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K. L. Foster, S. Stenholm, ~and Richard G. Brewer
IBM Research Laboratory, San Jose, California 95193

(Received 1 August 1974}

A new feature of optical free induction decay (FID} is observed in a coherently prepared sample of
"CH,F by the method of Stark switching. The preparative phase is due to the resonant steady-state
excitation by a cw laser beam, and is followed by FID upon sudden application of a dc Stark field
that switches the molecular sample out of resonance. The emission is not observed as a simple decay
but instead appears as a train of sharp pulses regularly spaced in time as a result of a repetitive
interference. This situation arises because an entire set of infrared transitions within the Stark split
manifold are initially prepared, in contrast to our previous study of a nondegenerate transition. The
emission, which beats with the laser, produces a heterodyne beat spectrum, consisting of a set of
regularly spaced frequencies, that is the Fourier transform of the slowly decaying pulse progression
observed. We thus demonstrate what is the optical analog of the well-known NMR method of
high-resolution pulse Fourier spectroscopy. The detailed behavior of the pulse train agrees well with an
FID theory that assumes the transitions to be uncoupled. The subtle behavior of FID near the time
origin is explored also by approximate analytic expressions that reveal either a near zero amphtude or
sizable amplitude depending on the degree of saturation in the preparative stage. The experimental
technique discussed offers an attractive way for obtaining high-resolution optical spectra without
Doppler broadening, and for generating an optical pulse train whose time scale can be compressed by
simply increasing the Stark field.

I. INTRODUCTION

In a previous article, ' we reported the observa-
tion of optical free induction decay (FID). A mo-
lecular sample which is coherently prepared by a
cw laser beam exhibits such a decay when it is sud-
denly switched out of resonance by a Stark field.
In the case examined, a nondegenerate Doppler-
broadened infrared transition of NH, D displayed a
simple decay behavior —the emission being coher-
ent, intense, directional, and of a single frequency.
In this two-level problem, FID produces a hetero-
dyne beat signal at a detector because it and the
laser beam are spatially coincident and are sepa-
rated in frequency due to the Stark shift. Further-
more, the decay was rapid, being dominated by in-
homogeneous dephasing due to the finite width of
the velocity group affected by the steady-state
preparation.

It was presumed until recently that optical FID
would show no unusual features when several tran-
sitions of a. Stark multiplet are simultaneously
prepared. Previous observations" in CH, F have
in fact yielded a simple decay devoid of any beat
pattern because of the mutual interference of the
many beat frequencies present.

We now find, however, that if the dephasing time
is lengthened and other conditions satisfied, the
FID interferenee shows a repetitive character,
appearing as a series of sharp pulses or spikes as
in Fig. 1. This situation prevails when the Stark-
split spectrum consists of a set of regularly spaced

lines. In first approximation, these results are
explained by simple addition of the various Fourier
components of the FID. It will become evident that
the time scale of the pulse train, i.e. , the interva1.
between pulses and the pulse width, are determined
by the Stark-field amplitude and the number of
transitions.

The coherent phenomenon observed here superfi-
cially resembles mode locking in a laser, in that
several evenly spaced frequency components are
involved. It differs, however, because in this ease
the regular frequency spacing is inherent in the
transitions involved and no interaction between
them is needed. Little evidence is, in fact, seen
for a nonlinear coupling among the radiated waves.

II. FREE-INDUCTION-DECAY THEORY

We consider a set of overlapping optical transi-
tions that are simultaneously excited in steady
state by a laser field

E,(z, t) = E,coe(at -nz).

This prepares a coherent polarization in the medi-
um, which exhibits FID when a step function Stark
field is applied. The Stark field splits the transi-
tions, which then emit a set of frequencies. We
assume the various components to decay as uncou-
pled transitions, justifying the use of an analytical
solution along the lines given by Brewer and Shoe-
maker' or Hopf et aL' for the two-level problem.
When the emitted frequencies are equally spaced
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(see below) the observed signal displays a repet-
itive pulsing due to interference between the com-
ponents. The uncoupled treatment satisfactorily
explains most, if not all, features of the observed
signals.

We first concentrate on one transition a —g with
the energy difference 0 ~„. The 2x 2 density ma-
trix equation of motion,

il p = [If,p]+ relaxation terms,

gives for the quantities
t (Qt -tie)

Pab =Pabe

pbb paa

the equations

(2)

(8)

(4)

Time (psec)

FIG. 1. Free-induction-decay pulses observed in
CH3F.

1
+i((daa —0 + k V) + pat = iQE paa, (5)

—(s p„)= 2in(p. , —p„)—(a p„—r p,', )/T, . (6)

iot[ i((d., —-0+kv) +1/T, ]
((d., —0+k v)'+1/T2+4a'T, /T2

The corresponding steady-state value for the pop-
ulation difference a p„(0}displays a similar satu-

Here, we have introduced

(2 = )taaEtt/2',

and 4 pb', is the equilibrium value of pbb
—p„ in the

absence of the laser beam. Equation (5) contains
the Doppler shift k v, and we introduce the longitu-
dinal and transverse relaxation times T, and T,
directly. This simplifies the treatment of Ref. 1
slightly.

During the steady-state preparation, Eqs. (5)
and (6) yield the solution

~ (+ab+ ++ab ~+~+ jI/~2~t
+ in t), p„(0) .i[(d„+t)(v„—0+kv]+1/T2 ' (8)

For the molecules nearly in resonance before
switching, the second term is depressed by a fac-
tor (2/4(d„and hence is negligible; for molecules
in resonance with the new transition frequency,
this term provides the nutation signal. The FID
signal derives entirely, therefore, from the first
term of (8). The polarization is given by

P„=Np„e ' ' '(,p„(t))+c.c. ,

where the Doppler averaged density matrix ele-
ment is

ration behavior.
When the Stark field is switched, the polariza-

tion given by (7) radiates at the new frequency
~„+&~„. The time dependence is determined by
Eq. (5) where, for not too long a time span, we
can approximate 4p~ by its initial value. The so-
lution for t) 0 is then

p (i) = p (0)e (t(~aa+ +~ah 0+ aa)+ t/T2) t
ab ab

1
~

„2/„2 in[-i((t)„—0 +kv) + 1/T, ]e

p+ tto

Q p e ( i-2~ah+1/T2) t -(nab- 0/ +) (1/T, —ix)e '*'
x'+ 1/T', +4ot'T, /T2

dx. (10)

Here we assume that the Doppler factor can be taken outside the integral; this approach neglects some
features of the experiment which we will discuss in the Appendix. Because t )0, the integration path can
be closed in the lower complex half-plane with one single pole at

x = —i/T, (1+4(2 T,T )2'/ 22
giving the result

(i)) paa 1 tE|aaat -(ta-aa-o) t2 a -[I+(1+aalu T &T2 ) Jt/T2
inDira ' 1 2 2 2
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The polarization, Eq. (9), induces the signal field

E,(z, t) =E„(z,t)e ""' "'+c.c. , (12)

which can be calculated from Maxwell's equations
in the form

'» =2IItkNP„(P„). (13)

q (t)e-i((O+ L)1(1)~b)t-
ab ab

where the prefactor

~3/2 2 ~ 0

q (t)
NLua»E» tI»a

uk (1+4(z'TIT, )b".

(14)

X e ~tI'ab ~) /jpu [1+(1+4a Ty T2) ) f/ T2
2 2 X/2

For one transition, the results Eqs. (14) and (15)
agree with those of Refs. 1 and 4.

The total field striking the detector is (12) plus
(1}and the heterodyne beat signal is given by the
cross product

Assuming the ~ integration to contribute the optical
path length L as a factor, we get from Eqs. (13)
and (11) the result

(E')»„I =E,Q+cos(5Met) = E,Q
sin(95»t/2)

(19)

This shows that pulses occur at regular intervals
T given by

T =2II/5e. (20}

as they pertain to upper or lower transition levels.
The optical or beat spectrum, therefore, consists
of a series of nine lines, regularly spaced with a
frequency interval 5e as shown in Fig. 2.

Note that the transition strength in Q~ is given
by iI,„~(J' -M ), where J'=5 in this case, and
Eq. (16) may be evaluated numerically using (18).
We assume for simplicity that the Stark bias fi.eld
is zero, making the Doppler factors exp[-(((),b

—&) /
k'u') all equal, and we omit damping. The result
of such a calculation is given in Fig. 3 and shows
the repetitive interference or pulsing phenomenon-
a series of prominent sharp pulses.

More insight can be obtained, however, by letting
all line strengths be equal. Equation (16) then be-
comes

(E')b I
= ,'QE,Q„(t)-e '~ ~b'+c.c.

[abl

= Q E()q~b(t ) cosE(()~bt,
[abl

(16}

An approximate value for the pulse width can be
found from the zero of the numerator of (19), or
tbT = 2II/96e = T/9, so that the pulse interval-to-
width ratio is T/AT =9, i.e. , just the number of
transitions involved. The more accurate value
deduced from Fig. 3 yields

where [ab] indicates the sum over the signals from
all transitions affected by the steady state prepara-
tion.

It now remains to complete the summation of
(16). The experiment to be discussed involves a
v3 band vibration- rotation inf rared transition of
"CH, F where (J,K) = (5, 3)-(4, 3) and the upper
(5, 3) and lower (4, 3) levels exhibit a first-order
Stark splitting" in the presence of a static elec-
tric field e

&WI = —(IckyÃ/J(J+1) . (17)

The optical selection rule of interest, among the
space-quantized states, is Ale =0 so that the
change in transition frequency b,nba due to the step
function Stark field is

T/tbT = 6.25, (21)

(a)

where 4T is the FWHM value. The time scale be-
comes compressed as either the number of transi-
tions, the Stark tuning rate 5, or the Stark field

1 p. 'K p. "K
II J'(J' ~ 1) J"(J"~ ))} M

(b)
I I I I I I I I I I I I I I I

-6 -4 -2 0 2 4 6 8 10
Beat Frequency (MHz)

1 p. 'K p. "K
11 J'(J'+1) J"(J'+1)}' (18)

This is the quantity appearing in (16) where M
= -4, -3, . . .3, 4. The permanent electric dipole
moment' p. and the rotational quantum numbers
J and K are labeled by single and double primes

FIG. 2. Heterodyne beat spectrum of CH3F free in-
duction decay. The experimental conditions are the
same as in Fig. 1. A Hewlett-Packard 8553B spectrum
analyzer was used. (a) Observed spectrum. (b) Pre-
dicted spectrum. The vertical scales are linear. In
(a), beats are not seen below -5 MHz due to instrumen-
tal limitations.
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e increases.
If the optical selection rule is not bM=0 but

rather 6M=+1, similar arguments lead to

(E')b„, = 2E,Qcos(&et)
sin(95et/2)
sin 56t 2

when in (16) we introduce

(22)

III. THE EXPERIMENT

The Stark-switching technique' ' and the experi-
mental design for monitoring optical coherent
transients has been described previously and does
not require extensive elaboration here. A cw CO,
laser beam of -1 W traverses an optical Stark cell
containing a low pressure gas (-100 p Torr), a
sample of "CH,F, before striking a germanium-
gold-doped detector. Transient signals are stored
in a Princeton Applied Research box-car integrator
(pAR 160) before being displayed on an X- Y record-
er. The P(32) CO, line at 1035.474 cm ' is utilized
as it conveniently falls within the 66-MHz Doppler
width of the v, band line (J,K) = (4, 3)—(5, 3} of
"CH,F, which is 90/0 enriched.

The principal modification in the apparatus is the
use of a large optical Stark cell having a 2 in. gap
spacing and an optical path length of 18 in. By
means of a Galilean telescope, the laser beam is
expanded from -0.1 to 2 in. diameter to match the
transverse cell dimension. The longer path length
affords a higher sensitivity and thus a lower gas
pressure than the smaller cells previously used,
thereby reducing the dephasing from molecular
collisions. The increased laser-beam diameter,
on the other hand, reduces the inhomogeneous de-
phasing expressed in (15) (o. = p„EJ2h is smaller).
The FID signals thus persist about one order of
magnitude longer in time than in previous studies,
i.e. , for about 7 p, sec. It is primarily for these
reasons that the repetitive interference pulses can
be so clearly seen.

Figure 1 illustrates the FID pulse train for 4M
=0 selection rules, and Fig. 2 gives the observed
beat spectrum for the same experimental conditions
with the predicted nine-line spectrum underneath.
The observed pulse interval T =860 nsec agrees

1 p, 'K(Ms1) p, "KM
b// g JI(J/ + 1) J//(J// y 1)

~ (™~//)e /

(23}
p, 'K

J'(z+/)) '

The behavior of (22) has the same characteristic .

pulse interval and width as (19), but in addition,
it is modulated by cos+~t which interestingly
causes some of the pulses to be positive and others
negative.

well with the observed beat interval 1.166 MHz (858
nsec), but differs slightly from the calculated value
890 nsec based on Eq. (18), probably due to an un-
certainty in the Stark-field measurement. For
this run, the pressure was 100 p. Torr and the Stark
field 25.1 V/cm.

The pulse width in Fig. 1 is found to be 4T = 150
nsec so that T/n, T=5.7, which departs slightly
from T/nT =6.25 predicted in (21). Since the pho-
todetector's rise and fall time can contribute -30
nsec to the total pulse width, the pulses are cer-
tainly narrower and a more accurate measurement
would approach the prediction even more closely.

The beat spectrum of Fig. 2, it will be noted,
contains at least eight weak beats in addition to the
predicted nine-line spectrum. We believe that
these additional beats are an artifact produced by
electronic nonlinearities rather than by optical po-
larization nonlinearities. A numerical Fourier
transform of Fig. 2(a) does not agree accurately
with Fig. 1 as it should, and, in fact, does not
reproduce the weak triplet of pulses lying between
two principal pulses. Optical nonlinearities also
appear unlikely for the reason that the FID intensi-
ty is only -1 p.W.

On the other hand, a numerical Fourier trans-
form of Fig. 2(b) or Eq. (16) results in the pulse
train of Fig. 3. The first three main pulses are
shown where damping and the finite spectral width
of each beat have been neglected. We now see that
the triplet structure emerges in agreement with
Fig. 1; the triplet is a consequence of the sin(95et/
2) term of Eq. (19) which performs eight zero
crossings between two large pulses. The close
correspondence between Figs. 1 and 3, in this re-
spect, is strong confirmation that the model of un-
coupled transitions closely represents the obser-
vations.

Experiments with Allf = ~1 selection rules give
more complex pulse trains than Fig. 1 where some
pulses show positive, and others negative, excur-
sions in conformity with (22). We have not studied
this case in any detail as the signals are weaker
than the Qlf =0 case.

bet/2m

FIG. 3. Free-induction-decay pulses calculated from
Eq. (16) where the x axis is in nor~~&ized time units
5 et/2x.
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It is tempting to consider the use of higher Stark
fields that would have the effect of compressing the
time scale of the experiment. Rather modest fields
of -25 V/cm have been applied here but it should
be possible to achieve -100000 V/cm correspond-
ing to -50 psec infrared pulses. In addition, our
best spectrum is the optical analog of the fast-
Fourier-transform pulse technique that has been
so successfully used in high-resolution NMR spec-
tra.
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APPENDIX

Here we consider some of the details of the eval-
uation of the FID signal, Eq. (11). The calculations
show that the signal for short times depends on the
details of the velocity distribution in a more subtle
way than the straightforward evaluation in the text.
This clarifies an apparent discrepancy between the
work by Liao and Hartmann' and the simple expo-
nental decay used here and previously derived in
Refs. 1 and 4.

The integral to be calculated in Eq. (10) is of the
form

we have set x=0 in the Gaussian on account of the
fact that

r«g. (A2)

We wish to consider this approximation in some
detail.

The exact relation

1 dA(t)
B(t) = —r (AS)

A(t) = e '"e '
x'+ l' (A4)

by writing

r s '* -I'I ldx'+ I' (A5)

can easily be proven and it suffices to evaluate
A(t} Whe. n only A(t) is needed, the inequality (A2)
justifies the removal of the Gaussian from the
integral, but for B(t) this is a moot point. Namely,
for small t the 8 integral becomes logarithmically
divergent at infinity and only converges thanks to
the rapid oscillations of the exponential for large
x. Thus, some care is needed when the limit t=0
is taken.

We can transform the integral

+ oo

, e "'e ' "-' d-x=-y A(t) B(t), -, „x'+r' (A1)
2 2

+ oo

-(x-b) /a i (x -g) r - a2 r2/4 ~e =2~ e e (AS)

where y = T, ', I"= T, ' +4 n' T,/T„ ts = II —(d,s, and
0'=ku. We separate the integral into two parts:
the A part containing the I orentzian r/(x'+ I') and
the B part, the dispersion tx/(x'+ I'). In Eq. (10)

and performing the r integral

e'e ""'dx= 2((t')(s —t+r), (Av}

we obtain

-I'lsl -(k(S-s) -cP(S-s) /Sde
2&m

-Is -&h(t-s) -a (t-s) /4 -iA(t+s) -a (t+s) /4
2

2&ir
(AS)

For 0» I', Aand t ) v ' we can replace the Gaussian by a delta function

e '= ()(x)
2&ir

and Eq. (AS} gives

A(t)=((e " .

At t =0, Eq. (AS) is exactly

(A9)

(Al0)

A(0) = s( e 'e ' ~s2 cosas ds .
2Am

(A11)
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When 6=0, this is easily seen to give A(0) =w in the limit (A2), which shows that the approximation (A10)
is valid also for small values of f.

To obtain B(t) we apply (A3) to (A8) and find that

1 0
ao

B(t) w de e-Is
(

e-i&(t -s)e-a (t-s) /4+e-) &(t+s) -a (i+s) /4}r 2&ir „, dt

1 - I's
( e -it1(t -s) - a2(t -s)2/4 + e- i t(1t+ s) e- a(t 44) /4}r 2am „', ds

-rs( -tt)(t-4) -a'«-s) /4 -tt(t+s) a (t+s) /4)" 2& (A12)

B(0)=w' e 'e ' '/ (2isinAs)ds,
2vw

(A15)

which-is seen to vanish for resonant tuning b, =0.
Consequently, B(t) starts from zero and approaches
the behavior (A13) only after a time span of the
order of (I '. On the other hand A(t) is described
by (A10) for all times.

At the initial time only A(t) is observed, but going
back to (Al), we can see that its contribution is
suppressed by the factor

y 1
Z (1 +4(22T T )1/2 (A16)

For an intense optical field, the molecular system
is strongly saturated during the preparation and
this factor becomes very small. We then expect
the FID signal to start from a value near zero and

where the last result is obtained by an integration
by parts. Note the simple relation between (A8)
and (A12).

For large times we can again use the limit (A9)
and obtain

B(t) =we-"

an approximation which is consistent with (A10)
through (AS). The observed signal (Al) is written

(y/)')A(t) —s(t)=we "'() 4, z, —)),1+4(w2TIQ ~2

(A14)

which shows the validity of the result (11) in the
main text for times t&o '« I' '.

For t& (I ', the behavior of B(t) does, however,
differ from (A13). At t =0 we obtain from Eq. (A12)
the exact result

increase to a maximum after a time o ' and sub-
sequently decay as in Eq. (11). On the other hand,
for y~ I' the FID signal has a large initial value
due to the A. term, while B is still zero, and

changes sign within a time of order o ' and ap-
proaches the behavior (A14).

For the CH, F experiment, the parameters are
ys I'=102 Hz and (I=66 MHz. Hence y)/I is of the
order —,

' and A(t) is expected to give a sizable con-
tribution at t=0. The experiments of Ref. 1 show

the simple exponential decay of (11) to dominate
the long-time behavior but the short-time behavior
-a '- 10 nsec has not been experimentally resolved
yet.

Liao and Hartmann' suggest an initial zero in the
optical FID signal in ruby on account of the obser-
vation of a notched photon echo. Their experiment
presumably takes place in the regime where the B
component dominates.

For resonant tuning 4=0, and short times, we

expand the integral (A12) in a power series in time.
We can see that only odd terms contribute and

B(t)=w dse 'e ' ' so'st+0(ts)
2&x

=Rir(rt +0 (t 2),

where the limit (A2) is used.
Equation (A17) again shows that B(0)=0, and gives

a behavior which for short times agrees with that
found by Anderson and Hartmann' for spin reso-
nance. Their result is obtained when the Lorentzian
is omitted from (A4), in which case the integration
is simple and (AS) shows that B(t}aa t exp(-const t').
For times of the order I ', the Lorentzian be-
comes essential and their result differs from the
presently found behavior (A14) leading to Eq. (11)
of the text.
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