P) =s,(»)'6(P -q).
The sum (3.63) becomes(, d~q s, 'q'(2q 5)'

v(q)

(3.65)

(3.66)

v, = (const. ) +O(T T,) +O(r)- (3.69)

In view of (3.55), (3.61), and (3.62) we conclude
from (3.67) and (3.69) that the thermal conductivity
I(. and the sound damping constant I' are nonsingular
to O(T- T,).

As me mentioned, the above argument is essen-
tially power counting. We do not have to use the
eigenvectors of 3'.. We can use an orthonormal
discrete set. Power counting will show that matrix
elements of interest are nonsingular to O(T- T,).

To sum up, me find that the speed and the damp-
ing of the sound wave are nonsingular to O(T T,). -
The thermal diffusion coefficient D~ is finite at
T, but has an infinite upward slope for 4&d) 3;

Dr - (const. ) + (T T), -o.' = (4 - d)/-(d —2) & 0.

(3.70)

Since v(q)-s -r+q', we see that the integral
(3.66) is well behaved when r- 0. The total power
of q is d. Thus the first nonanalytic power of x
is r" ', which is smaller than r. We conclude
that

r = (const. ) +O(T T,) +O(r).- (3.67)

Note that r - (T T,)' '~ "—& T T„since—2 &d &4.
The same argument can be applied to T„given

by (3.44). We obtain

,
( ), d"qs, '(2q k)'

1 1 v(q)

Now there are two powers fewer of q in (3.68) than
in (3.66). Thus the leading nonanalytic power of
x is x~ ' ' However, me know that t'" ' ' ~ T- T, .
Therefore, me have

T, p', = (4/d'A, )v, (3.61) This nonanalytic behavior comes from the C~ in
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the denominator of (3.54). The thermal conduc-
tivity z is found to be nonsingular to O(T- T,).

IV. SOUND WAVES BELOW T,

A. New features in the kinetic equation

~2'(a)o+ a,o) (4.2)

to the Hamiltonian II. The limit 0-0 can be taken
whenever no ambiguity arises.

The density operator p~ now has the form

The origin of many new features below T, is the
Bose-Einstein condensation. Second sound is one
of the most interesting.

We describe the condensate by a nonzero average
of (a)()) s

&a)()& = (a,()&:(f('0) (4.1)

In the language of spin vector, this means a non-
zero average of the spin in the Re/, direction in
spin space. The direction can be unambiguously
defined by introducing a small "external field"
k, i.e., adding the term

+ (-'a —1)X,(P)4),(P)l.

(4.5)

, We write the new kinetic equation as

(&-1) v)@ =2k P —iXy

where 3!can be expressed as a 2&2 matrix. As
we learned in the previous section, a convenient
way to extract relevant information about X is to
examine the quadratic form (X, XX}. Let us write

(x, xx) = (x,x,x)+ (x, x.x), (4 f)

where (X, X,X) is just the contribution of the process
of boson-boson scattering and is adequately given
by (3.20) with X~ replacing X,

(S ss«)=-,'«(Ss) "fd( s('('d'p" s('(" (ss's "s") '

we use &. It is just another label in addition to the
momentum label P. The scalar product (3.2) is
generalized to

r
h V)= —(2v) ' (&'Ps '(x, (P)q, (P)

p) = (+0) (ax)) + a)-) ) + ~ ao)) a ) +)(.
i/2 (4.3)

x-.'R(PP'P"P")[x,(P).x,(P') —x,(P") .

k~.i ' (4.4)

namely, we introduce the component label a'

=1,2, . . . , ~n. Since 2, 3, . . . , ~n are equivalent,

With (N, }'~' explicitly written, the momentum sub-
scripts of a, and a, will be restricted to nonzero
values. When (4.3) is substituted in the Hamil-
tonian (1.2), interaction terms proportional to

(lV,)' 'a,a,a„etc., appear The .number
of bosons of component 1 is no longer conserved.
Processes of creation and annihilation of bosons
are the major source of new features in dynamics
although they play no part in the thermodynamics
in the large-n limit. The static results show that
JV,/N~ (T, —T)/T, for T close to T, We shall t.ake
lVo/N as a small parameter.

Again, we shall study the sound waves through
the dielectric function (2.1V), and the mathematical
task is still the calculation of II~~ by summing
graphs. Now we have many new graphs owing to
the new processes mentioned above. Here we
shall appeal to the physical arguments and leave
the analysis of graphs to Appendix B.

In Sec. III, we determined II~' by solving kinetic
equation (3.5). This kinetic equation will be modi-
fied qualitatively when T & T,. There is a special
direction, namely the direction 1 in spin space,
and there are non-boson-conserving processes.
Therefore, we generalize y to a pair

—x,(P"')l' (4.8)

X, can be ignored in (4.8) because it will be O(1/n)
smaller. R will be given by (3.'l) evaluated at r =0
plus correction terms of O(N, /N). The last term
(X, Xp) in (4.7) comes from the new processes due
to the presence of the condensate. To the first
order in the small parameter N, /X, these are the
processes of emission and absorption of compo-
nent-1 bosons:

1P +J.P' —J.P" + (condensate boson), (4.9)

1P + 1P —1P"+ (condensate boson). (4.10)

Owing to the overwhelming population of the bosons
of & components, only (4.9) needs to be taken into
account.

The following argument allows us to go quite
far in determining (X, Xp). The equilibrium popu-
lation of the component-1 bosons is

f, +~.(2s)'6(P), (4.11)
where fl, =(e8~ —1) ' and the 6-function term ac-
counts for the condensate bosons. %'e can thus
regard the emission and absorption processes
(4.9) as a scattering process with one of the ini-
tial or final bosons belonging to the 6-function por-
tion of (4.11). The s ' factors in (X, X,X) all came
from the Bose distribution function f~. Thus, to
obtain (X, X,X), all we have to do is to replace one
of the s ' factors by a 6 function in (X, X,X) and
take into account that the emitted or absorbed
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boson must be of component 1. One easily obtains

(X,, X,X)= N(2v) M d'pd'p'd'p" (ss's") '

x lu(p, p')I (4.13)

Substituting (4.8) and (4.12) in (4.7), we get (X,XX)
to the zeroth and first order in N, /N We .shall not
attempt to study the higher orders.

In view of (4.8) and (4.12), (X, sfX) is non-nega-
tive. All eigenvalues of 3'. are therefore positive
except a (2+6)-fold degenerate eigenvalue zero,
which is a consequence of the conservation of the
number of &-component bosons, energy, and mo-
mentum. In other words, chas a 2+0-dimen-
sional null space. The three-dimensional sub-
space in the null space with cylindrical symmetry
around k is spanned by the vectors

Xo=& j/2 0
X =g~ /2 1

&&r(pp'p "}[x,(p)+x,(p') -x,(p")]',

(4.12)

where y(pp'p") is proportional to the rate of the
process (4.9),

r{pp'p") = {2v)'"5(p p' p")6(-p"p" -p"')
Again our task is to determine v, and Q, . Since
2p k is a vector in the null space, it is sufficient
to know the projection of P, in the null space. We
shall expand (u, and P, in powers of k and only
those , which vanish as k-0 are of interest, just
as in the ease studied in See. III.

First, let us keep only the lowest order terms
in k, i.e. , P, to O(1) and ~, to O(k). This means
diagonalizing k. U in the two-dimensional space
spanned by x„and x, [see {4.14)-(4.16)]. The ma-
trix representation of k" & is just

(0 c,)
(c, 0$

~ =(X k rX)=»'A-. '/d
= 2[(d+ 2)(p'&]"/&.

(4.20}

(4.21)

The eigenvalues &, are xcok and the eigenvectors
P, are

of bosons excluding those in the condensate. As
was done in' the previous section, let P, and ~,. be
the eigenvectors and eigenvalues of k v —i3'.. Then

(4.6) implies that

(2p k, y) =(2p k, (& —k i +iX) '2p. k}
Pa

g {2p'k, 4~)' (4.19)

(4.14)
P, = (I/~&)(x, ~ x„). (4.22)

where the normalization factors are given by
(3.24)-(3.26) with r-0. Putting these results in (4.19) and in turn in (4.18),

we obtain

A, =T(d+2)(P') N'/u,

A „=N'/Pn,

~ oo

(4.15)

(4.16)

(4.17}

—,'nII" =2N' —[4P~'/(~' —c2k')]A„-,'n.

The dielectric function is then

e (k, ~) = 1 —(uk'/~')(2N ——,'niP')

(4.23)

Note that we use the subscript U instead of 1 to
avoid confusion. As a consequence of A, -, ma-
trix elements of interest xnvolv~ng Xo drop out. We
can thus ignore X, from now on. One could keep
A, finite by keeping a finite k [defined by {4.2)],
and let h go to zero later to obtain. the same re-
sults. The null space of interest is effectively
two dimensional.

AU other eigenvalues are positive and will be
examined further, later.

8. Speed of pmpasation

From the solution qr of the kinetic equation (4.6),
we can obtain

—'nil'& = 2N' 'u p&u(2p k, —q)—, ~ (4.18)

from which the dielectric function can be deter-
mined. Note that (4.18) is the same as (3.4) except
that the first term is not N but N', the total number

=1 —u[2N k /&aP+2NIk /(&2 —c k2)]

(4.24)

where we have identified N-N' as No, and GAPA„
=N'. The zeros of e(k, &) are thus easily found.
They are given by

~'/k' = c', = 2Nu+ c2~ —[2Nu/(2Nu + c',)](N,/N)c'„

&2/k' = c2 = [2Nu/(2Nu + co)](NO/N)co.

(4.25a}

(4.25b)

As the notation suggests, c, and c, are to be in-
terpreted as the speed of the first and second
sounds, respectively. Terms proportional to high-
er powers of N, /N are dropped.

Note that the result (4.25) has been obtained with-
out any reference to the two-fluid model. Mathe-
matically, (4.25} is the result of graph summa-
tion. It is interesting to see if it is consistent with
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the prediction of the two-fluid model,

&P 2 2ps TS
c~ —2

~ c2—N s p NC„
(4.26)

2N,uk' 2N'uk'(1 + i v, k'/&o)

&d oo —c ko+2i» ~ko

(4.36)

2(BP/BN), = 2Nu+ c', N'/N,

2S To/NC „=c',.
(4.27)

(4.28)

Note that the mass of a boson in our units is —,'.
From Table I, we find that for our model

The zeros of e are

~ = ~ c,k ——,'i I; k',

~ =ac,k --,'iI; k',

with c„c,supplied by (4.25) and

(4.s7)

The normal fluid density p„can be calculated as
the static current-response function to a trans-
verse vector potential. It is easily calculated in

the large-n limit to give just N'. Thus p, =N -N'

= No& pB/pH No/N
It is clear then that (4.26) is consistent with

(4.25) if

Nu +& c'„ (4.28a)

2Nu + c'„N'/N
2Nu

(4.29)

must be nearly unity, which is an assumption be-
hind (4.26). Thus we conclude that the prediction
of the two-fluid model on c, and c, is consistent
with (4.25).

C. Damping of sound waves

The O(k') terms in &u, and O(k) terms in P, are
obtained in the same way as in Sec. III. We define

(X., k vX&}'

i

~& (x„k vx, }'

(4.so)

(4.sl)

(4.32)

where ~, and y,. are eigenvalues and eigenvectors
of X, and, as before, the sum over i includes only
terms with A., &0. With O(k') terms included,
(4.20) becomes

( i»,k' c-,k
(4.33)

c k i»„k'/-
from which one obtains

CO~ = +cok —$7+k

(&j&„2p ~ k)o =2A„(1+ik» /co)

(4.34)

(4.35)

These results are substituted in (4.19) and the
dielectric function follows;

which essentially says that the potential energy
of a boson is much greater than the kinetic energy.
This also means that

Cp (BP/BN)~

C» (BP/BN)r

r„=(~„+~, c,'/c,', )[1 —(N, /N')(1 —c,'/c,',}]-'.
(4.s8)

A-r/a (4.39)

is no longer in the null space of X. (The normal-
ization factor A, can be shown to be proportional
to ~T T,~'" " '~ ".-) The vectors of (4.14) together
with y, span the null space of X,. Since X,~N,
and y, is an eigenvector of X when N, = 0, g, must
retain much of its discrete character when N, is
very small although nonzero. We can imagine that
when N, is turned on, a splitting of the eigenvalue
0 of X occurs and g, is lifted into the continuum.
In terms of the Schrodinger-equation analogy given
in Sec. IIID, X, is expected to be very different
from the "stream modes" in the continuum. It
should be a "sharp resonance. "

In view of this qualitative picture of p„we shall
separate the contribution of y, from the rest of the
continuum and write

». =(X. , k vX, )'/(X. , X,X.)+».' (4.40)

and a similar expression for ~„and we expect
~„' and v,' to follow the arguments in Sec. IIID and
III E.

We can also do a calculation of the dielectric
function starting from the null space of X, [i.e.,
using (4.14) and X, on equal footing]. The end re-
sult turns out to be just that given by (4.40).

Note that the normalization constant A, cancels

D. Temperature dependence of I, and I"2

The temperature dependence of c', and c,'can be
easily deduced from thermodynamic formulas. We

shall concentrate on I; and I;.
We now face the sums (4.30) and (4.31) for v„and

They are as difficult as (3.43} and (3.44). We
can estimate the temperature dependence following
the arguments in Sec. IIIA, B. For T& T„ the con-
tinuous spectrum of X starts from immediately
above zero. There is some special feature due to
X, [see (4.12}] which will be discussed first.

Because of X„ the number of bosons of compo-
nent 1 is not conserved and the vector
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out in (4.40). We shall ignore A, .
Setting y, =1 and }{~=0in (4.12), we get

(X„&,X.) =N, (2v)

x p p p sss pPPp

(4.41)

r,', r„'-(const. )+O(T, —T)+O($' '). (4.49)

They are essentially nonsingular.
We now substitute (4.46) and (4.47) in (4.38) to

obtain

I; = I", + (1/n)(const. ) j(T, —T) ln[(const. )/(T, —T)] f ',

(4.50)

In view of (4.13) and the fact that

u(P, P')-(1/n)p' ', s '-p ', (4.42)

with

I", = (v„+~, c',/c', )[1+O(N,/N)]. (4.51)

(X., &.vX.) = (4/n) &„'",

(X„& ~~X,) =0.
(4.45)

Combining (4.44) and (4.45), we get from (4.39),

a %No
n ln(bN/No)

(4.46)

(4.47)

where a and b are constants of O(1).
Having singled out the contribution of g„T„' and

T,' can be examined by power counting. Note that
because of the overwhelming population of bosons
in the & components, T„' and T', are dominated by
these bosons. The modes of the &-component
bosons behave in a similar way to those described
in Sec. IIID. The eigenvalues form a continuum
starting immediately above zero. The collision
rate v(p') for a, & boson is

v(p')" g '(I +N, /N) p' '&& («»st ), . (4.48)

for small P. It is straightforward to obtain this
formula from (4.8) and (4.12) or from (824). The
p' term comes from s as in the case T & T, [see
(3.59) with r =0]. The correction term can be
qualitatively understood as follows. The effect of
No comes in the manner of (4.11). Namely, a
power p 2 (the f~ for small p) gets a correction
N, p

' (the & function scales as p "). This change
of power from —2 to —d is also observed when Ão
enters in other ways involving momentum vari-
ables. Equation (4.48) defines the scale (' given
by (4.43). Following the same power-counting
arguments as in Sec. IIIE, we arrive at the con-
clusion

for small p, it is evident that the integral in (4.41)
is logarithmic divergent in small p. A closer
analysis shows that there is an effective lower cut-
off for p of the order, as one might have expected,

g'-' =(N /N)"-" ~ (T T)"— (4.43)

For our purpose, it is sufficient to know that (4.41),
(4.42), and (4.43) give

(y„X3X,) - (N, /n')[ln(N/N, ) + (const. )] . (4.44)

It is trivial to verify that

At T„ I", agrees with the sound damping I' given
by (3.55). We also have, from (4.38),

I', = v, [2Ãu/(2Nu+ c',)][1+0(N,/N)]. (4.52)

At T„ 1", =Dr = ~/C~ [see (3.54)]. It must be noted
that the divergence in I, does not mean that there
is any real divergence in the frequency of any
mode at T,. In fact there is not even any discon-
tinuity. The frequencies of various modes change
continuously in this model when T changes from
above to below T,. Immediately below T„some
degeneracy is lifted by the condensate and some
splitting of frequencies occurs. However, this
splitting, although continuous„vanishes at T, and
cannot be expanded in powers of k immediately
below T,. This fact is the cause of the divergence
in I; because we have expanded in powers of 0 and

kept only up to k' terms.

V. DISCUSSION

We shall make further comments on the qualita-
tive aspects of the results, in connection with the
mode-mode coupling scheme and the dynamic
scaling hypothesis. We shall also mention that it
is not straightforward to study the dynamics of the
spin amplitude using this model.

A; Mode-mode coupling

We can visualize the structure of the dynamics
described above as a linearized mode-mode cou-
pling scheme. Since we have been speaking in
terms of bosons, it might be instructive to make
a change and use the physical picture of a spin-
vector system.

We began with a set of spin-fluctuation modes.
They are not damped if they are not coupled. The
coupling gives rise to damping. It also creates
new modes characterizing the fluctuations of the
square of the spin vectors. These are the sound
waves, heat diffusion, and higher decaying modes,
which we got out of the kinetic equation and dielec-
tric function. All modes interact. The interaction
strengths in various cases are determined by the
modes themselves. This non1. inear picture is ef-
fective1y linearized by dropping all. but the 1eading
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terms in I/n. Nontrivial coupling occurs only in
a small range &, k =O(1/n). The modes in this
range do not affect those outside this range and
couple to themselves linearly. The nonlinear cou-
pling outside the range is done by the Hartree ap-
proximation. The collision integral and the dielec-
tric function are built by combining spin modes in
a rather complicated nonlinear manner. The re-
sult is a machinery for the linear coupling of the
modes of final interest here. Evidently, if we
carry out the calculation to the next order in I/n,
we shall need to include nonlinear coupling between
modes within the small range.

The mode-mode coupling scheme put forth by
Kawasaki, Kadanoff, Swift and others is a closed
self-consistent nonlinear scheme. In it the fre-
quencies of the lowest modes determine them-
selves under the constraints of symmetry, con-
servation laws, and static limits. On the other
hand, the I/n expansion would be an open-ended
successive perturbation scheme. In practice both
have weaknesses, but should be complementary.
The present model, however, seems a bit incon-
venient in its present form for an effective 1/n
expansion.

8. Smoothness of results and the dynamic scahng hypothesis

that, for small ('k, we should have

c,k[I + &'k&& (const. )] c,k+ ,'/I;-k',

namely,

(5 2)

I' ocq ~1 (5.2)

T ~ (T T)-0/2{8-2)

T {){.(T T){4 4)/2{& 2)

(5.4)

(5.5)

The hypothesis also says that I2 ~D~. Therefore
it says that I; and D~ should diverge at T, and I;
diverges more than (T, —T) ' since —,'d(d —2) '&1.
This pattern is not consistent with the smooth be-
havior given by the leading terms in I/n found
above. If the behavior predicted by (5.4) and (5.5)
exists, then we are in a situation discussed in
Sec. I around (1.1). It is also possible that the
hypothesis does not apply to this system in the
above manner.

C. Semimacroscopic description and the
renormahzation group approach

Since c, ~(T, —T)'/', $'~ (T, —T) "and v =1/(d —2},
then (5.1) and (5.3) imply that

I; ~ p, 'I', + (const. } (5 1)

is observed in our results.
The interesting question now is to what extent

our results follow the pattern set by the extended
dynamic-scaling hypothesis. " This hypothes~s
says that, below T„ the frequency of the second
sound should be a function of E'k apart from an
over-all multiple of a power of k. This means

In this model, the effect of the large spin-ampli-
tude fluctuation near T, is largely suppressed by
the large n. As a result, singular behavior often
does not appear in the leading terms. This is true
even in statics. For example, in the specific heat
below T, (see Sec. II), the term (T, —T) "does not
appear in the leading term but in the next order
in I/n Since .we have kept only the leading terms
in our analysis, we expect to miss some singular
terms in our results.

In fact most of our results are smooth. Fre-
quencies of modes are continuous at T,. The ther-
mal diffusion coefficient D~ shows a dip at T, in-
stead of blowing up. The thermal conductivity,
speed of sound~ Rnd damping of sound Rbove T~ Rre
all smooth. Below T„similar smooth behavior
persists except for the divergent term in v„which
leads to R divergent I;. All our results are con-
sistent with the two-fluid hydrodynamics. In par-
ticular, the relationship

The nonanalytic behavior of physical quantities
near T, are expected to be a result of interactions
among long-wavelength modes. In a renormaliza-
tion-group approach, short-wavelength modes are
successively eliminated. That is why a semi-
macroscopie description is important. Such a
description, and hence a convenient formulation
of the renormalization group, is not easy for dy-
namics for the following reason. In such a de-
scription, one uses a model of interacting modes
of wave vectors 0 & A, with A much- less than an
inverse microscopic length, and A» g '. For
statics, the effect of modes of k'& A shows up in
coupling parameters in the model Hamiltonian.
For dynamics, the effect is much more compli-
cated. In short, the modes of k& A act'as a reser-
voir of energy, spin, etc. , for modes of k'& A.
They not only cause dissipation, but also combine
to form new long-wavelength modes. Sound waves
are examples, as our calculations above have
shown. Therefore, to study critical behavior of
sound waves via a renormalization-group approach,
one has to account for the complicated effect of
modes with k&A. This is by no means easy. So
far the renormalization-group analysis of dynamics
has been restricted to models without propagating
modes. '~" Generalizations to include propagating
modes should complement our results here and
remove some of the uncertainties.
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APPENDIX A

In this appendix, we carry out the summation
of the graphs shown in Fig. 2 for II~'(k, (d) for the
case T & T,. We are interested only in the limit of
small I/n, (d, and k. The ratios (I/n)(u ' and
k/(d are not necessarily small. Thus k and (d are
considered O(1/n).

We introduce the vertex function A(p, e; k, &u)

(see Fig. 3) from which II~~(k, (u} can be obtained by
closing the legs;

II'~(k, ())) = T+2p kA(p, e; k, (d). (A1)

In (Al}, e and ~ are integral multiples of 2vi T.
The analytic continuation of A from these discrete
points to the space of two complex variables and

e has cuts along Ime =0, Imv =0, and Im(e + &@) =0.
These cuts divide up the space into six regions as
shown in Fig. 4. We shall be interested in Im&0
only, i.e. , the regions I, II, and III. The sum
over e in (Al} can be converted into a contour inte-
gral,

D. Concluding remarks

We have made calculations for the sound waves
and heat diffusion in the many-component Bose
system. The solution illustrates some important
physical features qualitatively, although it does
not allow us to make useful extrapolations to real
systems.

To those who are familiar with the static 1/n
expansion, what turned out in the above analysis
might be surprising. One probably expected that
a generalization from the static calculation should
be straightforward —just include finite frequencies
in the same graphs. We have shown that this ex-
pectation is false for the particular model and

phenomena analyzed above.
Several authors have studied this model recently

to derive the dynamic exponent for the order pa-
rameter. ' In view of what we have learned here,
more attention should have been paid to the fre-
quency range of O(1/n). It seems that further study
would be important.

p+k, q+(I)

~Pe+ Pl ~l

I

P+ k )
f~+ ())

p+k, g+(u

FIG. 3. Bethe-Salpeter equation satisfied by the vertex
function A.

)P)(k, )d) =(2))) ' Jd') ()p ))

x . A2 P, E' E+Q

(A3)

where I contains no isolated pair of boson lines.
The G's in (A3) denote the full Green's function

G(p, e) =
I dr e"(a,~(r)a,~),
0

(A4)

which is independent of o since T T, is assumed.
In terms of the self energy Z(P, e), G ' can be
written

G '(p, e}=G, '(p, e)+Z(p, e) —Z(0, 0), (A5)

where the subscripts 1, 2, and 3 stand for the
regions I, II, and III, respectively, and f(e)'
= (e8' —1} '. The arguments k and (() in A are un-
derstood. All frequency variables in (A2) are now

real.
Figure 3 shows that A satisfies an integral equa-

tion

A(p, e; ki(()) = G(p, e)G(p+k, e +~)

Im a)

FIG. 2. Longitudinal current-response function II~~.
Each vertex gives a factor 2P k. FIG. 4. Regions of analyticity of the vertex function.
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G (P, ») =»& —», »[, —= P +x,

x=—G '{0,0).

(A6)

(AV)

Co is the free-boson propagator. For simplicity,
we shall write G for G(p, ») and

It is understood that q)(p) also depends on ~ and
k. Thus in the large n limit, (A2) gives

rp'()t, ~) = (2ml ' fd'( (2P ()

O' -=G (P + k, » + ~),

Z=—Z(p, »), Z'=Z(p+k, »+&a).

Then {AS) is, symbolically,

A=GG'(2p 5+IA).

(AS)

x +P(d g& +2p ~ P
8 dc

~Ep 2gg

x [(a —e ~ )0) ' —(a —ai —)0) ']),

(A16)

The lowest order self-energy graph contributing
to Z(p, ») —Z(0, 0) is given in Fig. 5(a), which
exhausts graphs of O(1/n),

where we have set A„A, in (A2) to simply
(2p 5)G20. I et us introduce the following useful
notation of a scalar product:

(A10a)

The wavy line represents the geometric sum shown
in Fig. 5(b),

u(q, v) = u/[I +-2nuri, (q, v)] (A10b)

with each dashed line representing u. The "bubble"
gives the function- —,'nil, (q, [)}which is the lowest-
order term of the polarization part given by

)I,(q, v)=(Rm) ' fd'( T

x g Go(p, »)Go(p+q, » + [)). {A10c)

G-'-G'-'=~ —2p u -Z', +Z, +O(n-'),

GG' = (G —G')(O'-' - G-')-'.
(A11)

(A12)

Regarding k and (d as of O(1/n), then in regions
I ahd III of Fig. 3, G —O'=O(1/n), and therefore

GG' =O(1) in I, III. (Al 3)

However, in region II, Im» and Im((()+») have op-
posite signs so that

O' —G =2vi6(» —»~)+O(1/n),

Since u =O(l/s) and each closed loop implies a fac-
tor of —,'n, the summation of the diagrams in Fig.
5(b) is sufficient to O(1/n). Thus

ImC, Im6 &0-

Im(»+(d), Im(»'+(d)) 0.
(A20)

I et us carry out the»' sum. Figures 6(a)-6(c)
show the contributions to I to O(1/n). Now

I = I, + ~n(I~+I,},
I, and I, are of O(n '), but since an additional closed

Kc =
t)

f (»~) = (2 sinh-,' P»~) '.
P BE'p

Then (A16) takes the simple form

II"(k (d)=p[(2P k 2p j) —(d(2p I[ q))]. (A19)

To get the equation for q), we examine (AS) for
A, . We shall first convert the sum over E' into
an integral over real c' and meanwhile continue
IA to real c and +. There mill be contributions
froDl A J A 2 and A 3 The analytic continuation of
I(»»' +}is rather complicated in general, but
since we shall keep only A„we need only consider
the case

2vi &(» —»[,)
—2p. k —2i ImZ~

(A14)

Thus, in II, GG' =O(n). Since A is proportional to
GG' according to (A9), A, is much larger than

A, and A~. It turns out that I =O(1/n). Thus only
A, is needed in evaluating IA in (A9) for large n

Furthermore, A, is proportional to 2sf 6(» —»[,).
So we define q)(P) by

e ~ 0 0 0 ~

A, =2wi 6(» —»~)q)(p) (A15)
FIG. 5. (a) Self-energy diagram. (b) "Effective" inter-

action sc (4).
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loop of solid lines is generated everytime either
one appears, a factor 2n must be included. In the
region Ime'&0, Im(e'+&a) &0, of the e' plane, I,
and I, have a cut along Im(e —e') =0 and I, has a
cut along Im(e+e'+~} =0. Let us write

I, ~
= I, ),(e —e '), I, =I,( e + e' + (d),

and leave all other variables understood. Then
we have

T I, e —c' Ac'

e'=- p" +r, e =- p'+r, v =2p =se/sp,

and we have defined

(A23)

v(p) = -2imZ, . (A24)

Figure 6(a) shows that l, (e —e') =u(e —e'), where
the momentum dependence is still understood.
Then from (A10b} we have

Imi, (e —e') = -lu(e —e')l'2nlmlio(e —e'). (A25)

Substituting for Go in the expression (A10c) for IIO

we have

d '
. [f(e' —e) —f (e')]2i Imi, (e —e')A(e'),

27ri

T I, e —~' Ae'

d '
. [f(e' —e) —f (e')]2i Iml, (e —e')A'(e'),

27ri

T I~ f + 6 + A 6'

&» (e&» —(d )(e(+ »—(d —v)

(A26)

where e~ —= p"'+r and e~», =(p" +q)' r+The. fre-
quency sum in (A26) is easily calculated. We ob-
tain

~

~. [f(e'+e) -f(e')]2i Imi, (e+a')A(e').

(A21)

The contours of integration for performing the
above summations over c' in the region Im&'&0,
Im(e'+(d) &0, of the e' plane are shown in Fig. 7.

We substitute (A15) for A in (A21). The energy
integrals can be done easily. Utilizing the fact
that I =I, +-,'n(I, +I,), we have from (A3) and (A14)

(A27)

We make the change of variables q =-p-P' and
v =e —e' in (A27) and take the imaginary part,

dpt
[&+iv(p) -k v] q)(p) =2p k+2i

(2x)'

X 6 —E

x [Iml, (e —e') +-,'n Iml, (e —e')]

+&Pl E +6

x Imi, (e ' + e)/q) (p '), (A22)

where

x 6(e&»+( &r
—e&» —e +e }.

Equation (A28) can be written

&' plone

(A28)

&a

p+k

(a)

pl

p'+k

p
pll pl

'NINNWN

Ib= p p"II I II

VINIVNIN

p+ k p"+k p'+k

(b)

el plone

pll
p

WWWN

p pili)) l 4

C

NIWNhhA

p+ k pll~k

p'+ k

pl +pll+k

pl

(c)

FIG. 6. Terms contributing to I, for»&, .

FIG. 7. Contours of integration for performing the
summations over &' in the region Im~'&0 and Im(d +w)
&0 of the &' plane [see (A2&)l.



8418 SHANG-KENG MA AND LEGESSE SENBETU 10

rmrt (q, o)=(PE) 'Ir Jd'p d'"I [f(E ) f(E-)]"
x 5 (e —e 'i e "

.
- e '"

)6 (p +p "-p
' -p "'

).
(A29)

The variables e, e~, e', and e" are defined by
(A23). We can now write (A25) in the form

tmt (a —E') =-,'o(po) "Jd'P" IP"'(f(a") f(a")]-
x ,'It(pp -"p'p'"), (A30)

where

R(pp "p'p") = (2w)" -t6(e + e"-e'- e"')
&«(p+p'-p' p")lg(p--K & —&')I '

(A31)

and the order in which the P's appear is important.
From the graph of Fig. 6(b) we have

II

l, (e —e') =J,Tg G(e —(d")G(ei —(d")
(2w)'

Xu((d")g((d" y (d}. (A32)

We transform the sum over " to an integral
along the real &" axis, and analytically continue
the G's and u's. The singularities in the complex
(d" plane are along the cuts Im(d" =0, Im(e —(d'} =0,
Im(e' —(d") =0, and Im((d+(d") =0. Let us assume
Ime & Ime'. Then the contour of integration for
performing the summation over "

, is shown in
Fig. 8.

We have

I(E-E')=(po) 'fdp" . f(ro')[d(a —ro" —to)d(E' —m" —to)pttmo(o")ti( + "+r'o)
op 21Tl

+2i ImG(-(d', + io)G(e' -e - (d" + io)u((d" + e —io)u(e +(d +(d" + io)

+ G(e —e' —(d" —io)2 i ImG(-(d" + io)u((d" + e' —i o)u(e'+(d + (d" + io)

+ G(e —(d'+ &o +io)G(e'- (d"+ (d +io)u((dd (d -i-o)2i Imu((d")]. (A33)

By assumption (d, k are of O(1/n). This means
that to leading order

g(p+ k e + (d) u(p e). (A34)

Similar expansions are carried out for all func-
tions of (d and k in (A33). Then the sum of the
first and last term in (A33) is real. So it does not
contribute to ImI~(e —e'). After making some
change of variables, we have

d'p" "" d~'
Imf, (e —e') = 2 d [f((d'- e') —f((d"- e)](2w)'. „2w

ximG(e —(d') ImG(e'- (d")tu(p", (d")l'.
(A35)

To the order we are considering, we can use the
zeroth-order approximation for the Green's func-
tion G. We have

tmd(P-P", E —ro"-ro) = — Jd'I
X r5(e —(d —e }6(po.p -p ).

(A36)

Substituting the identity (A36) in (A35) we can per-
form the integral easily. After some simple
algebra we have

ddp II dtfp Id

ImI~(e —e') = —,
'

Xu((d")g((d" + (d). (A38)

We follow the same mathematical steps as were
reported for I„(e —e'). In this case the cuts in the
complex (d" plane are at Im(d" =0, Im(e —(d") =0,
Im(e'+(d+(d") =0, and Im((d+(d") =0. We assume
Im(e+e'+(d)&0. The contour of integration is
similar to that of Fig. 8, except now the cut at
Im(e'- (d") =0 is replaced by the cut at
Im(e'+(d +(d") =0. We have

lone

after (A31).]
Next we will consider I,. Figure 6(c) shows that

gf II

I,(e + e'+ (d) = T G(e —

(d')G(et+�

(d"+ (d)
(2w)'

& [f(&') f(& "}]R(pp"'p''p'), (A3'I)-

where R is defined by (A31). [Note the comment FIG. 8. Contours of integration for evaluating ~~(~- d).
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I(v ~ 2' ~ )=(2lr) 'fdp" f( ")IG(o — "- o)G(t' ~ to ~ 2"+ o)2'( (or")R(ro+ " 'o)
27ri

+2i ImG(-(u" +io)G(e'+(d + e +(d"+io)u(e + ~"-io)u(&+ ~"+ e +io)

+ G(e + e'+ (2) —&"-io)2i ImG(~»+io)u((d" e ——~ —io)u((d»- e'+io)

+ G(e —(d"+ (u+io)G(e'+ (d"-io)u((d" (d--io)2i Imu((d"-io)] . (A39)

Taking into account the fact that (2), k is O(1/n), the sum of the first and last term in (A39) is real and

therefore does not contribute to ImI, (e+e'+(d). We have from the remaining terms

d&
(mr(o o')=(22)-'fop" I(+f(o- ")if(o' ")Ir G(o- ")(mG(o' ~ ")I ( ")I*.

OQ 77

Using (A36) for the Green's functions we finally get

d4» d4 I»

Iml, (e +e') =-,' „[1+f(e")+f(e"')]R(pp'p "p").

(A40)

(A41)

Substituting (A30), (A37), and (A41) into (A22) we have

I ~ t (p) —2 vip(p) =kp "~—,'ot(22) fd'p'I p »4"If"(o' — o) -f( o')if f( o"') f( o )IR(-pp pp"') I( I) ~ —,
' t(22)

x p' d"p" d'p"' E —E — ~ ~ — E pp "p"p' p' +-,'nz 2n

d'p'd'p" d'p" ~'+~ — ~' 1+ " + "' R pp'p"p" (A42)

We now make a change of variables P'-P" in the
first term, p' —p" in the second term, of (A42).
Using the symmetry of the integrand, the & func-
tions in R, and the identity

e '=[1+f(e}]/f(e),

We get, after some algebra, the kinetic equation

[~+iv(P) —k v]q)(P) =2P ~ k-i (2s) MRn d4P'd'P" 8'P"'

xs(s's "s"') 'R(pp'P"g»)

x [Ap') —9)(p") —q)(p"')) (A43)

Of course s, s', s" and s" are defined by (A18)
with c~ replaced by e, e', e" and e"', respectively.
We have also used the identity

f(e')+f(e')f(e")+f(e")f(e"') f(e")f(e"')=s(s's"s-") '

li E + E' = E "+ E". (A44)

To find an expression for v(p, e}we consider
(A10a),

2.(p, )=(2 ) 'f&IIZG. (p+I, ' ~ ")2(d, ")

We transform the sum over v to an integral along
the real v axis and analytically continue Go and u.
The singularities in the complex v plane are along
the cuts Imv =0 and Im(e+ v) =0. Noting that Ime
(0 in region II, and performing the contour inte-
gration we get

ImG (p+ q, e + v + io) = v6 (ep., —e —v). (A46)

After some change of variables and use of the
property u(p) =u(-p) we have

Im&, (p, e) = -(2s) ' Jtd4P' [f(e' —e) —f(e')]

xrmu(p-p', e —e'), (A47)

where e and e' are defined in (A23). We substitute
(A30) for Imu(p-p', e —e') in (A47) and use defini-
tion (A24) to get

r (p, o) = (2lr) 'of I I d p" tpp"' If(o o) f(o )I—-'
x [f(e ") f(e"))R(pp"p'p"'}. (A48)

Making the transformation P' —P" in (A48) and

using the identity (A44) we have

v(p, e) = (2s) —,'n d4PI ddp» d4PIII S (S S IIS )

x R (ppfp Ilp III
) (A49)

Z, (k,o)=(2tr) fd of . f( )

x [G,(P+q, e + v - io)2 i Imu(q, v +io)

+2i rmG, (P+q, v+io)u(qi, v —e+io)]

(A45)

Taking the imaginary part of Z„ the frequency
integral can easily be performed using
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We finally substitute (A49) in the kinetic equation
(A43) and get

(~ k-~) q (p) = 2p k - i x(q ), (A50)

where 3'. is a real symmetric integral operator,

x(9 ) = (2m) —,'n Jd'p' dp" d )"'s(s's "s"') '

x R(PP'P"P"')[q)(P) + y(P ) —y(P") —9)(P ')].

(A51)

This is the collision operator with the collision
rate R given by (A31). It can be shown from (A10)
that, for r =0 and small q and v,

Il, (q, v) -q' 'g(v/q'),

u(q, v) - (2/n) q' g '(v/q'),
(A52)

APPENDIX B

In this appendix we examine the effect of the
condensate, when T & T„on the results obtained
in Appendix A. Some of the details omitted in Sec.
IV will be supplied here.

The presence of the condensate breaks the rota-
tion symmetry in the spin space. We apply an
"external field" h in the Rea, direction as shown
by (4.2). Thus, the component 1 is special. The
Green's function G, is different from G, = G3

= G„/, = G . We define

limG, '(p, 0) =r„
p~p

where g(y} is a nonzero function except for y-~.
Thus the effective scattering amplitude u vanishes
for forward scattering (q, v-0). If q and v are not
small or v/q'-~, u(q, v)-u. In short, u is always
finite and suppressed when q-0. u is effectiveiy
a short-range interaction at T, and causes no di-
vergence.

r, =r~ =0 unless there is ambiguity.
The presence of the condensate modifies the

density operator p» [see (4.3)] and generates more
terms in the Hamiltonian H. These additional
terms are shown in Fig. 9. The current operator
j, is also modified,

—u 2N k /(~» k ) (S7)

to u(k) (see Fig. 10). This will modify all ~u~' in
the kinetic equation. In the derivation of the kinetic
equation, ~u~' appeared as a result of Imu
=-~u~'-,'nlmli, [see (A25)] as well as directly as
~u~' [see (A29)-(A37)]. Thus the correction (B7)
implies a term

Im[2N, k'/(to' —k4)] = N, v[5 (&u —-k') —5(~ + k')]

(ss)
added to —,'nImIIp as well as a direct correction to
the ~u~' that finally appears in the kinetic equation.

(b) An additional self-energy term to G, (see Fig.
11). This term Z, is of O(1}, not O(1/n}, although
it is small because it is proportional to N, /N,

2» = vN, k(a» —a~t »)+ g at»a, ».»(2p+k).
o»p

The quantity N, is O(n) and is supplied by the
static analysis. For T close to T„N,/N~ T, —T
is a small parameter. The effect of the condensate
to the lowest order in N, /N on the results of Ap-
pendix A can be summarized as follows:

(a) A correction

limG '(p, 0) =r~.
P~p

(B2)

They are the inverse of magnetic susceptibilities
parallel and perpendicular to the direction of k,
respectively,

r, =sk/avN, ,

r~ =h/vA'~ .
(a3}

(B4)

Equation (B4) follows from the fact that r~ =ah/
h(g}, with 6k'. k, and that 6h and b. (g} can be
accounted for by an infinitesimal rotation b 6} of h
and ()}));bh =kn. 6, 6()})}= ()})}69. For the unper-
turbed Green's functions, we write

(B5)

In the limit h-0, both r, and r~ vanish, thus Gpy
and G«become the same. We can simply set

FIG. 9. Additional interaction terms for T & T~.
Dashed line. bare interaction u; dotted lines. factor
~~NO for the condensate particles.
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~I
~0

~0
~e

FIG. 10. Correction to u(kj. Solid line, Go&, dotted
line, factor vTO, wavy line, as defined in Fig. 5(b).

Z, (p „e)= uN, /[1 +u-,'nII, (p, e)]. (B9)

The imaginary part of Z, will account for the rate
of absorption and decay. The real part gives a
correction to the energy of a boson of component
1. For very smallP, the P' in G, ' will be over-
shadowed by Re~, since

ReZ, C(-p' "N,/N. (B10)

However, for our discussion of sound waves to the
first order in N, /N, ReZ, will play no role, only
the imaginary part of Z, does.

(c) Additional graphs for I. These graphs are
shown in Fig. 12. Together with (B8), these graphs
account for the absorption and decay processes.

(d) We need to use the component label o for A

and y just as we do for G. Instead of one kinetic
equation, we shall have two coupled equations.

(e) Finally, there are graphs which can be broken
into two pieces by cutting one solid line (see Fig.
13). However, these graphs for II~~ turn out to be
negligible. They are O(1/n) smaller.

Now it is a matter of repeating the procedures
of Appendix A with the above five modifications
taken into account. The results are conveniently
summarized as follows. We use the additional
label o so that we have y, (p), e,~, v, =su, ~/sp,
and s, (p) =2sinh2pe, ~. For h-0, the label o is
not needed on c~, v, and s for the results we are
interested in here, but we keep the label so that
the reader can make generalizations more easily.
Furthermore, if 0 =1, we add a term to the in-
verse of s„

s, '(p}=(2sinh-,'pe, ~) '+N, (2a}"5(p)5„. (Bll)

FIG. 12. Additional graphs for I as a result of the
condensate below T, .

the result of graph summation,

((d —k ~ v)y =2p k —i3t(pl (B13)

where y is a column matrix of —,'n entries, 0"v

is a diagonal matrix with k v, on the diagonal, and
n/2

Z (~&) "f&')""0"'4)""("~"~")
gt gtt g ttt

«(PP'P"P"')4 +V' - V" V"')5 .-5 ~ -, (»4)
where R is the same as (A31), and

v=9.(p), o'= p. (p'), -
s —= s, (p), s' =—s, (p'}, etc.

(B15)

II~~ = tI[(2P ' k, 2p ~ k) —(v{2P ~ k, (p)] .
One easily shows that

n/2

()(2p k, 2) k)= —Q(2 ) fd'pf
0= 1

(Ble)

We can generalize the scalar product (4.5) to

2
71

(x, q)= —„(2~) 'fd') ~.*)(.())y.(p) 0))8).
@=1

Then

We also set

[y, (p)],=.=0. (B12)

= (2/n)N'.

The quadratic form (y, Xy) now becomes

(B17)

Then we can write a set of kinetic equations as

FIG. 11. Additional self-energy term Z&(p, e) which
is nonzero below T, .

FIG. 13. Nonproper graphs (i.e., graphs which can be
broken into two pieces by cutting one solid line). Heavy
dots are density (or current) vertices.
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(B18)

This is a form slightly more general than the ones
given in Sec. IV. It will still hold if more than one
direction becomes preferred, or if h40. It is a,

form more easily generalizable. Equations (4.7),
(4.8), and (4.12) are obtained from (B18) by sum-
ming over equivalent components a =2, . . . , ~n.
Remember that (B11) must be taken into account.

Rote added in proof. Recently Halperin has made
a general study of multicomponent Bose systems. "
The special role of modes which are not symmetric
in spin space is pointed out. The reader is re-

ferred to Halperin's paper for a broader view of
the dynamics of this model.
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