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Spherical probes and quantized vortices: Hydrodynamic formalism and simple applications*
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The velocity field of an ideal 'fluid in the presence of a moving spherical boundary and a vortex line

of arbitrary configuration is found, and the hydrodynamic force acting on the sphere determined. Using

this formalism, one may compute the motion of the sphere and the vortex line in the general case

where the sphere has inertia and is subject to externally applied forces. The resulting algorithm can be

utilized to study the complicated hydrodynamic interactions between charge carriers and quantized

vortices in superfluid helium. As simple examples of the application of the hydrodynamic formalism„

the force exerted on a moving sphere by an instantaneously rectilinear vortex is evaluated, and the

interaction of a vortex ring with a fixed sphere is considered.

I. INTRODUCTION

The theory of vortex filaments in an ideal fluid
has attracted renewed interest in recent years as
it has become apparent that quantized vortices in

superfluid helium represent a very good physical
realization of the ideal vortex-filament concept.
Perhaps the most convincing demonstration of this
has been the discovery of quantized vortex rings
and the observation that they behave in accord
with the predictions of classical hydrodynamics, '
but many other elegant experiments have also ex-
hibited effects arising from the presence of quan-
tized vortices under various conditions. Among
such experiments, some involve presumed arrange-
ments of vortex lines and bounding surfaces of
sufficiently high symmetry to permit at least an

approximate analytical treatment of the xelevant
vortex dynamics. For example, a rotating bucket
of superfluid is generally assumed to be filled with

a forest of rectilinear vortex lines directed along
the axis of rotation with a density 2Q/a'„where
0 is the angular speed of rotation and a, =h/m
is the quantum of circulation. Experiments such
as the measurement of the attenuation of second
sound by the vortex lines, ' or the oscillating-disk
measurements of Hall, ' presumably do not involve
sufficient local vortex line distortions to destroy
this high degree of symmetry. Similarly, experi-
ments on the energy loss of large quantized vortex
rings, "on vortex rings normally incident on a
plane boundary, ' and on rings passing through
holes in a plane boundary" have been analyzed on
the assumption that the system in question remains
axially symmetric.

Many of the most interesting experj. ments, how-
ever, deal with vortex-line dynamical effects
which, while qualitatively transparent and easily
formulated in principle, involve configurations
too complicated for an analytical treatment. For
example, charge carriers moving across a rotating

bucket can be trapped on the rectilinear vortex
lines filling the bucket, because of the strong short-
range hydrodynamic interaction between the probe
and the lines. ' The charge carriers can to a good
approximation be thought of as very small spheres,
and the relevant hydrodynamic problem is there-
fore the encounter of a sphere with an initially
straight vortex line [Fig. 1{a)]. Experiments have
also been performed in which a beam of quantized
vortex rings is passed through a rotating bucket'o
or through a second beam of rings. " In this case,
one must consider a vortex ring incident on an
initially straight vortex line [ Fig. 1{b)], or on
another ring. Yet another related type of problem
arises when one considers the creation of quantized
vortex rings by rapidly moving charge carriers. "''s
Various hypothetical descriptions of the actual
creation process have been proposed, "'"and most
recently it has been shown that a generalized Landau
argument based on energy and momentum conserva-
tion yields critical velocities for ring creation that
are in qualitative agreement with experiment. "
This argument predicts that the ring should first
appear girdling the spherical charge carrier,
roughly as in Fig. 1(c), and therefore the subsequent
hydrodynamic development of such an initi. al con-
figuration must be considered in wox'king out the
implications of the model. Finally, neutral vortex
rings have been detected by letting them pick up
a bare charge. " Thus one is led to consider a
sphere and a vortex ring incident on each other
[»g. 1(d)l.

The situations indicated in Fig. 1 will develop
in rather complicated ways with time. In addition,
a realistic interpretation of the various relevant
experiments must take account of the random
changes which arise as the ever-present elementary
excitations scatter off the vortex core and the
charge carrier. It is therefore not surprising that
the many interesting experiments relating to these
somewhat messy kinds of pxoblems have not yet
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10 SPHERICAL PROBES AND QUANTIZED VORTICES: 2307

been subjected to extensive theoretical analysis.
Two relatively simple special cases have been
considered in detail. The interaction of a vortex
ring with a rectilinear vortex line in the absence
of normal-fluid effects has been calculated on the
basis of the classical hydrodynamic formalism,
and good agreement with experiment has been ob-
tained. " At the opposite extreme, the trapping
and evaporation of charge carriers by rectilinear
vortex lines has been rather successfully ex-
plained' "on the basis of the phenomenological
assumption that the hydrodynamic interaction
between the carrier and the line can be represented
by an effective potential well, with the charge
carriers thermally diffusing into and out of this
well. Such a picture seems reasonable in the
limit where the carrier mean free path against
excitation scattering is very short compared to
the size of the well, but it is expected to break
down at temperatures below -1.5 'K.

It is possible to develop a somewhat more unified
approach to this general class of problems, an
approach based on the ideas that up to a certain
point ideal fluid dynamics is an adequate approxi-
mation for describing the interactive motion of
charge carriers and quantized vortex lines on the
microscopic level, and that the effect of elementary
excitation scattering is to give rise to suitable
random instantaneous changes in the velocity of
the charge carrier and in the vortex line con-
figuration. Let us consider the time development
of some initially specified configuration, such as
those in Fig. 1, in the presence of elementary
excitations. The sphere is assumed to have mass
M, and will respond not only to the forces exerted

b.

on it by the fluid, but also to an external force
e8 when an electric field is present. Suppose now
that one describes the instantaneous configuration
of the system in terms of some set of parameters,
such as the coordinates of a sufficient number of
points on the vortex line and the position and
velocity of the sphere. For convenience of discus-
sion these parameters can be thought of as defining
a space. A given initial configuration defines a
point in this space, and the subsequent hydrodynam-
ic motion of the system can be represented as a
path in this space. The totality of possible time
developments for all initial conditions is then given
by a system of paths in the parameter space (Fig.
2). In order to generalize this schematic picture
to include the effects of the elementary excitations,
one may make the reasonable assumption that the
relevant scattering events take place on a very
short time scale compared to the times over which
signif icant hydrodynamical changes occur. The
effect of a scattering event is then to "instanta-
neously" modify the configuration of the system,
causing it to jump to.a different path in parameter
space. Thus a system starting at A. in Fig. 2 will
no longer follow the path to B, but, as it suffers
random changes due to scattering, will instead
undergo a kind of Brownian motion among the
various paths in parameter space. In a typical
experiment many such "systems" are present
simultaneously, a situation which can be repre-
sented in terms of a distribution of points in the
parameter space, with each point undergoing
such a motion.

To treat a given problem of interest in terms
of this generalized kinetic model, one needs both
to work out the various hydrodynamic paths that
the system can follow in parameter space and to
determine the rate at which the system is scattered

d.

/

/

/

FIG. 1. Encounters between spheres, vortex rings, .

and vortex lines that are of interest in the interpretation
of various experiments discussed in the text.

FIG. 2. Schematic rendering of the generalized Brown-
ian motion undergone by a sphere-line hydrodynamic sys-
tem in the presence of elementary excitations.
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is given to a local region of length AL of the
vortex is therefore accompanied by an impulsive
displacement 6 of the vorticity distribution. I
is of course just equal to the momentum lost by
the elementary excitation as it is scattered, so
that

A complete formalism in terms of incident wave

packets can be worked out, but the important
qualitative idea is that excitations scattering off
the vortices give rise to stochastic fluctuations
in the configurat~«of the vortices.

When a situation involving both charge carriers
and vortices is considered, the stochastic fluctua-
tions of the system points in paxameter space mill

more generally consist of changes both in the
carrier velocity and in the vortex configuration.
To develop the appropriate generalized kinetic
theory, one needs the transition rate I'(P, -P,'),
defined as the probability per unit time that a
system with parameters I', mill be scattered to
the state P,' by the elementary excitations that
are present. The calculation of I'(P, -P,') appears
at present to be feasible only when the wavelength
of the excitations is small compared to both the
spatial separations between'the interacting objects
and the minimum radius of curvature of any vortex
line. In this limit, the elementary excitations
scatter independently off the charge carriers and

the effectively straight vortex lines, and I' may
be determined from the differential cross sections
for such relatively simple processes. In particular,
our understanding of how the excitations scatter
off the charge carriers has advanced to the
point' ' "where it can easily be incorporated
quantitatively into our general framework. At-
tempts to calculate differential cross sections for
the scattexing of phonons, rotons, and He' im-
purities by rectilinear vortices have also met with

some success, "'"and further progress can be
expected. One can, at least, set up reasonable
approximate models for these processes.

The considerations given above indicate the
current limitations and the possible areas of
success for a microscopic treatment of carrier-
line and line-line interactions which takes realistic
account of both hydrodynamic and stochastic ef-
fects. Briefly, one may hope to determine the
rate at which strong encounters will occur in a
given experiment, provided the elementary ex-
citations are such that certain simplifying ap-
proximations can be made. As a first step in

this direction, the remainder of the present paper

will be devoted to a consideration of the relevant
hydrodynamic problems.

II. HYDRODYNAMK FORMALISM

A. Instantaneous velocity field

The px'operties of an ideal incompressible fluid
are determined by'4

Sv/sf+ rv ~ V)v = —VP/p,

V.v=0

along with the condition that at any boundary the
normal component of the fluid velocity equal the
normal component of the boundary velocity. The
velocity field generated by a vorticity distribution
(err') = V x v in the absence of boundaries is given

by

In superfluid helium, vorticity exists only in the
form of quantized vortex lines. Except when

evaluating the self-induced velocity of the lines,
we shall approximate the vortex lines as filaments,

where &0 is the quantum of circulation. The finite
size of the core (a-I A) does not affect the accura-
cy of .the calculations, provided that the radius
of curvature of the line and its distance from any
surface remain comparatively large. As these
quantities approach a, results based on Eq. (7)
become more qualitative, and no hydrodynamic
significance can be attached to configurations with

characteristic distances of the order of a or less.
In practice the approximation of Eq. ("l) does not
introduce any important uncertainties into the
predictions of the theory.

In the event that only vortex lines are present,
the velocity field may be evaluated immediately
from Eqs. (6}and (7}. If, however, a spherical
boundary representing a moving carrier is also
present, the velocity field takes the form

is the scalar potential of the moving sphere alone,
and 4„ is the potential of the field needed to satisfy
the boundary conditions on the sphere. In Eq. (9),
b denotes the radius of the sphere, U its velocity,
and r, the position of its center.

The boundary generated field must be found by
solving
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V~4 =0
b

subject to the condition that at
~
r —r, ~

=b,

(v, +V4, ) n=0.

(10)

The approach most convenient for our purposes
is to find the contribution d4 b which arises from
the d v, generated by an arbitrary element ~, dl
of the vortex line. The total solution is then a
simple integral over such contributions, which is
easily evaluated numerically for an arbitrary
vortex line configuration. " Let the vector from
the center of the sphere to the line element define
the polar axis of a spherical coordinate system,
and the direction of d 1 perpendicular to this axis
define the zero of the azimuthal angle (Fig. 4).
Then Eq. (11)becomes

814, z„d l~ R sinssingsx, 4s (R'+b' —2Rbcoss)' ' '

(12)

where P„' is the associated Legendre function of
the first kind, and

n + —,
' „„„"P„' (cos3) sin'3 ds

n(n+1)' (R'+b' —2Rb coss)' '

where 8 denotes the distance of the line element
from the center of the sphere.

This is now a standard problem. From the known

solutions of Eq. (10) in spherical coordinates,

z, dl~ R sing ~ P I( co ss)
b 4& & ~ fl &n

n=l

expressed in terms of the velocity field, the time
development of the system can then be determined

by an iterative procedure. The rate of change of
the vorticity distribution is determined by Kelvin's
circulation theorem, "which states that a vortex
filament will move with the material particles of

the fluid. The determination of the time develop-
ment of a system in which only vortices are present
(e.g. , ring-line encounters) is then particularly
simple, since the fluid velocity at the vortex core
evaluated from Eq. (6) determines the motion of

the vortex. In practice a slight difficulty arises in

considering the effect of a vortex on itself: if the

vortex is treated as an idealized filament of finite
strength, the contribution of a point r,' on the line
to the velocity at a point r, diverges logarithmically
as r,'approaches r, ." To evaluate the self-induced
velocity correctly, it is necessary to take account
of the distribution of vorticity within the core of

the vortex. Provided that the core radius is small
compared to the radius of curvature of the vortex,
this can be done by introducing a suitable cutoff
parameter, "confining the integration to those
parts of the vortex filament for which ~r, —r',

~

~ a.
The cutoff parameter can be interpreted roughly
as being equal to the radius of the vortex core, '
and has the value a = 1.3 A for a quantized vor-
tex.' " The dynamics of, say, a ring-line en-
counter can then be worked out readily. '0

The time development of a system containing

(14)

The integral may be evaluated in closed form by
expressing P„' in terms of Legendre polynomials
and making use of known integral formulas. " One

obtains the result

tc dl b . ~~ 1 b'

n=J

I

I

I

I

I

I

I
I

/
I

The velocity potential 4b and the associated
velocity field v, may now be generated for an
arbitrary vortex-line configuration by dividing the
line up into elements and using Eq. (15). This
procedure is readily reduced to a routine numeri-
cal computation.

I

I

I

I

B. Development in time

The velocity field is tota1ly determined by the
instantaneous position and velocity of any bounda-
ries and by the instantaneous distribution of vortic-
ity. If the rate of change of these quantities can be

FIG. 4. Coordinate system for the determination of
the boundary field d4».
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quantized vortices and a fixed spherical boundary
can also be treated in a straightforward way, it
only being necessary to include the effects of the
boundary field v~ on the motion of the vortices.
A more complicated situation arises in the general
case of interest where one lets the sphere have
mass M and be acted upon by an external field
eS. Then

These distinctions allow us to state a, number of
simplifications of Eq. (19). First, the term in

84„/Bt which depends on U is the only such term
in the total force. Since 4'„represents simply a
moving sphere alone, this contribution is just the
usual acceleration reaction of a sphere in an
infinite fluid, and can be folded into an effective
mass for the sphere. Equation (16}then becomes

MU=eS+F(U), (16)

where F is the force exerted by the fluid on the
sphere. As indicated, F will depend on the ac-
celeration U of the sphere, as well as on the
velocity field. It is not a Prior obvious that the
rate of change of U can be related in a simple
way to the instantaneous velocity field, and hence
that an iterative determination of the time develop-
ment of the system is possible. However, it is
well known" that for a sphere in an infinite fluid
with no vorticity the contribution of the accelera-
tion reaction to F can be subsumed into an effective
mass, and we shall find that this simplification
also applies to the present case.

The force exerted by the fluid on the sphere is

F = — pn,
sphere

where p is the pressure and the normal n is taken
into the fluid. The flow in the immediate neighbor-
hood of the sphere is postulated to be irrotational,
and thus the pressure may be obtained from
Bernoulli's law,

M,g U=e8+F,
where

(21)

M,«U=eS+2vpb' —v, (r, , t )

Me~q
——M+ 3 mPb3, (22)

and F is now the force felt by a steadily moving
sphere. Second, the part of 84„/Bt that arises
from the motion of the sphere combines with the
term —,

' v„' to give zero, since a steadily moving
sphere in an infinite fluid experiences no net
force. Third, the surface integral over the com-
bination 84, /Bt+84, (A)/Bt yields 2«pb'(8/Bt}
v, (r, , t ), where v, (r, , t ) denotes the vortex-
generated field at the center of the sphere. Finally,
the combination 84, (B)/Bt+v„(v, +v, ) integrates

. identically to zero. The proof of the last two as-
sertions is somewhat complicated and is therefore
deferred to an Appendix. With these simplifica-
tions, the equation of motion of the sphere now

takes the form

84/Bt+ —,v'+p/p =constant, (18)
+-,'p (v, +v, )'ndS-

sphere
(23)

where 4 is the scalar velocity potential. Hence

F=p +-,'v' ndS, (19)

where the integral over 84/Bt must of course be
interpreted in the sense

I le 84

sph ~ t $ Ph $
(2O}

with S lying everywhere in the fluid.
The force may be expressed in terms of the

vortex, boundary, and moving-sphere fields by
inserting 4 =4, +4, +4„and v =v, +v~+v„ into

Eq. (19). The term 84, /Bt arises from the con-
vection of the vorticity distribution by the local
velocity field v, +v, +v„. One may conveniently
divide BC,/Bt into a contribution 84~ (A}/Bt, which

comes from the time-dependence of 4, , plus a
contribution 84~(B}/Bt, which arises because of
the motion of the spherical boundary. 84„/Bt also
splits into two parts, one arising from the accelera-
tion U of the sphere and the other from its motion.

The results given above provide a straight-
forward algorithm for computing the interactive
motion of a system composed of a spherical probe
subject to external forces and a quantized vortex
line of arbitrary configuration. At a given instant
in time, the rate of change of coordinates de-
scribing the location of the line is given by the
instantaneous velocity field at the line, and this
can be determined by the method of Section IIA.
The rate of change of the sphere position is just
given by the velocity U, and the rate of change
of U is given by Eq. (23), the right hand side of
which depends on the instantaneous line configura-
tion and the rate of change of this configuration,
both of which are already known. Thus the rate
of change of all of the system parameters can be
evaluated in terms of their instantaneous values,
and a step-by-step integration of the time develop-
ment of the system is possible. While such an

approach lacks the elegance of analytical methods,
it is well suited to the kind of problems of interest
here.
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In general, the integration of the motion of the
system is tedious, and leads to rather complicated
results. Ne therefore limit the present discussion
to tmo relatively simple examples which neverthe-
less provide some useful physical insights. %e
first evaluate the force exerted by an instanta-
neously rectilinear vortex on a moving sphere.
It will be of interest to compare the resulting
interaction with the simplified effective potential
used by Donnelly and Robertsg in their stochastic
model. Ne shall also investigate the behavior
of vortex rings incident on a fixed spherical
boundary, in order to elucidate hom an entangling
encounter arises.

III. SIMPLE APPLICATIONS

A. Force exerted by a rectilinear vortex

From Eq. (23), one can identify two contributions
to the hydrodynamic force felt by a sphere.
Rubinow and Keller" have in fact evaluated the
(v, +v, ) integral for the case of a rectilinear
vortex, and they find

pa„b'r ~ 2'"(n! )' b

2tt r' ~ {2n)!{n+1) r

where r is the radius vector from the line to the
sphere (Fig. 5). This. radial attractive force is
plotted as curve 1 in Fig. 6.

Further contributions to the force, which have
not yet been discussed in the literature„arise from
the convective motion of the vortex line. For a
straight line the self-induced motion is of course
zero, but the fields v~ and v„mill cause motion

of the line and hence contribute to (8/st)v, (r, , f ).
The primary effect of v, is to cause the near parts
of the line to move around the sphere {i.e., in the

+y direction in Fig. 5). The resulting rotation of

v, (r, , f ) generates a force contribution which is
primarily repulsive in the radial direction and
of much shorter range than that given by Etl. (24).
Curve 2 in Fig. 6 demonstrates the effect of this
correction.

The force arising from the convection of the line
by v„depends in a complicated way on the direc-
tion and magnitude of the sphere velocity. We

. note that this force is velocity dependent and in

general not radial, and that it can be made as
large as one pleases by making U large. As a
particular example, curves 3 and 4 in Fig. 6 show
the azimuthal component of the force experienced
by spheres mith radii of 17 A and 6 A, respectively,
when they are approaching the line at a speed of
5 m sec '. In terms of the geometry of Fig. 5,
this force acts in the -y direction.

In an experiment where charge carriers approach
initially straight vortex lines, one will of course
expect the lines to deform during the time of strong
interaction. However, in the high temperature
regime roton scattering mill presumably act to
damp out such deformations, at least until the

-8
tO

2

Distance/Radius

FlG. 5. Geometry used in the determination of the
force exerted on a sphere by a straight vortex line.

FIG. 6. Forces exerted on a sphere by a straight vor-
tex line. Curve 1 is calculated from Eq. (24). Curve 2
is the radial attractive force felt by a stationary sphere.
Curves 3 and 4 show the azimuthal forces felt by spheres
of radii 17 and 6 L, respectively, when they approach
the line at a speed of 5 m sec ~. Curve 5 is the force
law assumed by Donnelly and Roberts.
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probe approaches the line very closely. The force
felt by the carrier will &en consist of the strong
radial attraction shown as curve 2 in Fig. 6, plus
a relatively small nonradial velocity-dependent
correction of the type shown by curves 3 and 4.
It is interesting to note that Donnelly and Roberts'
have used the radial, velocity-independent inter-
action shown by curve 5 in developing their high-
temperature theory of charge trapping by vortex
lines. One may conclude from Fig. 6, that for
r&1.3b, their assumptions are in quite good agree-
ment with the exact hydrodynamic calculations.

B. Vortex ring incident on a fixed sphere

Vortex rings incident on a spherical surface
with a radius of 17 A were investigated in some
detail. In the numerical calculations the ring is
broken up into initially equal line segments (Fig.
7), the corresponding boundary fields d v, are
found, and the fluid velocity at the midpoint of
every line segment is then evaluated. These
midpoints are then displaced by an amount pro-
portional to the local velocity, a new set of line
elements is constructed, and so forth. The effect
of a line element on itself is obtained by analyti-
cally integrating Eq. (6) over a circular line
element constructed as shown in Fig. 7. The
resulting local contribution is

v, =z (zo/4')[ln(R/a}+In6] (2~)

where z is the unit vector out of the plane of the
figure, R is the local radius of curvature, the
term In(R/a) arises from the core cutoff, and
the term ln8 arises from the cutoff at the ends of
the element. A test of these procedures was made
by numerically studying the time development of
isolated vortex rings. Results were entirely
satisfactory, yielding stable ring propagation
velocities differing by only a few percent from
the analytical prediction

u = (t(0/4')[ln(8R/a) —~] . (26)

direction of
mo ioo

im oc ararne er

The geometrical framework of the calculation
is shown in Fig. 8. The y axis is defined as being
in the initial direction of motion of the vortex ring
and passing through the center of the sphere. The
initial displacement of the ring center from the
y axis is taken along the x axis. The configuration
then always remains symmetrical with respect to
reflection about the x-Y plane.

Results for a ring of radius 17 A incident on a
sphere of radius 17 A are shown in Fig. 9. A ring
with impact parameter zero [Fig. 9(a)] passes
smoothly around the sphere, growing and shrinking
as it does so under the influence of the boundary
field v, . With an impact parameter of 2 A [Fig.
9(b}], the ring still passes around the sphere but
becomes somewhat distorted in doing so and will
oscillate gently as it moves off into the distance.
The situation changes drastically when the impact
parameter is increased to 4 A [Fig. 9(c)]. Now
the part of the ring which approaches nearest to
the surface is suddenly captured by the velocity
field of its image and wound around the sphere.
Such irreversible entangling behavior continues
to characterize the interaction as the impact
parameter is increased further, and in Fig. 9(d)
one sees that it occurs even for rings which
have been aimed to miss the sphere entirely.

FIG. 7. Division of a vortex ring into equal line seg-
ments.

FIG. 8. Geometrical framework for the calculation
of an encounter between a vortex ring and a fixed sphere.
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Y Y

Rings aimed to miss the sphere by an amount
slightly larger than in Fig. 9(d) will suffer only

very slight distortions and propagate out to infinity.
The genesis of an entangling interaction is

readily understood by considering the behavior of
a vortex ring moving parallel to a boundary co-
incident with the y-z plane. In Fig. 10 the reader
is asked to visualize the ring as curving in from
large x below the plane of the figure, passing
through the plane of the figure at the point of
closest approach, and curving back out to large
x as it comes out of the plane of the figure. For
a plane boundary, the boundary-generated velocity
field may be found by the method of images.
Clearly, the effect of the image ring is to retard
the self-induced motion of that part of the ring
closest to the surface, so that an initially plane
ring A becomes distorted to shape B. The essen-
tial point is that the distorted part of the ring now

has a self-induced velocity component into the
surface. It will consequently approach the surface
more closely (as in C}, the effect of the image
field will be increased, and so on. The result is
that the image field "grabs" the nearest part of the

ring and runs off with it along the surface, as
shown in D. The time development of such a
pronounced loop lying along the surface soon

o', = rr(b+R)' R ~ b

—4gbg gob (2'1}

where b is the sphere radius and R is the ring
radius. Figure 12 shows the ratio of the entangling
cross section obtained from our hydrodynamic
calculations to the geometrical cross section of

Eg. (27). The agreement is in fact seen to be-rea-
sonably good over the range of 8 that we have
studied.

To conclude this section we point out that the
idealization made in replacing the finite core by
a vortex filament at the center of the core does
not lead to any major inaccuracies in the computed
entangling cross sections. It is clear from Figs.
9 and 11 that entangling is initiated when the vortex

becomes hopelessly complicated, resulting in

a vortex tangle localized at the surface. Ultimately,

of course, the ideal fluid approximation breaks
down.

Behavior very similar to that displayed in Fig.
9 is observed in the case of much larger, slower
incident rings (Fig. 11},except that the cross sec-
tion for the ring passing around the sphere without

entangling becomes increasingly large as the ring
size increases. It is of some interest to inquire
how well a simple geometrical model for the
entangling cross section agrees with the more
complicated hydrodynamic results. Naively, one

might assume that an entangling event will occur
only if the ring is initially aimed so that some
part of it will intersect the surface of the sphere.
Then

X i, y

Solid

Boundary

C. Y

X

Y

Image

\

I
I

g3(i

A

0 0
FIG. 9. 17-A ring incident on 17-A sphere, for various

impact parameters. - Projection of the ring onto the x-y
plane [as in Fig. 8(a)l is plotted at various stages in the
development of the ring.

FIG. 10. Development of a ring moving parallel to a
plane boundary. Projection of the near part of the ring
onto the x-y plane is plotted at various stages in the de-
velopment of the ring.
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is still about. 4 A away from the surface. At this
distance the vortex-filament approximation is still
quite accurate.
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4, =P g c„(t)r"Y„(3,P),
n =g m=-n

(Al)

then 4b (A}, corresponding to the boundary poten-
tial generated by a stationary sphere, is given by

n n+ ],

c,(A)=p p c„(t)b" — Y„(s, d).
n =1 m=-n

(A2)

Atr=b,

APPENDIX

In this Appendix is sketched the proof of the two
lemmas used in Sec. II B. If the velocity potential
C, is expanded about the origin of the sphere at
t=o,

m= -n
(A3)

Applying Bernoulli's law and integrating over the
surface of the sphere, one obtains"

OQ n

n =y m=-n

1, " ",„,n(2n+1}(2n+3}
n =1 m=-n

(A4)

oe n

F.=pb' P g h'" ' (-I)~A c„c„„+(3w)'t'pb' —c, „
Pl +

m=-n

where

A„=[(n-m +1)(n+m +1)/(2n+1)(2n+3)]"'

B„=[(n+m +1)(n+m +2)/(2n+1)(2n+3)]"
(A5)

l.5

I.4—

, FIG. 11. 80-A ring incident on 17-A sphere, for
various impact parameters. The path of the near edge
of the ring (point A in Fig. 8) is given here. Note that
in all cases the ring extends far beyond the right-hand
edge of the figure.

I

IO

I I

20 40
Ring Radius(5}

I

80

FIG. 12. Ratio of the exact cross section for ring-
sphere entangling to that predicted by Eq. (27). The
error bars represent the numerical accuracy of our
determination of the cross section.
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These complicated expressions are quoted here
in full because those given by Rubinow and Keller
contain several numerical errors.

The time derivative terms in Eqs. (A4} give the
contribution of a4, /at+a@, (A}/at to the total
force. The velocity v, at the center of the sphere
is, from Eq. (Al),

v, (r =0) =(3/8w)"'(c, , —c, ,)x

—i (3/8v)'~'(c, , + c, , )y + (3/4v)'I'c, ,z .
(A6)

It follows immediately from Eqs. (A4} that the
corresponding contribution to the total force is

given by

nF =2m pb'(a/at )v, (r =0). (AV)

This is one of the assertions we wished to prove.
The problem of a moving sphere has two addi-

tional complications. First, 4b will have an addi-
tional time dependence because as the sphere
occupies different positions in the fluid it will
generate different boundary fields. Secondly, a
velocity potential

C„=-2b' U ~ (r+Ut)/(r+Ut (& (A8)

representing the steadily moving sphere must be
added. Both of these effects may be included in
the formalism by writing

n 1 b n+y~
4, +4„=Q Q c„(t)+ [c„'" (t)+c„'e (t)] b"

n =1 nt=-n

(A9)

where c„'" denotes the extra terms [corresponding
to 4,(B)] arising from the effects of the sphere
motion on the boundary field, and c„"' denotes the
extra terms arising from 4„. The force equations
(A4) then still apply, provided c„ is everywhere
replaced by c„+e„'" +c„'" . The force is to be
evaluated at t =0 when the sphere is at the origin,
and will contain terms of the type

(c„+c„+c„)(cgy +cj y +cg g )

or

C', (r'+Ut) =@,(r')+Ut &'C', (r'),

8 + 8 8 8
4', (r'+Ut) = 1+U„t 2 +U, t

2g

+Ug t—
88

(Al 1)

and of the type (d/dt)(c, „+c,'"„+c~~2' ), evaluated
at t =0. Contributions from c„cj „and from
dc, /dt arise from the combination a4, /at
+a4, (A)/at+-,'(v, +v, )', the first part of which
we have already discussed. Terms of the type
c„'"„c]"~and dc,~' /dt must combine to give zero,
since a moving sphere alone will feel no force.
Furthermore, c„'" =0 at t =0. One is left with a
contribution to the total force, which arises from
a4, (B)/at+v„(v, +v, ), and which is given by
terms of the type c„cj'"~+cj' pe„~' and of the
type dc,'" /dt.

To find c~'i (0) one simply expands @„ in spheri-
cal harmonics. The only nonzero terms are

x g g c„r"Y„(a,p), (A12)

where 8', 8 are the ladder operators

8, 8
8 = —+z-

8x
(A13)

C, =g p c„'
~ .r'" Y„(a',y').

n =1 n =-nt
(A14)

Using the known properties" of the ladder operators
and of a/az acting on terms of the form r" Y„(a,p),
the functional form of 4, in the shifted coordinate
system can again be written as an expression of
the type given in Eq. (Al),

c"' = —-'(-' v)'~'U (Al0)

c = ——( n)' (U, +tU~)

To determine dc~'i /dt at t =0, one needs to find
the boundary field when the sphere is displaced
an infinitesimal amount Ut from the origin. The
vortex potential 4, may be expressed in terms of
a shifted coordinate system r' =r —Ut centered
on the displaced sphere by expanding

The boundary field generated by the shifted sphere,
expressed in terms of the r' coordinate system,
is then again of the form of Eq. (A2) with the
c„'s and the coordinates replaced by their primed
counterparts. The resulting boundary field 4'~ (r')
can now be transformed back to the unprimed
system using the same procedure, and the cor-
rections to Eq. (A2} arising from the displacement
of the sphere from the origin are then readily
identified. From the definition of ci'i in Eq. (A9},
one finds
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cII&, =-W~(U„f+iU„f)c,~, + My U, ic,~, + ~(U, f iU-, f)c....

cI'l, = —~~ (U, t+iUt)c, , + W» U, ic,~, + v+, (U, t+iU, t)c,
~

cII', = —v+, (U„t+iU„i)c,
~ 0+ W, U, tc2 ~, + v~ (U, & i-U, &)c„, ~

(A15)

One can now evaluate the force contribution arising from &4'q(B)/et +v„~(v, +v,) by inserting c„c&',
+c;,c~'~ into Eqs. (A4) in place of every term c„c&~, and dcI'l /dt in place of every term dc, /dt.
Given the results of Eqs. (A10) and (A15), a little algebra is sufficient to show that the result is identically
zero. This is the second assertion we needed to prove.
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