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The role spin fluctuations play in determining the stable superfluid phases of He' is investigated. It
is shown that the feedback effects of the gap on the spin fluctuations can stabilize the anisotropic
Anderson-Morel (AM) state if they are sufFiciently strong. The efFect is calculated both near T, and at
zero temperature. It is found that the Balian-%'erthamer (BW} state is more stable at low temperatures
and that the slope of the calculated transition from the AM to BW states qualitatively agrees with the
experimental slope of the A to B transition as a function of pressure.

I. INTRODUCTION AND DISCUSSION OF RESULTS

Around 1960 a number of theoretical papers'
suggested that He' should become a superfluid of
the BCS type in which the pair amplitude is char-
acterized by an angular momentum different from
zero. At the time, estimates made either from
the effective particle-particle interaction calcu-
lated by Brueekner a,nd Gammel' or from the
I ennard- Jones potential deter mined phenomenolog-
ieally by de Poer' gave an attractive interaction
for d-wave pairing and a very weak P -wave inter-
a.ction. In 1964 Emery' introduced the idea that
the interaction should be renormalized by the
fluctuations of the medium and showed that this
renormalization tends to favor P -state pairing.
Somewhat later Berk and Sehreiffer' pointed out
that in a nearly ferromagnetic system the spin
fluctuations due to the incipient order tend to sup-
press normal singlet BCS pairing. Doniach and
Engelsberg' simultaneously showed that spin fluc-
tuations are important for understanding the
specific heat of He', and since then their im-
portance in determining a number of other proper-
ties of He' has been gradually recognized. ' About
this time Layser and Pay" pointed out that, al-
though spin fluctuations induced a repulsive inter-
action for singlet pairing, for triplet pairing, and
consequently odd-L pairing, the spin-fluctuation
contribution was attractive. This is easily seen
since for parallel-spin particles the polarization
clouds are aligned and the two particles are at-
tracted to one another. This attractive interac-
tion can easily be calculated in the contact-inter-
action model to be

v'F(q, (u) = --,'I/[1 —IXo(q)],

where I is the contact interaction and X'(q) is the
noninteraeting susceptibility defined in Sec. II. It
is not difficult to see that the above interaction
gives a large attractive contribution to the effective
coupling constant for P -wave pairing. Assuming
that He' should exhibit P-wave pairing, theory also
predicts" in the weak-coupling approximation that
the most stable state is the so-called Balian-
Werthamer state a.nd that this state is stable at all
temperatures. This prediction was strongly con-
tradicted by the recent experimental observations
that He' actually exhibits two new phases, the so-
ealled ~ and B phases of Osheroff et@i is-i6 This
led two of the present authors" to investigate the
question of how the spin fluctuations are changed
when the superfluid gap is introduced into the
quasiparticle spectrum. They showed that the ef-
fective interactions for the various components of
the triplet pair can be written for the states under
consideration as

«$i QI/[1 —I Xg, (q) m)]

1 I 2I
2 1-IXO,(q, (u) 1 —IX„',(q, (u)

Here we have ignored the density-density fluctua-
tions. The y',.

&
are the va, rious components of the

unenhanced susceptibili. ty and are defined in Sec.
II and 44 means m, =1 along z while 44 means
m, =0. It was then noted that at q and co equal to
zero in the Balian-%erthamer states all-of the
susceptibilities X';; are equal and decrease below
the transition temperature, thus decreasing the
,effective interaction. In contrast, for the Ander-
son-Morel (AM) state only X', decreases. Since
the m, = 0 interaction, i.e., I,« ~~ in Eq. (1.3) is
the only one used in forming the pairs for the AM

10



10 SPIN-FLUCTUATION STABILIZATION OF ANISOTROPIC. . . 2387

state the effective interaction is enhanced. In or-
der to make a quantitative estimate of this effect
the changes in the y' for finite q and ~ were re-
lated to their static values in the same way that
the change in conductivity at finite energy and mo-
mentum is related to the number of superconduct-
ing electrons. An estimate of the change in the
fourth-order free energies of the various states
was made, and it was shown that the effect was
sizable and could explain the presence of the A
phase as a stabilization of the AM state at high
pressures where spin fluctuations are more im-
portant. Va, rious experimental results, the NMR
shift, "the nondecreasing susceptibility, "the
pressure dependence of the specific heat, "the
splitting of T, into two transitions in a field, "and
the ultrasonic attenuation" appear to be con-
sistent with this interpretation.

In this paper we investigate more carefully the
form of )t;,.(q, &u) for finite q and &u and find that
the simple relation to the static values used in the
original letter is not correct. Although the quali-
tative result that the feedback effect due to the
change in the spin fluctuations favors the AM state
remains, the proper evaluation of the suscepti-
bilities makes quantitative differences in the re-
sults. We also investigate in this paper the con-
tribution the feedback effect makes to the free
energy to sixth order in b, and its contribution to
the zero-temperature energies. In describing this
feedback effect we again introduce a dimensionless
measure of its importance by defining
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FIG. 1. Crossover of the fourth-order free energies
as a function of 6, the measure of the importance of the
spin Quctuations. 6 =0.5 is the critical value for stabili-
zation of the AM state.

curve in Fig. 2. The shape of this curve is deter-
mined by adjusting 5 to fit the specific heat dis-
continuity versus pressure. It was previously
shown" that the change in the theoretical values
of 5 with pressure correlates closely with the
change in the discontinuity of the specific heat. It
is seen that the BW phase is more stable at low
temperatures and that the calculated slope of the

TA~ transition is in qualitative agreement with

~' Q+& &~' g ~'+M~fourth order t (1.4)

i.e., 5 is the ratio of change in the contribution
the spin fluctuations make to the free energy of
the BW state divided by the difference in the weak-
coupling free energies of the BW and AM states.
In this definition the free energies are evaluated
to fourth order in 4. We find the following re-
sults:

(i) Both the BW and AM states decrease in free
energy relative to their weak-coupling values.
The AM state decreases by 3 times as much as
the BW state, so that their free energies cross at
5 =0.5. (See Fig. 1.) This result appears to be
more in line with the measured specific-heat
data, "where it is found that the specific-heat dis-
continuity is always larger than the weak coupling
value attained for the BW state. This implies that
the fourth-order terms are smaller than their
weak-coupling values, which is what we find.

(ii) From the calculated slope of the A to B
transition as a function of 5 we find the phase dia-
gram shown in Fig. 2, where the experimental
values of the temperature of the first-order trans-
ition" T„s/T, are roughly given by the dashed

I.O

BEYOND

c = O.e

BW PHAS
AM PHASE

0.5
I

I.O

FIG. 2. Calculated phase diagram as a function of 6.
Experimental data (dashed line) were deduced from the
specific-heat discontinuity as a function of pressure 6- 0.6 on the melting curve. Only the slope near T, and
the zero-temperature values have been calculated. Solid
curve is a rough interpolation between these results.
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a s(k) =d)„k),(a,ia, ) s, (1.5)

where o., are the Pauli matrices. The matrix dz,
represents the 3 x 3-component order parameter.
The Balian-Werthamer (BW) state is written as
d,. = h5; . The Anderson-Morel state we work
with is d„= id„=t).v —,

' -. This state is obtained
from the AM state, '

(I 0~
n. ,(k) =~t (k„+ik,)

l

(0 I)
by a 90' spin rotation. It differs from the state
used by Balian-Werthamer, "

experiment.
(iii) The introduction of the correct formulas

for the susceptibilities also changes the relations
bebveen 5 and the various coefficients in the gen-
eral expansion of the free energy in terms of
fourth-order invariants. "'" These changes, how-
ever, mostly affect the BW phase. The calculated
results for the AM state" in the presence of an
external field, namely, specific-heat discontinui-
ties and the slopes of the second transition with
respect to field, are changed by at most 10% and
will not be recalculated here.

Briefly, the outline of this paper is that the
susceptibilities are calculated in the limit $

'
&q & 2k» ($ is the coherence length and k» the
Fermi wavelength) in Sec. II. In Sec. III the change
in spin-fluctuation energy is calculated to fourth
order in ~. In Sec. IV we calculate the energy to
sixth order in 4 and then extend the calculation
to zero/temperature. In the last section we make
a few/comments about the validity of the approach
taken here.

Before beginning we establish notation. The gap
function will be written 6 s(k} and for p-wave
pairing it is expressed as

were previously calculated by BW,"but they do
not suffice for our purposes here. Let

)t, z(q, iso )= 2— e'"m'('T, [M;(q, y)M, (-q, 0)])dy,

(2.1)

where

0
(q y) a s Q e(»0 p») r-

2 p

xa aXQp / Qp /2 Be (2.2)

T, designates the usual time-ordering operator
and Ho is the reduced Hamiltonian" about which
we do perturbation theory. The 0'8 are the Pauli
matrices and the &'s are the usual Fermion-crea-
tion and annihilation operators. As will be justi-
fied later we need to calculate X'„ in the region
where $ '«q «2k» ($ is the coherence length
proportional to v»/T, ). In doing this we follow the
treatment of the current-response function in
superconductivity as developed by Abrikosov,
Gorkov, and Dzyaloshinski" (AGD). Introducing
the single-particle Green's function

and

G s(P, y)= (T, [a~ (y)-a~ys(0}]) (2.3)

s(y) =(~,[a p (y)ass]),

the expression for y';, can be reduced to

(2.4)

(q '~ )= soasaysT Q-[Gsy(P )Gs (P )
p, n

F."y(p. )Fs-s(p )],
(2.5}

whereP, =jPs sq, &u„+u) t,). If only unitary
states" are considered we find that

(k„+ik, 0
a s(k) = W3 a

l

0 -k„+ik, f

Gsy(p)=dsy(m„+e~)/(&u„+e~+ lt)~l ),

& s(P) =&.s(p)/(~! +e', + I&,l') .

(2.6)

(2 'I)

as the "AM state" in that all pairs have an orbital
angular momentum of +1 about the z axis. In
weak-coupling theory the phase relation between
the up and down spin pairs was unimportant but
the spin-fluctuation results act very differently
on the iwo states. The state (1.7) has been shown
never to be a minimum energy state.

II. CALCULATION OF SUSCEPTIBILITIES

In order to calculate the change in the free en-
ergy due to spin fluctuations it is necessary to
calculate the changes in the unenhanced suscepti-
bilities due to the introduction of the anisotropic
order parameters. The static susceptibilities

Substituting these expressions into y';, leaves one
with a complicated expression which must be sum-
med over cu„and integrated over P. As discussed
by AGD" if one is interested only in 5y', ,
= ()t,.&)» —()t,&)s, where S and N indicate the super-
fluid state and the normal state, respectively, one
can do the momentum integration first. The inte-
gration over the magnitude of P is done first by
making the approximation that c»,/, ——op+ —,'v~ q
where the magnitude of v~ is taken to be the Fermi
velocity. It is also assumed that Ap„~, does not
depend appreciably on

l pl and its q dependence is
ignored. Having performed this integral one is
left with the integrals over the direction of p.
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This integral is handled by noting that the inte-
grand is dominated by the region where v~ q-0
because under those circumstances various de-
nominators are small. Therefore one sets p

perpendicular to q in the nonsingular parts of the
integrand and performs the integral over the di-
rection of p relative to q. After some simplifica-
tion one finds that

7T'
1')(', , (q,

'
) N(o) =T

2
' t'„()g ( .1()g ( „— ) —,, „„.I. , .), i)2V~q „27T

1 Tr ((7'~~&&'h~~)

2 (c'„+ lA l ) [((u„—(u ) + lA l']v'

(2.8)

In this expression p is to be taken perpendicular to q and the p~ integration averages over the direction

of p in the plane. If one takes b~ to be of the BCS type, 4~=iv, h, the above expression is identical except

for overall coefficients to Eq. (3'T.26) of AGD.

To obtain an expression for 5X to order 4' we will keep the sums discrete and expand in powers of A.

The lowest order terms are

5}t,',. (q, i&a ) = '[~;,I&pl'D, (m) ——,'Tr(o'Ap'A, )D, (m)],
2v~q T 27T

where

(2.9)

D, (m) = D, (-m), m & 0; D, (m) =-,'v', m=0; D, (m) =(1/m}[g(m+z)-g(z)], m&0,

and

D, (m)=D, (-m), m &0; D, (m}=-,())'(m+z), m& 0.

Here g is the digamma function and g' its derivative. For triplet spin pairing the expression in square

brackets reduces to

5,, ld(p)l [D2(m) —D, (m)]+[d, (p)d,')(p)+d, .(p)d,*(p)]D,(m),

and if we assume P-wave pairing, 5y is further reduced to

5X (q, iu ) =[iq(0)/2vzqT](z(5 s —q~q8)(5;, d«d»[D2(m) —D~(m)] +(d, d~&. +d*, d»)D, (m)/) .

To obtain the zero-temperature expressions we must convert the sum over n to an integral and analytically

continue (2.8) with respect to (d onto the real axis. Again we simply follow AGD in doing this and find that

(2.10)

Here (v„(v&)=(IA&l I+pl+~} if ~~2IApl) and (~i (d2)=(~ —I&pl (d+l&pl) if a &2I&, l
The &u' integral can

be written in terms of complete elliptic integrals in the same way that the corresponding expressions for

the conductivity were written for s wave pairing in Refs. 22 and 23.

He5}t,' (q, &u) = '
lA l 6, (1+y)E(z) — K(z) (2.11)

Here y =&a/2lA~l and z'=4y/(1+y}'. The K and E are the usual complete elliptic integrals. For the imag-

inary part we obtain

2U& q 27T
P

Here 6(x) =1 if x& 0 and is 0 otherwise. The first term simply subtracts off the normal-state susceptibility.

Again, this expression can be written in terms of elliptic integrals.
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V~ q 217 1+/ 2

(2.13)

In this final expression )P = (1 -y)'/(1+y)' =1 —z'.
The functions of y multiplying the 5,&

term and the
trace term in Egs. (2.11}and (2.13) are plotted in

Figs. 3(a) and 3(b).

free energy the standard spin-fluctuation expres-
sion.

d3
4p'=-,'ZTrg, {in[1—IX,'&(q, i~ )]

m

HI. CALCULATION OF FREE ENERGIES:
FOURTH ORDER

+IX;,(q, fv }j . (3.1)

-2.4

-2.0
COEFFICIENT OF 8 jI TERM

(a)

The approach we take in this section is to calcu-
late the effect of spin fluctuations on the free en-
ergy of the superfluid state in the same way that
the spin fluctuations were previously treated for
the normal state. ' We therefore assume that the
zero-order Hamiltonian has a weak attractive P-
wave interaction and its free energy is simply that
of a weakly coupled superfluid. We then add to the

6X'=(X'4- (X')z (3.2)

This expression is obtained by summing diagrams
of the type shown in Fig. 4. The trace here is
over the variables i and j.. The only anomalous
diagrams that are included are those shown in

Fig. 4. This approximation has been justified pre-
viously. " The X,

'., (q, i&u ) is the susceptibility as
calculated for the unperturbed weak-coupling state
and as such includes both the normal and anomalous
diagrams, as can be seen from expression (2.5).
We now expand the free energy in powers of 5X';, ,
defined in Sec. II as

-I .6

CLo -l.2
CU

3
0.8

-0.4

AL PART

~ IMAGINARY PART

where X'„(q, iu& ) is the normal-state noninteracting
susceptibility. The first-order term in 5X' is

-I 5X;; q, ie
1 —IX@I' s+m&

(3.3)

+.4

2.4

2.0

l.6
OJ

ix

0,8

I.O 2.0

(u/2h p
= y

3.C' 4.0
(3.4)

The physical interpretation of hF' is that it repre-
sents the change in free energy between the super-
fluid and normal states when the effective interac-
tion is taken to be that obtained by virtual exchange
of normal-state spin fluctuations. We will assume
that the effect of this term can be incorporated in-
to the attractive interaction of the unperturbed
weak-coupling calculation. This assumption is the
major approximation in the calculations presented
here. We discuss it further in Sec. IV. The sec-
ond-order term in AF is

0.4
IMAG I NAR Y PART 4, , (2v)' 1 —IX'„(q, i&a )

0
I.O 2.0 3.0 4.0 (3.5)

QJ/2' p=y

FIG. 3. Plot of the expressions multiplying the 6 func-
tion and the trace terms in the integrand in Eqs. (2.11)
and (2.13).

If we write

6X,, (q, i~ ) =- 6X,'.,q v /N(o), (3.6)

then according to (2.8) 6X does not depend on the
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magnitude of q, and

T 1 dq I dQ,
4 2 ' 1 —I+nI(/2k ) 4

(3.7)

f ~*(q q, ~q„*) ZZ f 4, 'f&x;, (e, & )I*.

Using the expressions derived in the previous section for 6y, , to second order in 4 we can evaluate
the sum over i, j and the average over 0, .

One is then left with the sums over m of the D functions. Doing these sums numerically we find

(3 6)

8 N(0)
16m ~T 0 1 —1 + aIx

+ 7.0d+,. d$,. d,. dB& 2.0(~d,.
~ ) +5 5(d*., d* d~& dB, )j (3.9)

The coefficients in this expression are accurate to
within a few percent. The difference between the
above expression and that obtained previously" is
that the earlier expression had the absolute value
of the coefficients of the last three terms equal
and the coefficients of the first two terms zero.
For the AM state the bracketed expression be-
comes 10.5&96' while for the BW state it is
3 x 9b,'. We have normalized the order parameter
so that the second-order terms in the free energy
are equal. Therefore we see that the free energy
of the AM state is decreased by approximately
three times more than that of the BW state. Using
the weak-coupling free-energy difference, fourth
order in 6,

we define a dimensionless measure of the impor-
tance of the spin-fluctuation free energy as

I

d,. =~3 6 „5 „6has a, lower energy than the AM
state at very large 5.

IV. HIGHERARDER FREE ENERGIES

In order to attempt to explain the entire phase
diagram we calculate here the terms in the spin-
fluctuation free energy (3.5) that are sixth order
in A. We also calculate the spin-fluctuation con-
tributions to the ground-state energies. Only the
energies for the AM state and the BW state will
be calculated. Consider first the sixth-order
terms. Expression (2.3) for the susceptibility
must now be expanded to order 6 and inserted
into Eq. (3.5), and the averages over angle and
the sum over m must be performed. The algebra
is somewhat tedious and will be omitted. We find
that

BW/( AM BW)

15077 T, I2

7K(3) c~, (1-T+nIx')'

(3.10)

Substituting the experimental values of these pa-
rameters" near the melting curve we obtain 5=3
if we take o = 3. This number is clearly too large.
One can understand why by examining the integral
in (3.10). Since (1 —I) -0.25 using o, = —,', the inte-
grand does not drop off appreciably as a function
of q. We therefore consider it appropriate to in-
troduce a cutoff of the q integration. A cutoff q
-0.2(2kF) would give a value for 6-0.6, which is
reasonably close to the values needed experimen-
tally. Because of this cutoff problem we regard
5 as the parameter of the theory. Finally it is
amusing to note that the so-called polar state"

FIG. 4. Types of diagrams included in the free-
energy calculation.
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3.2'I N(0) 6'
SBW 2F 6 T 1 —I +QIx

~s AM + 2.98~
(4.1)

(4.2}

Therefore the terms sixth order in 4 arising from
spin fluctuations favor the BW state more than the
AM state. To obtain the total free energy the
weak-coupling terms must be added. For the BW
state they are

verted to an integral

~, = —a Z —
~ .3 1m~X(g(R«X&g)

I
1 —Ix'„(q)

'
(4.5}

Again factoring out the N(0)/vzq as in (3.6) we ob-
tain

EBW = ~h + qbh ——C&
1 4 1

where

(4 3) —Im5X;,Re5X 0, . (4.6)
dQ, "d(gp

4

a = N(0)ln(T/T, ),

b =N(0)-'&(3)/(sT )',

c =@g(5)N(0)/(vT)' .
For the AM state we obtain

= aa'+ & —'ba4 (4.4)

The fourth-order spin-fluctuation terms must also
be added to these expressions and the temperature
dependences of the two free energies compared.
The spin-fluctuation terms are parametrized with
the temperature-independent expression (3.10).
We can then calculate dT»/d5, where T» is the
temperature of the first-order transition between
the BW and AM states. We find that the main ef-
fect is that the fourth-order weak-coupling terms
go as T ', while the fourth-order spin-fluctuation
terms go as [T(1 —I )erj ', so that the weak-cou-
pling terms become larger as the temperature de-
creases The f.inal result is that (T, —T»)/T,
=3.5(5 —5,). To compare our result with experi-
ment the pressure dependence of 5 is needed. We
crudely estimate this by comparing the experi-
mental variation of the discontinuity in the specific
heat, "which is proportional to the inverse of the
coefficient of the fourth-order term, with the re-
sult we obtain from our expression involving 6.
Since the experimental number at T» = T, of
C,/C„ the ratio of the heat capacities just below
to just above T„ is 2.70 and our value is 2.60, we
assume the 0.1 difference is a pressure-indepen-
dent contribution and that all pressure dependences
come from variations of 5. The theoretical ex-
pression (3.10) varies with pressure in essential-
ly the same manner as the 5(P) determined from
the heat capacity. "

The experimental slope near T, is (T, —T»}/
T, = (5 —6,), so that there is qualitative agreement
between theory and experiment.

To extend the results to lower temperatures we
calculate the ground-state energy differences. To
do so the summation over m in (3.5) must be con-

Finally the expressions (2.11) and (2.13) for the
susceptibilities must be inserted and the integrals
over co and 0, performed. For the BW state the
0, integral can be done explicitly so that only the
co integral must be done numerically. This is
most easily accomplished by subtracting off the
form for 6y for large co and integrating the asymp-
totic expressions analytically. The numerical
integration is then r pidly convergent. For the
AM state one has a ontrivial three-dimensional
integral since 5y itself contains an integral over
p and the 0, integral reduces to an integral over
the direction of q relative to the unique axis l, .
We again have separated the asymptotic form for
5y' out and performed the integrals. involved an-
alytically. Judging from tests with different inte-
gration meshes, the numerical part of the three-
dimensional integral converged to within 1/0. The
final answers we obtained are

N(0)~'~s Bw
—-2.84 1 —I+ mix'

F 0

(4.7)

and

N(0)h 2

sAM 9 55 dx
eF 0 1 —I + aIx

(4.8)

Note that there is again approximately a factor of
3 difference between the two expressions. These
results must again be added to the weak-coupling
free energies and the total free energy minimized
with respect to 4. The weak-coupling free energy
can be written

dQ~ 2 2~s 2 1 1F N(0O) -&p 1n

(4.9)

Here ~s is the weak-coupling cutoff and A is the ef-
fective coupling constant. .If we write the spin-
fluctuation energies as ~,=N(0}nlrb then the
minimum gap is, to first order in n,
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6 = b,,(1+ ,n—h,), (4.10)

where 4, is the weak-coupling zero-temperature
gap parameter

V. REMARKS ON CALCULATIONS

In Sec. IV we simply presented the calculations,
leaving a number of steps unjustified. We will
now briefly discuss these approximations. The
most serious approximation made is the assump-
tion that the interaction via normal-state spin fluc-
tuations (3.4) can be treated with the weak-coupling
approximation. In the usual strong-coupling theory
of superconductivity, "one finds that the free en-
ergy is reduced relative to what one would obtain
from the weak-coupling estimate because the mass
renormalization is reduced owing to the introduc-
tion of a gap. This effect is apparently important
in lead, where the specific-heat discontinuity is
large, 3.71. We do not believe it should be as im-
portant here because the specific-heat discontinuity
is considerably smaller and a good fraction of the
deviation from BCS is presumably due to the feed-
back effect. It is important to note that any change
in mass due to the change in the spin-fluctuation
spectrum itself in the normal self-energy is in-
cluded in the above calculations. This contribu-

(4.11)

Equating the results for the two states and using
the fact that 40(AM) =0.94k, (BW) we find the
critical condition to be

1 2

0.025 = 2.84 0 de~, 1-T+arx
(4.12)

Writing d, (BW) =1.76 T, and using the definition
(3.10) for 5 we find the zero-temperature critical
value for 5 to be 5=0.'87. The theoretical phase
diagram given by this calculation is therefore
something like the solid line in Fig. 2. As already
discussed, the best interpretation of the experi-
mental data is the dashed line. We feel that, con-
sidering the crudity of the calculations, the quali-
tative agreement between experiment and theory
is remarkable.

tion is related to the normal part of 5y', i.e., the
product of the G's in (2.5). These terms have es-
sentially no effect on the relative energies between
the AM and BW states. Therefore we conclude
that it is not likely that a complete strong-coupling
calculation will change appreciably the results of
the present calculation.

The next approximation is that of stopping at
second order in 6y'. It is not difficult to convince
oneself that the higher-order terms in 5X' always
introduce a factor of (kz() ', where $ is the co-
herence length. Therefore all such terms are
quite small compared with the expression retained.
This remark is also true for those terms of higher
order in q

' in 5. As for the self-consistency pro-
cedure, it can be shown that the free energy can
be written as a functional of the full 4&&4 self-en-
ergy, just as was done for the normal state by
Luttinger and Ward. ' The free energy properly
expressed is stationary with respect to variations
of 4. In our calculations we have simply imposed
a form for 4 and minimized the free energy with
respect to this form. More-detailed frequency-
dependent forms should not make a large difference
in the results. The free-energy form used here is,
of course, not exact, nor has it been shown to be
a rigorous upper bound of the exact free energy.
We, however, believe it gives a correct descrip-
tion of the changes in the contribution of the spin
fluctuations to the free energy in the superfluid
states. Since these fluctuations are known to be
important in the normal state, we feel that con-
centration on these changes is justified. Finally
we do not believe that working at a constant chem-
ical potential or regarding 5 as a function of pres-
sure instead of volume makes any difference be-
cause of the very small volume changes involved.

In conclusion then, it appears that the feedback
effect does act to stabilize the Anderson-Morel
state and also predicts a phase diagram that at
least qualitatively agrees with experiment.
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