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The exact differential equations with periodic coefficients characterizing the transition in a two-level

quantum system are solved by the stroboscopic method which is a nonperturbative approach. This
method is based on an averaging over the fluctuations in the system. The solution is unitary and is
valid for large times also, as opposed to the short-time validity of the perturbative solution. It should
also be noted that this method gives Rabi's well-known solution to the two-level system at resonance

by the so-called transformation to the rotating coordinate frame.

I. INTRODUCTION

Several authors' ' have questioned the validity
of classical time-dependent perturbation theory
in calculating the transition probabilities in quan-
tum systems. The main defect of the perturbative
methods lies in the contradiction between the va-
lidity of the solution in the neighborhood of a given
state and, on the other hand, large departures
implied by transitions to a different state. ' Thus
the classical time-dependent perturbation solutions
are essentially valid for short times. A serious
implication of the conventional time-dependent
perturbation calculations is the nonunitarity of the
solution and the appearance of singularities in
physical attributes such as, e.g. , dynamic polar-
izability under a resonant harmonic external
field "

'The aim of this paper is to present a nonper-
turbative analytic method for the study of transi-
tions in quantum systems due to resonant harmonic
external fields that will be valid throughout the
whole time domain. The method utilized is the
"stroboscopic method" initiated by Minorsky" for
the study of the periodic solutions of nonlinear
differential equations as well as their stability.
The method has been applied to nonlinear lattice
waves" in lieu of perturbative approaches achiev-
ing the same goal. " The stroboscopic method es-
sentially consists of smearing out, i.e. , averaging
over, the high-frequency oscillations in the sys-
tem, and thus substitutes a nonautonomous system
(i.e. , time-dependent) by an equivalent autonomous
(i.e. , time-independent) system.

The equations describing the system here have
periodic coefficients; the system executes many
oscillations during the time necessary for a
transition and thus falls naturally in the realm of
the stroboscopic method.

Exact numerical solutions have been obtained
for similar systems'; these will be reproduced

(though details are not given) in order to compare
with the approximate solution here.

It is also interesting to note the close relation-
ship between this solution and that of Rabi's well-
known formula for transition probabilities" "
obtained by the so-called transformation to the
rotating coordinate frame. It should also be noted
that Rabi's result has been put in a rigorous
framework by Salzman by extracting the rapidly
oscillating terms' ' by a reasoning analogous to
the one in the present paper.

II. GENERAL EQUATIONS FOR THE PROBABILITY
OF TRANSITIONS

Consider the time -dependent Schr odinger equa-
tion

H g = i itsy/Bt .

Let the Hamiltonian be made of two parts:

(2.1)

H(x, t) =Ho(x) +A V(x, t), (2.2)

q(x, t) = Q a„(t)u„e 'e"'~", (2.3)

The substitution of (2.3) into (2.1) gives

where 8, is a time-independent operator and ~V
is a small time-dependent operator. A. is a co-
efficient denoting the various orders of magnitudes
and will be taken as 1 in the final results. Note,
however, that although V(x, t) is thought to be
small, its effect in the solution is large, since
it is regarded as the agent causing the transition
between eigenstates of 8, that would be stationary
in its absence.

Let M„and E„denote, respectively, the eigen-
states and energies of the unperturbed Hamiltonian
and consider an expansion of the wave function
in terms of the eigenfunctions g„e ' '+, where
the expansion coefficients evidently depend on the
time, i.e. ,
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ih "+&a ue ' "' = a H +XV)ueda„
n n n n n

n n

(2.4)

tn ' e-'"""=~ &k ~

V~n&e-t"'t"da
dt (2 6)

Replacing H, u„by E„u„, multiplying through on
the left by u~, and integrating over all space,
making use of the orthonormality of the u„'s, we
obtain

finite-dimensional basis as is given in standard
text books. ' However, we specialize our equations
at this stage to a two-level system to gain sim-
plicity in the presentation and for comparison with
the stroboscopic solution treated here for the
two-level case.

Let u, and u2 denote respectively the eigenfunc-
tions for the initial and final states so that the
wave function in (2.3) is

Defining the Bohr angular frequency by
g= a(t) u, e ' t' "+a,(t)u, e ' " (3.1)

= (E —E„)/k

and the matrix elements by

(2.6)
In this case the equations corresponding to (2.8)

read in matrix form

Vs„(t) = &k [ V
~ n),

Eq. (2.5) yields'

(2.7)
da, /dt

da, /dt (t)e (witt

V»(t)e' "' a,

2a

(3 2)
tk '=z ~ V (t)e-' ~ta

On n' (2.8)

The set of equations in (2.8) is exactly equivalent
to the time-dependent Schrodinger equation, i.e. ,
no approximation has been made so far.

The transition probability is defined as the
probability of finding the system in a given state

~ k) if the initial state as in our case is ~m), i.e. ,

where the definition of (tt „=(Es —E„)/E as in (2.6)
is employed along with ~» = -co». The diagonal
elements are also presumed to be zero since the
perturbation is assumed not to couple a state with
itself.

An important case in applications is that of
harmonic perturbations:

w. , =
1&q lu, &

I'. (2.9) V(x, t) = v(x) cos((ttt) . (3.3)

W. , = la, (t) I'. (2.10)

III. PERTURBATIVE SOLUTION FOR TRANSITION

PROBABILITIES IN A TWO-LEVEL SYSTEM

The perturbation calculations can be pursued
formally in full generality by employing an in-

Utilizing the expansion of g as in (2.3), in view
of the orthogonality conditions we find

Then the matrix elements become

V„(t) = V„(t)= (u. i v iud cos(~t) .

Defining

the governing equations in (3.2) became

(3.4)

(3 6)

da, /dt
= 2A. P.

da, /dt t((d21+(d)t +e f((d21 (d)t

et(~21+ ~)t +e f. (~21-~)t ——
1

2-a
(3.6)

Let us now express the a's as a power series of
A, in order to solve the set of Eqs. (2.8) by a per-
turbative scheme. Thus

a„(t;x) = a'„"(t) +~a„"'(t) +~'a„'"(t) + ~ ~ ~ . (3.7)

Substituting (3.7) into (2.8) and equating coefficients
of corresponding powers of A, , one obtains

da . da"'—0 ik —t «( (etwst)+t w+ei(wst w)t) (s'I-
dt ' dt 2

(3.8)

& (0) & (s+1)
n ~ ~ 2 1 r —i((d21+ (d) t + - f((d21-(d)t 4 (s)

t
+e )a1

These can, in principle, be integrated successive-

(o) 0 (3.9)

Integration of the first order equations in (3.8)
in view of (3.9) gives.()=0

1 7

t (d21 (d)t ] e1 (d21+ (d)t ]
2 A (d 21 —(g) 0021 + (d

(3.10)

ly to obtain approximate solutions to any desired
order in the perturbation.

The first of Eqs. (3.8) shows that the zero-
order coefficients a„' are constant in time. Their
values are the initial conditions of the problem.
We assume that the system is initially at the defi-
nite unperturbed energy state g, . Thus, we have
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t(td21 4))t

2A 402j —CO

With this expression of a~,'~ by (2.10) we find

(3.11)

Let us consider the expression for a,' for the fre-
quency of the external perturbation w approaching
&u». Then the term with (~» —~) in the denomina-
tor becomes the most important term. In this
range of &,

(3.16)

To obtain the same result as in (3.13) one has to
neglect the oscillatory term. Note, however, this
is also an unjustifiable attitude since this would be
true for t &+1, where the validity of the perturba-
tive solution is dubious. In any case, if the oscil-
latory term in (3.16) is dropped, the transition
probability becomes the same as in (3.12).

p.
2 sin'[-,' ((o„—(u) t]

1 2 g2 (~ ~)2 (3.12) IV. EXACT SOLUTION FOR THE PROBABILITY
OF TRANSITION IN A TWO-LEVEL SYSTEM

At resonance, i.e., for &=&», 8', 2 becomes

IV, , = '(p. '/—ff')t '. (3.13)

Here appears the main defect of the time-de-
pendent perturbation theory: For large times,
i.e. , for times of 0(@/p, ), the perturbation scheme
cannot be valid since it was assumed that ~at2'~~ ~&1

(mathematical defect). Furthermore probabilities
greater than 1 have no physical meaning (physical
defect). Also, the operator H being Hermitian,
the norm should be conserved; that is, the sum
of the probabilities should be unity. It is of course
not the only instance where unitarity is destroyed.
But in other instances, e.g. , time-independent
perturbation theory, the error is of O(A, ), which
is not as serious as here where it goes to ~ for
large times. Perturbation solutions which are not
valid in the whole domain of the independent vari-
able (in this case, time) are denoted as "singular
perturbations. "' " Another shortcoming of the
singular perturbation method is that it cannot pro-
vide any measure of the time necessary for the
transition.

It should also be remarked that each further
order approximation proves to be worse for large
t. In fact, a simple integration of (3.8) shows
that a,' = -p, 't'/4k' and, in general, a,~ = ( ip.t/-
2A)"; i.e. , each step gives a stronger singularity.
This behavior is actually typical of singular per-
turbations.

The same result can also be obtained by first
considering the differential equation at resonance.
For ~= &a», (3.6) becomes

The system of equations in (3.14) has periodic
coefficients. The theory that deals with such dif-
ferential equations is called the "Floquet theo-
ry. "' ' ' According to Floquet theory, for a two-
unknown system, a solution exists of the type

a, = c,e»'P, (t} + c,e™Q,(t),
a, = n, c,e~"P,(t)+o.,c, e»' Q( )t,

(4.1)

1
Re(p, ) = — [V„(t)+ V„(t)]dt .

0

In our case V»(t) = V»(t) =0, so that we find

Re(p, ) =0.

(4 2)

(4.3)

Consequently the general behavior of the solution
in this case is

a, = c e' "P,(t)+c,e' "Q,(t),

a, = n, c,e' s"P,(t} + n, c,e' Qe, (t) .
(4.4)

However, the Floquet theory gives no method to
determine the characteristic exponents.

An exact solution to the system of equations
in (3.14) can be obtained by numerical integration
based on a discretization of the derivative. "

da, (t) . a, (t+ct) a,(t)-
dt ~t

(4.5)

where p„p, are called the characteristic exponents
and P, , Q,. are periodic functions of time with
period T = m/u. Furthermore Poinc are has
shown" " "that the real part of p, can be chosen
as zero and the real part of p, is given as

da, /dt

da, /dt 1 +e-2iu)t

1+e" ' a 1

0 a 2—

(3.14)

By this scheme, from (3.14) one gets

a, (t + ht) = a, (t) ———(1 +e" ')a, (t) e t,
(4.6)

The perturbation solution as in (3.7) in view of
the zero-order behavior as in (3.9) gives

a, (t+At) =a, (t) ———(1+e " ')a, (t)et.

itt ' = —,'p(1 e "~+')
dt

By integration we get

(3.15)
The results of the numerical calculations for

p. =0.1, 0.2, 0.5, and 1.0 are given in Fig. 1 along
with the perturbative solution. In the numerical
calculations the norm of the wave function, ~a, ~'
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+
~ a, ~

', has been computed at each step to check
the numerical accuracy and satisfactory results
(errors within 1/&&) have been found throughout the
computation. In these figures, it is seen that the
solution is made of two periodic functions: one
with a large amplitude of period w/p. &u and another
with small amplitude of period v/&u. This observa-
tion is in accord with the general character of the
solution in Eq. (4.4) as predicted by the Floquet
theory. The high-frequency oscillations with

period v/~ correspond to P, , Q,. and the small-
frequency oscillations with period v/p, m corre-
spond to e'8'.

V. STROBOSCOPIC METHOD

I Ii
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I

I
I

I
I
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This method has been originated by Minorsky"
for finding periodic solutions of nonlinear differen-
tial equations and to study the stability of solutions
of nonlinear differential equations. The main idea
in the' system is the assumption that there is little
change in the system during one period and there-
fore one can ignore what happens between times
0 and T, T and 2T, etc. In other words, as in

viewing apparatus under stroboscopic light in a
physical experiment we do not observe the system
continuously but rather at discrete intervals of
time T. Then, since the changes occur slowly,
one can assume T to vary continuously at the end
of the calculations so that we can go back to a con-
tinuous description. Of course this solution ig-
nores the fast oscillations that can exist in the
intervals of time T. An expose of the method is
outlined here and then applied to our system in
Sec. VI.

Consider the nonautonomous system

dt
= u F(x(t), y(t), t}, ~&&

= VG (x(t), y(t), t},

=f(x(0), y(0) },
1

G t, y t, t dt= — G 0), y 0, t)dt
0 0

=g(x(0), y(0)} (5 3)

Consider x(2v) -x(0) and y(2v) —y(0) as increments,
i.e. ,

ax =x(2v) —x(0), ay =y(2v) —y(0) .

Then (5.2) reads

Ax= 2vpf(x(0), y(0)},

ny =2vpg(x(0), y(0)}.

(5.4)

(5.5)

It is convenient to introduce here the temporal
element which we have lost in integration in (5.3)
between 0 and 2n' by defining as an element of the
new "stroboscopic" time w

Qv= 2m ', . (5.6)

The transformation equations (5.5) acquire now

a more familiar form:

(5.1)

where I' and G: are periodic in t with period 2m and

p is a small parameter. Integrate the equations
in (5.1) from 0 to 2v:

21r

x(») —x(0) = g F4(t), y(t), t}dt,
0

(5.2)
2'

y(2w) —y(0) = p, G(x(t), y(t), t}dt.
0

Since small changes are assumed to occur,
2' 1

F(x(t), y(t), t}dt —— F(x(0), y(0), t) dt
0 0

1.0-- —=f(x(0), y(0) }, ~ -g(x(0), y(o) } (5.7)

FIG. 1. Comparison of the exact (numerical), singular
perturbation, and stroboscopic solutions for p=0.1, 0.2,
0.5, and 1.0.

These may be regarded as difference equations
by which starting from z(0), y(0) we determine the
increments nx/n, 7. and ay/ar which we add to
x(0), y(0) so as to obtain the initial conditions
x(2v), y(2v) for the next interval (2w, 4v), and so
on.

This avoids the cumulative error that might
otherwise occur owing to the presence of higher-
order terms omitted in the approximation in (5.3)
as we let t- ~. In the physical analogy this pro-
cess amounts to determining the successive stro-
boscopic points starting from x(0), y(0).

We may still be guided in our analogy by intro-
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ducing a passage to the limit; in fact, in this
analogy, the persistence of vision produces the
impression of a slow (quasicontinuous) motion
instead of a set of discrete points appearing suc-
cessively after short intervals of 2m. This merely
amounts to replacing the set of discrete points
in the x, y plane by a continuous curve and by
considering (approximately) r)x, Zy, and &7 in
(5.7) as dx, dy, and d7. It is clear that we can do
that if the total duration of the process is long
enough compared to one period 2m and, moreover,
a7 is sufficiently small, as is seen in (5.6); the
approximation is the better, the smaller is p. . We
thus obtain the stroboscopic equations

—=f(x, y), —=g(x, y) .dg
(5.8)

VI. STROBOSCOPIC SOLUTION FOR THE
TRANSITION PROBABILITY IN A TWO-LEVEL SYSTEM

It should be noted by comparing (5.1) with (5.8)
that the stroboscopic transformation reduces the
nonautonomous system (i.e. , with time-dependent
coefficients) in (5.1) to the autonomous system
(i.e. , with constant coefficients) in (5.8). It should
also be remarked that in the case where F(x, y, t),
G(x, y, t) in (5.1) are linear in x and y, the f(x, y),
g(x, y} appearing in the stroboscopic equations in
(5.8) become also linear in x and y so that the
stroboscopic differential equations can be inte-
grated in closed form.

W, , =
~ a2(t} ~

= sin (pt/28), (6.8)

which is a bounded function. Observe also that the
stroboscopic solution is unitary, i.e., conserves
the norm of the wave function:

/ a, (t) /

' +
J a,(t) I

' = 1 . (6.8)

The stroboscopic solution is compared in Fig.
1 with the exact and perturbative solutions. It is
seen that the stroboscopic solution ignores the
small oscillations, i.e., is a solution averaged
over the small fluctuations. Notice also that for
small t the stroboscopic method gives the per-
turbation solution since from (6.8)

(6.10)

At this stage it is worthwhile pointing out that
the relationship between the stroboscopic solution
3nd the multiple-time-scale perturbation solu-
tion.""The latter is based on a stretching of
the time measure as in Ref. 2 and then eliminating
the terms causing the singularity. According to
this well-known method, ' "let us introduce two
time measures t and T= p. t and consider

Substituting now dt for ~t =2m in the expression
(6.2}, i.e. , replacing r by }).t and letting t vary
continuously, we have

a, (t) =cos(r(.t/28), a, (t) =-t sin(t(t/21) . (6.7}

Then according to (2.10) the transition probability
becomes

dal l ~ ~2 lih =-,a, , it = —,a, ,d7 dT
(6 1)

where

The stroboscopic method described in the pre-
vious paragraph is readily applied to our system
in (3.14). By the reasoning of Sec. V, the strobo-
scopic equations corresponding to (3.14) are

a, =a, (t, 7), a, =a,(t, 7).

then, for

d 8 pd+
dt &t 8T '

dak ~ak ~ak

dt t &T

(6.11)

(6.12)

dT =2m', . (6.2)
Considering now a perturbation expansion of a,
and a, as

Eliminating a, between the two equations above,
we find

a = a + p.a ' + p. 'a ' + ~ ~ ~

k k k (6.13)

d2a, 1
2 4@2 1 (6.3)

and introducing (6.13) into (3.6), in view of (6.12)
we have for the zeroth order

which for the initial conditions
~a, 0 ~a,(o) (o)

Bt ' Bt
(6.14)

a, (0) =1, ' =0
dT

gives

a, (r) = cos(r/2h);

in a similar manner, we find

a, (v) = isin(r/2k) .-

(6.4)

(6.5)

(6.6)

and for the first order

aa"' ea") s
(] + e

—2ild t)a(0)
t &T 2h

ea(" ea"' z
1 +e2iurt)a(o)

St br 2h I

From the zeroth-order equations, we find

(6.15}
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a, =a,'(r), a, =a, (T). (6.16) , VII. CONCLUSIONS

Thus, substituting (6.16) into (6.15), we get

sa ' da (T) i, i
+—aio&(. 7.) —e 2' ~ aioI(7.)2'

(6.17)
s (~) d (0)

+—aP~(7) ——e" 'a',"(v) .
st d7 2h ' 2h

In integrating (6.17) with respect to f, the terms
which do not contain t would contribute linear
terms in i similar to those in (3.16) according
to the conventional singular perturbation theory.
Therefore, for obtaining bounded solutions, the
secular terms causing the singularity have to be
extracted. Thus, we set

da,' (r) +—a,"(r) =0,
dv' 2h

da'(T) i 0+—a~"(T) =0
dT 2'

(6.18)

These terms are nothing but the stroboscopic equa-
tions in (6.1). We therefore recognize the strobo-
scopic equations as the zeroth-order solution of
a multiple-time-scale perturbation method.

The main conclusions based on Fig. 1 are as
follows:

(i) The stroboscopic approximation is seen to
be well justified for p, = 0.1 and p. = 0.2 while it
is poor for the larger values of p, , 0.5 and 1.
This is of course in accord with the stroboscopic
as sumption.

(ii) The stroboscopic approximation is uniform-

ly valid, i.e., for all times, unlike the perturba-
tive solution.

(iii) The stroboscopic approximation is unitary,
i.e. , the norm of the wave function is conserved
at all times.

(iv) The method can be used to study transient
behavior in dynamical systems in quantum mechan-
ics.

(v) It is also observed in (6.8) that the strobo-
scopic method gives Rabi's well-known solution
to the two-level problem at resonance. It should
also be interesting to consider the near-resonant
case and investigate whether one obtains Rabi's
line shape, starting from Eq. (3.6) rather than

(3.14).
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