
PHYSICAL REVIE% A VDLUME 10, NUMBER 6 DECEMBER 1974

Three-particle correlations in the ground state of a Bose fluid*
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The two- and three-particle distribution functions of the weakly interacting Bose gas in its ground

state are studied via the calculation of their Fourier transforms. The form obtained for the three-

particle distribution function shows that the familiar convolution approximation is not correct even in

the lowest nontrivial order of perturbation theory. For the special case of the charged Bose gas at high

density, the two-particle distribution function is obtained to second order in the expansion parameter

r,.'", a result which disagrees with a recent calculation. The discrepancy is traced to a use of the
convolution approximation for the three-particle distribution function. Finally, Landau's theory of
quantum hydrodynamics is employed to relate the long-range part of the three-particle distribution

function to the Gruneisen constant. These results emphasize the need to treat properly the dynamic
three-particle correlations in any quantitative theory of liquid helium,

For liquid He4 in its ground state and low-lying
excited states, three-particle correlations are
physically significant because the density is large
and the interactions of the particles are stro:-tg.
Nevertheless, most quantitative estimates of the
ground-state wave function are based on the Jas-
trow form

4(r„.. . , r„)=II exp[-,'u(r, —r, )j,

an explicit product of two-particle functions. Vari-
ational calculations based on this choice of wave
function are in semi-quantitative agreement with
experiment. ' Substantial improvement of this
wave function requires the introduction of a factor
containing three-particle functions of the form

as suggested by Feenberg' and Woo. ' A prelimi-
nary estimate of the modifications of the ground-
state energy and structure factor introduced by
this generalization of the Jastrow function has been
made by Campbell, ' but the corresponding varia-
tional calculation has not yet been attempted.

From an alternative point of view, adopted here,
three-particle correlations can be characterized
by the three-particle distribution function
p"'(r„r2,r, ) of the ground state. This function
is defined as the joint probability density of finding
one (distinct) particle at each of the locations r„
r„and r, . Feenberg" has summarized what
little is known about p"'. Approximate forms for
the three-particle distribution function have been
used in theoretical calculations of the excitation
spectrum, "ground-state energy, ' and cross sec-
tion for light scattering. ' The most common ap-
proximations are the convolution approximation
and the Kirkwood superposition approximation, as

I. TWO- AND THREE-PARTICLE DISTRIBUTION
FUNCTIONS AND A METHOD FOR THEIR COMPUTATION

The functions p'2'(r„r,}and p"'(r„r~,r, ) are
defined by

p"'(r„r,) = i0'(r, )4'(r, )p(r. )4(r, )} (la)

discussed in Ref. 5. The convolution approxima-
tion is known to be superior to the Kirkwood ap-
proximation, but little is known about the magni-
tude of the errors caused by the convolution ap-
proximation.

The purpose of this paper is to supply some new,
albeit limited, information regarding the three-
particle distribution function in the ground state of
a Bose fluid. In Sec. I it is expressed in terms of
the two- and three-particle structure functions
S(k) and T(k„k„k,), and a convenient method for
the calculation of S and T is derived. Perturbation
calculations for the weakly interacting Bose gas
are presented in Sec. II; one finds that the con-
volution approximation for p"' fails to correctly
describe three-particle correlations even in the
lowest, nontrivial order of perturbation theory.
As a subsidiary calculation the structure function
S(k} is given to two orders in perturbation theory.
In Sec. III the special case of the charged Bose
gas at high density is considered, and the leading
correction to the structure factor is evaluated nu-
merically. It is shown that the discrepancy with
Bhattacharyya and %'oo's calculation' of this cor-
rection is due to their use of the convolution ap-
proximation for the three-particle distribution
function. Section IV contains a simple calculation
of the long-range part of the three-particle distri-
bution function as given by quantum hydrodynamics
for liquid helium, together with a discussion of the
validity of the result.
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p(r) -=&I'(r)y(r), (2)

and

p'"(r„r„r,) —= &gt(rr)&I&" (r,)gt(r, )g(r, )&I&(r))&1&(r,)&,

(lb)

where P(r) and &I&t(r) are the usual destruction and

creation operators for the boson field, and the
angular brackets indicate the expectation value in

the ground state. In terms of the density operator

p = dr8 p r (4)

rather than the density operator itself. Thus one

is led to introduce the two- and three-particle
structure functions S and T:

translational invariance. The presence of transla-
tional invariance makes it desirable, in addition,
to deal with the Fourier components of the density
operator,

these functions may be rewritten in the form

p"'(r„r,) = (p(r, )p(r, )& —n5(r, —r, ),

and

p"'(r„r )r, ) = &p(r, ) p(r, ) p(r, )&

(3a)
S(k)=N '(p-p &, kr)0,

T(k„k),k))=N(p„-pk pk &, k„k),k)4:0,
1 2 3

(6a)

(6b)

—6(r, —r, )&p(r, )p(r, )&

—6(r, —r,)&p(r, ) p(r, )&

—t&(r, —r, )&p(r, ) p(r, )&

+ 2n5(r, —r))6(r, —r, ), (3b)

with n —=
& p(r) & a constant, under the assumption of and

&p(r, )p(r )&=n' n+N)rP e'"''r) 'r'S(k), (6a)
k

where N is the total number of particles, and the
function T(k„k„k,) vanishes unless k, +k, +k, =0.
In terms of S and T one has

1

(p(r, ) p(r)) p(r, )&=n'+n'N ' e ""r'r'")')+k) )'T"(k„k„k,)
kg)k2)k3

I+&))N-r (eik'(rr r)& +e-ik'&r)-r)& +eik (r)-rr&)S(k) (6b)

H*=H+N ~ Ak k k p p p
kl)k2)k3

where the discrete values of the vectors k, , i
=1, 2, 3, in the sum are determined by the usual
periodic boundary conditions. It is convenient
(but not necessary) to assume that the function

Ak, $,k is symmetric in its arguments and van-
ishes unless k, +k, +k, =0. An eigenstate I

rP*& of
H* with eigenvalue E* has the property that

k&)kZ, k3
=3fN '&rt&'Ipk pk p klrP &, -

where the primes mean that terms with any wave

vector equal to zero are excluded. The substitu-
tion of Eqs. (6a) and (6b) into Eqs. (3a) and (3b)
gives pi)&(r„r)}in terms of $(k} and gives
P"'(r„r„r,) in terms of S(k) and T(k„k„k,}.
Thus further considerations may be restricted to
the structure functions S and T, which are regarded
as containing the two- and three-particle corre-
lations, respectively.

A convenient method for the computation of these
structure functions involves the functional differ-
entiation of energy eigenvalues. For a Hamil-
tonian H, consider the related Hamiltonian

with the consequence that, for the ground state of

H,

T(K„k„iK,&=, ( k~, k2, k3 A=O
(8)

U = )Q ' gv (k)[p„p-„—N],
k

where 0 is the volume and v (k} is the Fourier
transform of the interparticle potential. If the
dependence of the ground state energy E upon v(k)
is known for v(k) close to its "physical" value,
then one has

where the definition (5b) of T(k k„„k,) has been
employed and the subscript A =0 means that one
must set A. k k k

=0 after performing the differ-
entiation. Thus the three-particle structure factor
may be calculated by means of a simple differen-
tiation once the ground-state energy of the Hamil-
tonian H is known. This technique is often par-
ticularly useful because a given approximation for
the ground-state energy E immediately yields
a corresponding approximation for T(k k k„,).

„

The calculation of the two-particle structure
function S(k) may be performed in the same way.
The potential energy operator has the form
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S(k) =1+ (2/n) BE/Bv(k),

for k40.

II. WEAKLY INTERACTING BOSE GAS: GROUND-STATE
ENERGY AND STRUCTURE FUNCTIONS

H =H0+H',

where

(loa)

H() = Eo+ ~ )7(k) b), b(, 3

k

with

(lob)

The calculation of the ground-state energy, in-
cluding in the Hamiltonian the three-phonon term
in Eq. (7), is most easily accomplished using a
theory in which the density operator p„enters the
analysis in a direct way. Thus it is inconvenient
to employ the standard theory of Bogoliubov, "for
which the operators a), and a )t (destruction and
creation operators for particles in plane-wave
states) serve as variables. More convenient would
be the method of correlated basis functions in the
uniform limit, ""using a Jastrow function as the
zero-order approximation to the ground state. A
method using density and phase operators as vari-
ables" could also be used. Finally, the method of
"auxiliary variables" of Bogoliubov and Zubarev"
is suitable for the present calculation, and will be
used here.

Bogoliubov and Zubarev wrote the Hamiltonian in
the form

q-„=(2N)-"~-'p- (10f)

The perturbation term H' in Eq. (10a) will not be
written out explicitly; it may be found in Ref. 14
or 15. The term H' is a trilinear form in the
operators bk and b-„." Bogoliubov and Zubarev
have calculated the ground-state energy to second
order in H'.

The problem at hand is the calculation of the
ground-state energy to the same order and using
the same techniques as Bogoliubov and Zubarev,
but the Hamiltonian to be used is the modified
Hamiltonian H* of Eq. (7). With Eq. (10f), Eq. (7)
may be written as

1H* =H X-'~'
k 0 k kj yk2'k3

kg, k2, k3

x (b- A- b - )(b- + b - )(b A. b - ).kl -kl k2 -k2 k3 -k3

Because the correction to H in this equation is a
trilinear form in the operators bk and bk, it may
be treated as a perturbation on an equal footing
with the physical perturbation H' appearing in Eq.
(10a). Repeating the procedure of Bogoliubov and
Zubarev, one finds the ground-state energy E* of
the Hamiltonian H* to be

E, =-,'n'Qv (0) +-,' g [)}(k)—k 'k'/2m —n v(k)]

(10e)

The operators bk are defined for kc 0 by

and

k 'k'/2m
k k'/2m + 2n v (k )

'

(10c)

(10d}

E+ -E+ pE++E++ ~ ~ ~
0 j. 2 y

where

E0 —E,

(11a)

(1lb)

(11c)
The zero-order energy E, is given by

128=— T, (q, ~ q, q, )
' k, k, '

(1 —1,')(1 —1') ~ c.p. ~ 31,1 k,A„,)k~, k2

A2
k, k, ' (1 ~ 1,')(1 ~ 1,') c.p. 31,1,1,A„,}.Sm (11d)

In Eq. (lid), k, is defined equal to -k, -k„the
arguments k„k„andk, of various functions have
been suppressed in favor of the indices 1, 2, and
3; and the notation f», + c.p. means f», +f», +f», .

Given Eqs. (lla}-(lid) for the ground-state ener-
gy, the calculation of the structure functions S(k)
and T(k„k„k,) to this order in perturbation theory
is an exercise in differentiation With Eq.. (8), one
obtains for the three-particle structure function
the expression

I 3

x [ k, ~ k, A.', (I X+', A', ) + c.p. ] . (12)

This equation has been obtained previously by
Sunakawa, Yamasaki, and Kebukawa, "but they
did not note its significance. In the present con-
text, Eq. (12}is interesting because it contradicts
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the convolution approximation. The convolution
approximation for T(k„k„k,) is'

(13)T,(k„k„k,) = 5k, ), ,~ 0 S (k, )S (k, )S (k~).

As will be shown shortly, the structure factor, in
lowest order of perturbation theory, is given by

S,(k) =~'„ (14)

so that, for the weakly interacting Bose gas, the
convolution approximation assumes the form

(15)

at variance with Eq. (12). Both Eqs. (12) and (15)
attain the proper limiting value for the ideal Bose
gas (i.e., in the limit )).',. -I, i =1,2, 3), but there
is otherwise little similarity. While the convolu-
tion approximation has proved empirically useful
for the ground state of liquid helium, the present
result shows that it gives an incorrect description
of the three-particle correlations of the ground
state of a weakly interacting Bose gas, even to
lowest nontrivial order in perturbation theory.

For the computation of S(k) it is necessary to

differentiate the ground-state energy with respect
to v(k}, according to Eq. (9). The differentiation
of E,*=E,of Eq. (10e) yields

S,(k) =~,', (16a)

in agreement with Eq. (14). Since E,*=0, one sees
further that

S,(k) =0. (16b)

h2
E2 = k, (l —A, )(l —x2)(l —X2)

ky, k2

x [k, ~ k, A.', (1 —A.', )(1 —A', ) + c.p. ] '.

Differentiating this expression with respect to
v(k), one finds the second-order correction to
S (k):

Prior to the differentiation of E, of Eq. (lid), it is
convenient to rewrite it (for A», =0) in the form"

k2 k2
S,(k, ) = Q 4)(.', 1+~+~ (1 —x,')(I —x', )+(hE, A'A. ', ) ' n,E„,'—

"2

h2 2 4m'. ' 6 2

& —k, ~ k2~', 1 —A.', 1- '+c.p. —4E»,X',~', '
2 2 ky'k2 ', 1 —~', 1 — ' +c p.

1

@2
x k, k, k,'(1 —1,') ~—k, k,k,'(1 —1',) ——k, k, (1 —1,')(1 —1',)j (16)

where

k3= -k, -k2,

been chosen.
The Fourier transform v(k} of the interparticle

potential assumes the for m
and

jp
AE

2m

v(k) =4ve'/k' k x 0,

v(0) =0. (19)

This result has been obtained previously, "but is
rederived here for application to the charged Bose
gas at high density, where it represents the exact
leading correction to the structure factor.

Properties such as the ground-state energy are
then functions of a single dimensionless param-
eter, the average interpart;icle spacing in units
of the Bohr radius,

III ~ CHARGED BOSE GAS AT HIGH DENSITY (
1 )'e'me*

(20)

The analysis to this point has employed the meth-
od of "auxiliary variables" of Bogoliubov and
Zubarev, "together with a convenient form of per-
turbation theory. It must be recognized that the
ordering of the perturbation series has been ac-
complished in a formal way; to give a unique clas-
sification to the terms appearing in perturbation
theory it is necessary to introduce an expansion
parameter. For this purpose the high-density
charged Bose gas with neutralizing background has

E/X = -0.8031r, '~'+ 0.0275 k
~ ~ ~ . (21)

The first term arises from Eq. (10e) for Eo, once
the specific form (19) is used for v(k) and the sum
is converted to an integral. It was first obtained
by Foldy. " The second term, proportional to &,',
arises from Eq. (IV) for E, or, equivalently, from
Eq. (11d}for E,* with A», —-0. It was first obtained

For example, the ground-state energy per particle,
measured in units of me'/2K' is
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/1(f) -0.065' as f 0 (24a)

by Brueckner. "
An expansion in powers of &' ' for the structure

factor, analogous to Eq. (21) for the ground-state
energy, has the form

(22)

where t is a dimensionless wave vector, defined
by

4

t =k(h'/16mne')' '
The function fa(t) may be extracted from Eqs. (10d),
(16a), and (19):

f.(~) =&'(1+~') " (23)

The function f, (t) is similarly extracted from Eq.
(18), after converting the sum to an integral. "
The integration was performed numerically and the
result is displayed in Fig. 1. The asymptotic be-
haviors of f, (t) are

method of correlated basis functions to study the
excitation spectrum of the charged Rose gas in
the high-density limit. Starting with the optimum
Jastrow function as the correlation function (ground-
state wave function), they computed the excitation
spectrum e(k) to two orders in r, 'i'. This result
agrees with previous work by Ma and Woo." Next,
the calculation was repeated using the exact ground
state as the correlation function, to obtain the
(same) excitation spectrum e(k) to two orders in

r, 'i' Th.e function e(k) depends explicitly on the
exact structure functions S(k) and T(k„k„k,).
Making the convolution approximation (13) for
T(k„k„k,), they obtained e(k) as a function of
S(k) alone, and used the equality between e(k) and

e(k) to extract S(k} itself to two orders in r, ' '.
Using the theory of correlated basis functions

we present a corrected calculation of e(k), the
energy of an excitation, using the exact ground
state as the correlation function. Following Bhatta-
charyya and Woo, one finds

and

f, (t)-0.423t ' as t-~. (24b)
e(k) =e (k)+e, (k)+ ~ ~,

where

(25a)

Also shown in Fig. 1 is the result of an independent
calculation by Bhattacharyya and Woo of the same
function. ' The disagreement is evident. Their
unpublished data points" show the largest percent-
age discrepancy at small t, where they find

e (k) =5'k'/2mS(k},

with

(25b)

(25c)

/1 (t) 0 043[ f 0

about 30% less than the values given by Eq. (24a).
The difference between f, (t) and fi"(t) is due to
Bhattacharyya and Woo's use of the convolution
approximation for the three-particle structure
function, as will be clear shortly.

Bhattacharyya and Woo employed the powerful

0.03-

0.02-

0.0 I—

0 0.4 0.8 I.2 I.6 2.0 2.4

FIG. 1. Solid line: leading correction f |(t) to the
structure factor for the charged Bose gas at high density,
as a function of the dimensionless wave vector t. Short
dashes: the result f & (t) reported in Ref. 10. Long
dashes: the function af &(t) computed as a correction to
f 1 (t).

( -k,
i Hi k„k,) = —(6'/2m )[NS (k, )S (k, )S (k, )] ' i'

x [k, ~ k S (k, ) +k, ~ k, S (k )

+k2S '(k, )T(k„k2,k~)]. (25d)

Momentum conservation in the matrix element
makes the notation k, =- -k, -k, convenient. The
one- and two-phonon (or plasmon} states appearing
in Eqs. (25c) and (25d) are formed by multiplying
one or two factors of pk, respectively, by the exact
ground state. These states are then normalized
and made orthogonal to one another and the ground
state by means of the Gram-Schmidt orthogonaliza-
tion procedure. It should be emphasized that Eq.
(25d) is exact for an arbitrary interacting Bose
system of infinite extent, subject only to the re-
strictions that k» k» and k, are not zero and that
no pair of these vectors are identical.

Since e, (k) in Eq. (25c) is a small correction to
the excitation spectrum, the functions S(k) and

T(k„k„k,) which are necessary for its evaluation
may be replaced by their values in the lowest,
nontrivial order of perturbation theory, given by
Eqs. (16a) and (12), respectively. Bhattacharyya
and Woo incorrectly used Eq. (13) for T(k„k„k,)
in Eq. (25d} to obtain the value for the correction
to the excitation spectrum, which we designate as
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e,""(k). Since their method for the calculation of
the leading correction to the structure factor in-
volves the comparison of two distinct perturbation
expansions for e(k), the difference between e,""(k)
and e, (k) contributes a correction to their value
for S,(k), i.e. ,

AS, (k) = (2mS'(k)/k 'k')[e, (k}—e""(k)]. (26)

For the charged Bose gas at high density the func-
tion bS, (k) was obtained by evaluating the necessary
integrals numerically. The function

IV. QUANTUM HYDRODYNAMICS AND THE THREE-

PARTICLE STRUCTURE FUNCTION OF LIQUID HELIUM

In order to obtain some quantitative information
about the structure function T(k„k„k,) of the
liquid-helium ground state we turn to Landau's
theory of quantum hydrodynamics. "'" The Hamil-
tonian has the form

H = d'r[-,'mp(r) v~(r)+ $(p(r))], (27)

where v(r) is an operator representing the hydro-
dynamic flow velocity and $(p) is the energy per
unit volume of the stationary liquid at the density
p. The function $(p) may be expanded about the

equilibrium point p =n as

8 ( p) = 8 (n) + 2 (m c'/n) p" + ~ (m c'/n') (2u —1 )p" + ~ ~ ~,

b f, (t) = r, ' 4C—S,(t(16vmne'/h')' ')

is displayed in Fig. 1. With this correction, the
results of Bhattacharyya and Woo" agree with our
result (obtained by direct calculation), to within
the 1% accuracy of the numerical integrations.
Therefore, the function b f, (t) is a direct quantita-
tive measure of the error caused by the convolu-
tion approximation for the three-particle structure
function.

The analysis in Chap. 2 of Feenberg's mono-
graph' can be employed to prove that the convolu-
tion approximation is exact in leading order if
the actual ground-state wave function is a Jastrow
function. (Bhattacharyya and Woo evidently as-
sumed that a Jastrow function could adequately
represent the ground state. ) The failure of this
approximation thus shows that a Jastrow function
is not sufficiently flexible to represent the ground
state. Errors, similar to those found here, must
be expected in the theory of the ground state of
liquid He if the convolution approximation is em-
ployed or if the wave function is assumed to have
the Jastrow form.

p(r) —n, c is the speed of sound, and u is the
Griineisen constant

u -=(n/c) Bc/Bn. (29)

For the present purposes the velocity operator
v(r} may be regarded as irrotational; it may be
written in terms of a phase operator o(r):

v(r) = (k/m) Vo(r).

Landau's commutation relations'~ for p(r) and

v(r} then reduce to simple canonical forms in

terms of p'(r) and o(r):

(30)

[o(r), p'(r')] = -i6(r —r'), (31a}

H =- d'r ~mnv' r +g n +~ mc' n p" r

(32a)

=Oh (n) + Qkck(v-„v-„+-,'),
]f

where the phonon creation and destruction opera-
tors are defined for ke0 by

pk = i( iKVk/2mc)'~'(-m& —v -„),
o-„=2 (2mc/I)' t'(v-„+v -„),

(32b)

(33a)

(33b)

where

v--=0 ' d're '"'v r, (34)

and p& is defined in Eq. (4}. Inspection of Eq.
(32b) shows that the ground-state energy is ill-
defined unless an ultraviolet cutoff is introduced.
Such behavior must be expected in any hydrody-
namic theory, of course, and indicates that any
results must be restricted to long wavelengths.

The ground state
l Q, ) of H„i.e. , the vacuum of0

the operators m-„and m-„, does not represent the
ground state of the full Hamiltonian (27) accurate-
ly enough to give nontrivial information concerning
the three-particle structure function. The zero-
order result for T(k„k„k,} is

& '(Aolpz, , pr, ,pu, l&4&=0i (35)

because p-„ is a linear function of m „and n -„.For
this reason it is necessary to consider the effect
of the trilinear terms in Eq. (27):

HI: d x 2mp' r v' r

[o(r), o(r')] = [ p'(r), p'(r')] =0. (31b)

The quadratic part of the Hamiltonian (27) may be
immediately diagonalized:

where p'(r) is the density-fluctuation operator

(28) + 8 (mc'/n')(2u —1)[p'(r)] j.
Taken to lowest order, H, introduces a three-

(36)
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phonon correction
I P, ) to the unperturbed ground

state
I p, ),"

&4.1 v«, &»,xi», ffil y, )
3! kc(k, +k, +ks)

kl~k2~k3

range interactions, a special case of the formulas
developed in Sec. II. For this case, the speed of
sound is

c =Inv(0)/m]'~',

xv~ vt pt ly, }.
kl k2 k3

(3'f) and, with Eq. (29), the GrQneisen constant is

Thus the three-particle structure factor is given to
lowest order by

T(k~, k„&~)=& '(& 401 p» p», &i, l 4i&

+ & 4, 1 p», p», p», I 40»

~ith Eqs. (4), (33), (34), (36), and (3V), together
with the properties of the operators n k and w k, the
necessary matrix elements can be evaluated to
obtain the explicit result

k, k,k,
1 2 3' mC l+ 2+ 3

kl k2 k2 k3 k3 kl+ kk + kk +
I 2 2 3 3 1

valid for k, «n' ', i =1, 2, 3. Higher-order con-
tributions to T(k„k„k,) contain sums over wave
vectors which diverge or depend upon an arbitrary
ultraviolet cutoff. Thus, if quantum hydrodynamics
is to yield a sensible result for the structure func-
tion T(k„k„k,), that result is given by Eq. (39).

One interesting feature of the hydrodynamic form
(39) for T is that it is negative, since u —= 2.84 for
liquid helium at zero pressure. " On the other
hand, for k„k„andk, large compared to n' ',
interactions in the liquid should be unimportant"
and the positive ideal-gas value for T will be at-
ta.inc d,

Consider a triangle with sides k„k„andk, with
variable size but fixed shape. Then T has the form

T (k„k2,k~) =Ag(k, ),

where A is a positive constant depending on u and
the angles of the triangle, and g(k, ) is a function
of k, alone. Then g(k, ) is negative and propor-
tional to k', for small k„and attains a positive
value at large k, . Thus the function g(k, ) must
have at least one' minimum and must cross through
zero in the intermediate region kl' n' '.

Since the hydrodynamical result (39) for the
three-particle structure function is apparently
new, and since the use of quantum hydrodynamics
for this case may be subject to some question, it
is highly desirable to make any possible checks
of the formula. One such check is the special case
of the weakly interacting Bose gas with short-

Substituting these values into Eq. (39), one finds
complete agreement with the long-wavelength limit
of Eq. (12), verifying the result of quantum hydro-
dynamics for this case.

A much more significant check can be made by
employing thy theory of correlated basis func-
tions" to calculate the strength of the three-
phonon vertex for liquid helium. Equation (25d)
gives the strength of this vertex, if S(k) and
T(k„k„k,) are known. The long-wavelength be-
havior of S(k) is"

'S(k) =kk/2mc, k- 0,

and that of T(k„k„k,) is given by Eq. (39). For
phonons "on the mass shell, " i.e., assuming ener-
gy conservation, Eq. (25d) reduces to

& -k, IHIk„k,)

, (k 'c/2mÃ)' '(u+1)l(k +k, )k k ]' '

(41)

where the vectors -k» k» and k, are very nearly
parallel since the phonon spectrum is approxi-
mately linear at long wavelengths. The corre-
sponding matrix element given by quantum hydro-
dynamics has the same numerical value, "

&0lv «H, s» v» l0&=&-k, lfflk„k,), (42)

provided -k„k„andk, are nearly parallel, even
though these matrix elements are different when
taken off the mass shell. The damping of sound
waves in superfluid helium at low temperatures
proceeds via this three-phonon vertex. Detailed
theoretical calculations" "depend upon the pre-
cise shape of the excitation spectrum at long wave-
lengths, but are in fair agreement with extensive
experiments. " " Thus one is led to the belief
that the matrix element (41) is reliable. The only
serious assumption necessary for the derivation
of Eq. (41) is that the long-wavelength limit of
T(k„k„k,) is given by Eq. (39). Thus the relation
(39) for the small-k behavior of T(k„k„k,) is
indirectly supported by experimental measure-
ments.

V. CONCLUDING REMARKS

The three-particle structure function in the
ground state of a Bose fluid has been discussed at
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some length. The model of the charged Bose gas
at high density shows that the convolution approxi-
mation fails to describe even the leading correc-
tion to the ideal gas. More generally, it is clear
that a quantitative theory of the ground state and
low-lying states of liquid helium requires an ac-
curate dynamical treatment of the three-particle
correlations. Empirical approximations for the
three-particle structure function' ' or restriction
of the ground-state wave function to the Jastrow
form""'" immediately obliterate the three-par-
ticle correlations and preclude a quantitative theo-
ry. A study of the three-particle structure func-

tion has yielded some dynamical information, but
a systematic theory —perhaps a generalization of
the Jastrow theory —is clearly required for the
future.
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