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We have used the acoustic-beam probing technique of Gordon and Cohen to measure the speed and

attenuation of 36-MHz sound in sulfur hexafluoride near its critical point. The measurements were

made along the critical isochore. We have also analyzed all existing sound-speed and attenuation data

on the critical isochore in the temperature range 0.1 & T —T', & 10.0'C. We find that it is possible to

model all available data with a frequency-dependent viscosity, involving a slightly modified form of the

frequency dependence calculated by Kawasaki using the mode-mode coupling approach of Kadanoff and

Swift, together with a single relaxation to account for energy exchange with the vibrational states. We

also find that a single-relaxation model involving no critical contribution is not adequate to account for

the data.

INTRODUCTION

Measurement of the frequency and temperature
dependence of the sound speed and attenuation in a
pure fluid near its gas-liquid critical point is an

excellent method for determining its dynamic be-
havior. Because of the extremely high values of
attenuation encountered near the critical point the
acoustic-beam probing technique of Gordon and

Cohen' offers an ideal method of making such mea-
surements. As Kadanoff and Swift, ' and Kawasaki'
have shown by their calculations, the dynamic be-
havior of critical systems is intimately connected

with the anomalous changes which occur in the

static properties of such systems, as the critical
point is approached. In a pure fluid, sound propa-
gation is influenced markedly by the divergence of
the adiabatic compressibility K~. As a result of
this divergence the speed of very-low-frequency
sound approaches zero near the critical point;
however, the velocity of higher-frequency sound

is less affected. This can be understood physically
in the following manner. The divergence of the
various thermodynamic susceptibilities can be
traced to the fact that the spontaneous density fluc-
tuations which occur in any medium, and are nor-
mally correlated over a distance of only a few

angstroms, become correlated over distances as
large as thousands of angstroms near the critical
point. Since the equilibrium correlation is a func-
tion of density and temperature, any compression
requires the transport of matter over distances of
the order of the correlation range to restore local
thermodynamic equilibrium. Since such transport
requires an ever longer time as the critical point

is approached, a compression must oeeur at an

ever lower frequency in order to correspond to
the static compressibility. Compressions which

occur in times less than the time required for the
restoration of equilibrium are accompanied by

greater pressure increases than would have oc-
curred if the same compression had been carried
out quasistatically. This effect results in a sub-
stantial dispersion in the speed of sound near the
critical point. This dispersion is accompanied by

a remarkable rise in attenuation due to the fact
that sound-wave energy is used during the com-
pression to modify the Quid correlation and is not

all returned during the expansion. These effects
are very similar to the dispersion and attenuation
which occur in all fluids possessing structural re-
laxation. In the case of the critical fluid the im-
portant time scale is set by the time required for
mass transport to occur over a distance of one
correlation length. Since the primary transport
mechanism in a critical fluid is thermal diffusion,
as witnessed by the great intensity of the Hayleigh
scattering, the relevant time is' (A/R, C~)') ',
where A is the thermal conductivity, p, the densi-

ty, C~ the constant-pressux'e specific heat, and (
the long-range correlation length. Because of the

rapid variation of A, $, and C~ the corresponding
angular relaxation frequency

&s =A/Ro& ph

changes by orders of magnitude as the critical
point is approached.

In the ease of a monatomic fluid, such as xenon,
Kawasaki has calculated an expression for the
complex frequency-dependent viscosity, which is
directly applicable to a determination of the ex-
pected dispersion and attenuation as functions of
temperature when the critical point is approached. '
As one of the authors (D.S.C.) has pointed out, 4 the
equations used by Kawasaki in relating the viscos-
ity to the sound speed and attenuation are inade-
quate when the total dispersion is a significant
fraction of the low-frequency sound speed. In ad-
dition the relationship between wave-vector-depen-
dent sound, speed and attenuation as determined by
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light scattering, and a frequency-dependent viscos-
ity is quite complicated, and differs from the case
of driven sound waves. The extraction of accurate
information regarding the frequency dependence of
the viscosity from measurements of the Hayleigh-
Brillouin spectrum can be extremely difficult in
general. ' Garland and co-workers' ' have made
extensive ultrasonic measurements in xenon and
have analyzed their own results as well as light
scattering data" in terms of Kawasaki's expres-
sion for the viscosity. In so doing they derived
and used a more accurate connection between the
viscosity and the sound speed and attenuation than
the one originally given by Kawasaki. In treating
light scattering data they used the Brillouin split-
tings and linewidths to deduce the wave-vector-de-
pendent attenuation and sound speed, and compared
these results to those predicted by Kawasaki's ex-
pressions for the frequency-dependent attenuation
and sound speed at the Brillouin frequency. In
principle one should use the frequency-dependent
viscosity to compute the expected light scattering
spectrum and compare the result with the ob-
served spectrum; however, the difference is ex-
pected to be substantial only when the Brillouin
half-width is comparable to the Brillouin, splitting
divided by 2~.4 As a result of their work and that
of Cummins and Swinney' it appears that the dis-
persion and attenuation observed in xenon are rea-
sonably well accounted for. Hecently Eden and
Swinney" have used a heterodyne light scattering
technique to measure dispersion and attenuation in
xenon in the frequency range from 2.4 to 24 MHz
and also find that Kawasaki's calculations corre-
spond well to their data. In all of this work, how-
ever, it is found that at any temperature the ob-
served attenuation at high frequencies is nearly
equal to the maximum value obtained from Kawa-
saki's calculation, which occurs at the sound-wave
angular frequency of 14m„. For this reason, in
our own analysis we have used the maximum,
rather than the calculated values of the attenuation,
for & ~ 14++.

In the case of SF„sound propagation is compli-
cated by the existence of internal degrees of free-
dom capable of storing energy. The responsible
states are the vibrational modes, which have quan-
ta comparable to k~7 and exchange energy slowly
with the translational motion. The rotational states
contribute the classical value Ske/2 per molecule
to the heat capacity, since the rotational quanta
are very small compared to k~T; and since the ro-
tational states reach equilibrium very rapidly they
are not responsible for dispersion of sound, at ac-
cessible frequencies. Although both light scatter-
ing" and ultrasonic measurements'2'3 have been
made near the critical point of SF, they had not

been subjected to extensive analysis" since the
frequency regime from 1 to 130 MHz remained un-
explored. For this reason we have measured both
the speed and attenuation of 36-MHz sound in SF,
in the vicinity of its critical point. We have also
collected and analyzed all existing data taken on
the critical isochore employing a frequency-de-
pendent viscosity to account both for the slow ex-
change of energy between the vibrational degrees
of freedom and the translational motion as well as
the effects of the critical point. As will be shown,
it is quite straightforward to use the measured val-
ues of attenuation and sound speed to compute the
real and imaginary parts of the viscosity as a func-
tion of frequency, which may then be compared di-
rectly to the predictions of any model or theory of
interest. We have found this to be a great advan-
tage in a system as complicated as SF,. In the fol-
lowing sections of the paper we describe the ex-
perimental method used in our sound-speed and
attenuation measurements and present our results
together with all other data available on the critical
isochore. We next derive the necessary connec-
tions between the experimentally observed quanti-
ties and the real and imaginary parts of the fre-
quency-dependent viscosity b(u&}, and use all avail-
able data to deduce b(&u} as a function of tempera-
ture. We then assemble all of the thermodynamic
parameters necessary to evaluate Kawasaki's ex-
pression for b(&o}. In the data-analysis section we
show that it is not possible to account for all of the
data in terms of a single relaxation due to energy
exchange with the vibrational states, but that very
good agreement can be obtained by including the
critical contribution to the viscosity.

EXPERIMENTAL METHOD

The method employed was the acoustic-beam
probing technique of Gordon and Cohen. ' Figure 1
is a schematic diagram of the experimental setup.
Light from a He-Ne laser operating in the TEM,O

mode was spatially filtered, collimated, and
chopped at 1 KHz. It then passed through a half-
silvered mirror M, . One of the resulting bea~s
was allowed to fall on a photodiode D, which gen-
erated a reference signal for the lock-in amplifier.
The other beam passed through a counterrotating
window W„entered the cell through window W„
and was specularly reflected from the interface
between the SF, and the face of the fused-quartz
buffer rod. It was then reflected by mirror M„
exited through window W„passed again through
the counterrotating window W„was reflected by
mirror M„and was focused upon a high speed,
back-biased, photodiode D, . The purpose of the
counterrotating window was to prevent the beam
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from moving across the face of the buffer rod when
the cell was rotated. A 5-MHz quartz transducer
operating at its seventh harmonic was used to in-
ject an acoustic wave into the SF, from the face of
the buffer rod. In this manner a small fraction of
the incident light beam could be scattered from the
acoustic wave before being reflected by the rod. In
addition, as shown by the inset in Fig. 1, a small
fraction of the light beam was backscattered by the
sound wave after the light had already been re-
flected from the buffer rod, and this backscattered
light was rereflected from the face of the rod.
The acoustic wave can scatter light only when its
wave vector K,is oriented so as to satisfy the
Bragg condition fc, + K =R„where %, and R, are the
wave vectors of the light incident upon and scat-
tered from the acoustic wave, respectively. By
rotating the cell about an axis passing through the
center of the face of the buffer rod while monitor-
ing the amplitude of the light scattered from the
acoustic wave it was possible to determine accu-
rately the angle at which maximum scattering oc-
curred This is.given by 2nk, sin(8/2) = iKi,
where n is the index of refraction of the SF, and
0, is the magnitude of the wave vector of the inci-
dent light in vacuo. The angle 8/2 is as shown in
the inset. The above condition holds because the
fractional energy gain or loss suffered by the light
upon Qeing- scattered from the acoustic wave is
negligible. In this manner it was possible to de-
termine the wave vector of the acoustic wave, and
since its frequency was already know+, this served
to determine the sound speed.

As shown in Ref. 1 a damped acoustic wave with
an amplitude proportional to e ' results in a
scattering amplitude with an angular dependence
of the form [[2nA, sin(8/2) —(K[]'+o.') '. Thus by
measuring the signal amplitude as a function of
angle in the vicinity of the Bragg angle it was pos-
sible to determine the amplitude attenuation coef-
ficient e. Since the acoustic attenuation resulted
in appreciable scattering over an angular range as
large as 12' it was necessary to correct the mea-
sured signal amplitude for the angular dependence
of the ref lectivity of the face of the rod. Since the
angular spread caused by diffraction of the light
leaving the face of the rod was negligible compared
to the spread caused by acoustic attenuation, this
effect was neglected. An additional possible
source of spurious angular spread in the scattered
light is that due to the diffraction angle of the
acoustic wave in the SF,. Since our transducer
had a transverse dimension of 0.4 cm, and the
sound velocity in SF, is -10' cm/sec this angle
was less than 10 ' rad and was thus negligible. In
practice a potentiometer I' was driven by the ro-
tating table used to turn the cell. The potentiom-
eter divided a stable voltage, providing the x sig-
nal for an x-y recorder, which was then calibrated
in degrees of table rotation. The y signal was
provided by the amplitude of the scattered light
signal itself.

In order to detect the light which had been scat-
tered by the acoustic wave it was necessary to
heterodyne beat it against the light which had been
reflected from the face of the rod, because the
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scattered and reflected beams were superimposed.
The light which was scattered by the acoustic wave
before encountering the rod was Doppler shifted
upward in frequency by an amount equal to the
acoustic-wave frequency while the light scattered
by the acoustic wave after having been reflected
from the rod was Doppler shifted down in frequen-
cy by a like amount. In beating on the face of the
photodiode D» with the light which had only been
reQected and not scattered, each of these beams

- produced a component in the photocurrent at the
frequency of the acoustic wave and this component
was detected using a, receiver tuned to 36 MHz. It
is important to correct for the fact that the 36-
MHz beat notes produced by these two beams are
180' out of phase, but do not cancel completely
because one of them is reduced in amplitude by
having undergone two reflections from the buffer
rod. ' By chopping the incident light and using a
lock-in amplifier to detect the difference in the
output of the receiver with and without the incident
light beam on, it was possible to discriminate very
effectively against spurious signals which are gen-
erated by the rf equipment used to drive the trans-
ducer, and picked up by the sensitive receiving
equipment. A much more thorough and technical
description of both the electronic and optical de-
tails of this technique is to be found in Ref. 1, to
which we refer the interested reader.

The scattering cell was constructed of beryllium
copper, with optical-glass windows sealed into re-
cesses using indium gaskets. One of the windows
was chromed on the inside and served as a mirror.
The buffer rod was inserted through a hole in the

side of the cell and held in place by epoxy applied
from outside the cell. In order to prevent the crit-
ical Quid from contacting epoxy, the rod was sol-
dered to the cell on the inside using indium as sol-
der. The temperature was controlled to 1 m 'C
using the first stage of an extremely accurate
(+15 p, 'C) temperature controller which has been
described elsewhere. " The density was adjusted
to within 0.1% of the critical density by using a
cathetometer to measure the position of the liquid-
vapor interface as a function of temperature below
the critical temperature T, . These measurements
also served to determine T, . All temperature
measurements were made relative to T, using a
thermistor as sensor. Comparison of the therm-
istor and an accurate glass-stem thermometer
gave T, as 45.5 C+0.1 C. Neither the optical nor
the acoustic power exceeded 1 mW, and the ob-
served sound speed and attenuation were indepen-
dent of these powers.

In Table I we present our measured values of
the sound speed and attenuation per wavelength,
nX. In addition we have collected all other data
available in the same temperature range and dis-
play it as well. Since the Brillouin scattering data
are not obtained at constant frequency we give the
actual frequencies calculated using the relation-
ship ~ =CK, where C is the Brillouin sound speed
and K the scattering wave vector, which does re-
main constant. We computed the values of aA.
given for the 360-MHz data directly from the pub-
lished values" of the Brillouin half-widths 4 pyg2,

using the relationship a X = 2mb, v„,/f e, where fs is
the Brillouin frequency. The 600-kHz data were

TABLE I. Velocity C in cm/sec and attenuation per wavelength eA. at various temperatures
and frequencies. (Values in parentheses are estimated. )

Frequency 0.1 0 ~ 5 1.0

T -T, (c)
2.0 5.0 10.0 Ref.

5798 6326 6600 6918 7412 (7864)

600 kHz 6150
0.213

6380
0.095

6620
0.048

6930
0.022

7424
(0.020)

(7876)
(0.020)

12

1 MHz 6270
0.37

6510
0.23

6730
0.15

7050 7612
(-0.1) (-0 1)

8064
(~0 1)

36 MHz 7700
1.36

7800
1.35

7986
1.34

8184
1.32

9000
1.28

9500
1.2

This
work

130 MHz

360 MHz

C

f (MHz)

C

f (MHz)

9400 9400

130 130

102 00 103 00 104 00
0.58 0.53 0.51

360 363 367

9600 10500

145

10680 11300
0.5 0.45

377 399

160

122 50
0.41

432
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taken directly from the tables published in Hef. 12.
The 2-kaz data were taken from the adiabatic
compressibility data of Hef. 13 using the relation-
ship C = I/(p, K~)'" to compute C. In so doing we
used a density p, of 0.70 g/cm', which is the den-
sity, used by the authors in computing K~ from

'

their measured values of C. The values of C ob-
tained in this manner do not agree exactly with the
values shown in Hef. 13 for T —T, «2'C, but the
difference is slight. We used the compressibility
because it was presented over a wider tempera-
ture range. In all other calculations we used a
density of 0.737 g/c'm'. In collecting the data of
other authors we took points from the smooth
curves they had drawn through their data.

C((d) =(d jk,
while its amplitude attenuation per wavelength
aX((d) is given by

o.X((d ) = 27/(c.k

(3)

An experimental measurement of the sound speed
and attenuation at a given frequency serves to de-
termine k and e., which ean then be used in Eq. (2)
to calculate b((d) at that frequency, provided that
C„y, and a are known. If necessary Eq. (2) can
be solved exactly for the real and imaginary parts
of b((d); however, it is often the case that the
terms involving a are small compared to (db((d). If
so the solutions take the relatively simple form

1 —(n z/2m}'
(d Imb((d} =C'((d}

[ ( / ),]2 -Co (5)

ah((d) C'((d)
[ I+(ax/2v)']' ' (6)

THEORY

The dispersion equation for driven sound in a
medium obeying the linearized Navier-Stokes
equation and the ordinary heat transport equation
can be written"

&d'/K ~ K =C', +ab((d)K ~ K

-i(d[a+b((d)-C'aK K/y(d2] (2)

where a =A/p, c» is assumed to be frequency inde-
pendent, and b((d) =(I/p, )[&(},((d)+q„((d)], where
(7, ((d) and g„((d) are the frequency dependent shear
and volume viscosities, respectively. K is the
wave vector of the sound wave, ~ its angular fre-
quency, C, the zero-frequency sound speed, and

y =C~/C». For a driven wave which is damped in
space we can write K =n(k+fa}, where n is a unit
vector in the direction of propagation. In this case
the phase velocity C((d) of a sound wave of angular
frequency ~ is given by

In the event that 3(c(X/2w)'«1 Eq. (5) reduces to

(d Imb((d) = C' —C»
while if 2(c.k/2w}'«I, Eq. (6) reduces to

(d Heb((d}= [o.A((d)/m]c'((d).

(7)

(10)

l (lllb(td) =
(
—

) ( ( ) j( ),

where

(12)

and
X (dJ ((d*) = dx (1+x')' (d*'+K'(x) '

In the above expressions AB is Boltzmann's con-
stant, T the absolute temperature, P the pressure,
V the volume, and S the entropy. K(x) is
3/4[1+x'+(x'-x ')tan 'x], and

If, in addition, the condition C((d) -C,«C, holds,
then Eq. (7) further reduces to

(d Imb((d) = 2C,[C((d) -C,]. (6)

Equation (9) was used by Kawasaki' to relate b((d)
to C((d) -C„whi1e he used Eq. (6) with C((d) re-
placed by C, to compute a A.((d).

We have used Eqs. (5) and (6) and the data given
in Table I to compute (d Reb((d) and (d Imb((d) at six
different temperatures above T, . When necessary
we used the exact solutions to Eq. (2) rather than
Eqs. (5) and (6), but the difference in the calculated
values of b(&d) never exceeded 5%. It was only for
the 360-MHz data that the classical contribution to
the attenuation from A/p, C» was at all significant.
Tables II and III give the results of the exact cal-
culation as well as theoretical results calculated
from a model to be described late~. We present
the experimental results in this manner because it
is a convenient summary of the data and may easi-
ly be compared to the values predicted by theory.
The tables also give, for each temperature and
frequency, the values of the reduced frequency v*
and the quantities dZ((d~) and df((d*) defined below.
As mentioned earlier, for values of u~) 7, the
values of df ((d*) bsted are the maximum values
assumed by dI((d*) and not the actual values.

Kawasaki has calculated both (d Heb((d) and
(d Imb((d) for a fluid near its critical point. Taking
the real and imaginary parts of Eq. (3.10}of Hef.
3, we obtain
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TABLE II. Experimental and theoretical values of ~ Imb (~) in 108 cm /sec at various tem-
peratures and frequencies, and the values of b

&
in 10 cm /sec .

Frequency

600 kHz

36 MHz

130 MHz

360 MHZ

bi

b,

Expt.
Fit
dJ (u;*)

4) +

Expt.
Fit
dJ (co*)

Expt.
Fit
dJ(c *)

Expt.
Fit
dJ (~*)
f (MHz)

Expt.
Fit
dJ (u*)
y (MHz)

(single
relaxation)

0.1

7.39
4.07
3.08

.3.07

12.3
5.29
3.56
3.55

443
17.9
18.2
6.2

160p

54.7
6.7
130

4430
67.7
68.3
6.9
360

64

21

0.5

0.226
0.66
0.46
0.45

0.376
2.19
0.69
0.68

13.5
12.9
15.5
4.2

48.9
44.1
50.7
5.6
130

136
63.7
64.2
6.7
363

60

1 ' 0

0.053
Q.26
0.004
0.00

0.088
1.66
0.23
0.24

3.18
12.1
14.0

2 ' 8

11.5
40.5
49.4
4.4
130

32.5
62.4
62.9
5.4
367

60

4Q

T-T, (C)
2.p

0.012
0.16
0.004
0.00

0.019
1.80
0.01
0.00

0.70
10.8
12.8
1.2
2.59

39.9
49.8
2.8
133

7.33
64.0
63.9
4.3
377

62

50

5.0

1.5x 10-'
0.18
0.005
0.00

2.5x 1Q 3

2.96
0.01
0.00

0.09
16.6
13.6
0.3

0.36
50.0
56.7
0.7
145

1.00
70.7
70.1
1.5
399

10.0

3.1x10-4
0.19
0.006
0.00

5.2x 10 4

3.14
0.02
0.00

0.02
19.1
16.5
0.0

0.08
66.3
72.4
0.2
160

0.23
86.3
85.8
0.4
432

88

50

TABLE III. Experimental and theoretical values of u: Heb (o. ) in 108 cm /sec for various
temperatures and frequencies.

Frequency

600 kHz Expt.
Fit
dI(c *)

0.1

2.56
1.99
1.47

0.5

1.23
1 ~ 21
0.72

0.67
0.73
0.24

0.34
0.54
0.04

&-&c ('c)
1.0 2.0 5.0

0.35
0.57
0.00

10.0

0.39
0.71
0.00

36 MHz

130 MHz

360 MHz

Expt.
Fit
dI( *)

Expt.
Fit
dI (v*)

Expt.
Fit
dI (~*)

Expt.
Fit
dI (co *)

4.59
2.33
1.47

23.3
26.7
1.5

30.2
1.5

18.0
17.2
1.5

3.10
1.67
0.86

23.8
25.4
1.7

28.7
1.7

16.9
16.0
1.7

2.16
1.14
0.33

24.8
25.5
1.8

28.9
1.9

16.7
16.6
1.9

1.58
0.94
0.11

25.7
25.9
1.4

29.5
1.9

17.3
17.0
2.0

1.84
0.95
0.00

30.3
28.4
0.4

31.2
1.0

17.6
17.7
1.5

2 ~ 07
1.20
0.00

32.0
34.7
0.1

35.4
0.3

19.0
19.1
0.8

Expected
relaxation
frequency (MHz)

50 56 60 65 68
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(d* = M/2'&. (14)

DATA ANALYSIS

We begin by discussing the methods used to ob-
tain the values of C„, (BP/BT)„and $ which we

used to evaluate the prefactor d. Since directly
measured values of C„are not available we were
forced to calculate Cv from measured values of
the zero-frequency sound speed C„using the
thermodynamic relationship"

p,C» =, " erg/cm''C,T(BP/BT)2»

Po 0 T
(15)

where K~ is the isothermal compressibility. In
evaluating Eq. (15) we used the values of C, mea-
sured by Fritsch and Carome" at a frequency of

The extra factors of p, in our equations are due to
the fact that our heat capacities are given per unit
mass while those of Ref. 3 are given per unit vol-
ume. Garland and co-workers have calculated
l(&u*) and J (&u*) and we have used their results.
Swinney has pointed out" that the above expres-
sions for I(u&*) and J (&u*) are exact only when the
background contribution to the thermal conductiv-
ity is negligible compared to the critical part,
which is not necessarily the case in SF,. His cal-
culations also show, however, that the values of
I(&o*) and J (&u*) calculated from Eqs. (12) and (13)
differ by at most 20%%uq from the exact results Fo. r
this reason we have used the values given by Eden
et al. '

In order to calculate the prefactor of I(a&*) in
Eq. (10) and of J(&o*) in Eq. (11), which we denote
by d, it is necessary to know C„, (BP/BT)„, and

( as functions of the temperature along the criti-
cal isochore, and to evaluate &o*, A/p, C~ must be
known as well. In the next section we evaluate
these quantities, before analyzing the data.

2 kHz, which have been presented in Table I, and
calculated K~ from the equation

-1.235

Kr =1.26x10 ' ' cm'/dyn,
C

which is the best fit to the values measured by
Feke et a/. " These values Of K~ agree to within
experimental error with the measurements of
Puglielli and Ford" over the entire temperature
range of interest to us. Since we needed to know

(BP/BT)» over a 10 C range and it has been mea-
sured by Feke et al."over a range of 2.4'C only,
we used the Martin-Hou equation for the pressure
as a function of temperature and differentiated it
to obtain (BP/BT)„. The parameters entering the
Martin-Hou equation have been carefully evaluated
for SF, in the critical region, and the pressures
thus calculated agree with great accuracy with the
measured values over a wide range of density and
temperature. " In the region where (BP/BT)„was
measured by Feke et aL" the values calculated

. from the Martin-Hou equation agreed with their
results to within 6Q; however, an attempt to ex-
tend the fit they found to (BP/BT)„as a function of
temperature along the isochore, to temperatures
more than 4'C above T, resulted in disagreement
with the results calculated from the Martin-Hou
equation. The values of g we used were obtained
from preliminary measurements we have made in
SF, using a technique described previously. '~ They
agree well with values previously measured by
Puglielli and Ford." In order to calculate values
for ~* from the experimental frequencies wq used
values of A/p, C~ taken from Feke et al. ,

"and our
own values of t'. We calculated a -=A/p, C» from
A/p, C~ using C»/C» =Kr/K~=y. In Table IV we

present, for six different temperatures, the val-
ues of (BP/BT)», C„, A/p, C~, $, and y used in all
our calculations. The value for Cv at T —T, =$0'C

TABLE 1V. Values for the thermodynamic parameters used in the text as functions of tem-
perature. (Values in parentheses are extrapolated or depend upon extrapolations. )

Thermodynamic
parameters 0.1 0.5

' T-T~ ('(.)
1.0 2.0 5.0 10.0

( (10~ dyn/cm C)8T v
8,43 8.43 8.43 8.44 8.45 8.46

Cv (10 erg/g 'C)

A/pp Cp (10 cm /sec)

4 )

"y

(106 cm2/sec2)

1.241

2.0

280

628

9.6

1.055

8.5

101

102

11.3

0.984

12.2

0.917

28.5

22

13.3

0.875 (.9»)
(69) (137)

24 15

8 -4

(13.7) (12.1)
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was obtained by extrapolating the measured value
of the zero-frequency sound speed from T —T,
= 5.8'C, while the values of A/p, C~ at T —T, =5
and 10'C were obtained by extrapolating from
T —T, =2.5'C. Fortunately the results of our anal-
ysis are quite insensitive to these quantities for
T —T, ~ 5 C. Table IV also gives the calculated
values of

m'p', C'„eT, a T
(16)

&v Reb, (u) = » +rob,
5g(di

1+cO T
(17}

and

(u Imb, (s)) =
1+(d T

(18)

which has the form of a single relaxation in the
viscosity. Here b, = (1/p, )(-,'q~, +q«) is the nonre-
laxing part of the viscosity. We used" g ~ =4.25
x10 ' dynsec/cm' and estimated q «, the nonre-
laxing part of the volume viscosity as =g~. We
found it possible to accurately fit all of the data in
this manner. The next to last line in Table II gives
the values of b, used in this fit. A relaxation fre-
quency f, =1/2wr of 75 MHz was found at all tem-
peratures The guanti. ties 4T (~*}and dl(&u*) listed
in Tables II and III are the critical contributions to
&o Imb(&u) and e Reb(~), respectively. Since we have
used the maximum value of I(&u*) for &u*&7, these
values represent an upper limit on the critical
contribution to &o Reb(e)

There are three minor discrepancies between the
data and the fit which deserve comment. The fit
does not account for the slight dispersion in the
sound speed between the 2-kHz and 1-MHz data of
Frits eh and Carome. This dispersion pe rsists
quite far from the critical point and thus, if real,
would have to be attributed to a very-low-frequency
relaxation process. We did not attempt to do this.
We note that our model accounts quite well for the
increase in this dispersion as the critical point is
approached. The second point of disagreement oc-
curs with regard to the attenuation at 1 MHz ob-
served by Fritsch and Carome. Since they did not

In evaluating (s ( '/s T)~ we used the fact that the
critical density is very nearly the density at which

$ assumes its maximum value as a function of
density at any given temperature above T, . Thus
(sf, '/BT)~=(& t' '/BT)~ at the critical density, a

- fact which has been used by previous workers.
We first calculated the differences between the

experimentally determined values for. &u Reb(&v}

and &o 1mb(&u), and the values calculated from Eqs.
(10) and (11). We attempted to fit these differences
to equations of the form

l25

I 00—
I 30 IVIHz

07
th

E

75—

$6 MHz

50
O.I

IIII
0.5 I

c~ C)

I I I I I I I I

5 iO

FIG. 2. Experimental and theoretical values of the
sound speed C in m/sec. The 2-kHz data points are
represented by triangles, the 0.6-MHz data by open
circles, and the 1-MHz data by crosses.

regard their 1-MHz measurements as being accu-
rate" we do not feel that these discrepancies are
serious. The third discrepancy lies in the fact that
the velocities predicted by the fit at 130 MHz

are somewhat above the measured values, which

may be an indication that a more elaborate fit is
required.

We next inquired as to whether all of the data
could be adequately modeled without using any crit-
ical contribution to the viscosity. We again used a
single relaxation and adjusted b, and T so as to ob-
tain agreement with ~ Imb(&o), which is determined
primarily by the sound speed as a function of fre-
quency. This was possible; however, the resulting
fit failed to account properly for the 36-MHz at-
tenuation near the critical. point. Figures 2 and 3
show the sound speed and attenuation per wave-
length calculated from the fit involving a critical
contribution, using the exact dispersion equation,
and some of the actual data points given in the ref-
erences from which the smoothed data in Table I
were extracted.

We can compare the values of f, needed to fit
the data with the values which would be expected on
the basis of low-frequency, low-pressure ultra-
sonic studies of vibrational relaxation in SF,. "'
The fundamental relaxation time Tp is 0.70x10 '
sec at 1 atm and 45'C, while it is 0.68 x10 ' sec
at 55'C. In the case of CO, this time has been
found to scale very accurately with density, "' '
pTp being constant to densities greater than the
critical density at.a temperature of 50.6'C, which
is -20'C above T, . Since at 1 atm the density of
SF, between 45 and 55 C is 5.6x10 ' g/cm', while
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is constant at 75 MHz may indicate that a consis-
tent treatment of the problem would require con-
sidering both the critical relaxation and that due
to the internal states as being coupled, so that,
for example, the heat capacity appearing in the
prefactor d should be relaxed at higher frequen-
cies where the heat capacity of the vibrational
states is frozen out.

Although it is less meaningful to calculate values
of b, from the values of C', since the presence of
another relaxation affects these values, we should
expect agreement away from the critical point,
where the critical relaxation processes play no
role. %e have calculated b, at every temperature,
using the relation"

2/ 1 C'
1 0(

FIG. 3. Experimental and theoretical values of the
attenuation per wavelength &A. The 0.6-MHz data are
represented by crosses.

the critical density is 0.737 g/cm', the fundamen-
tal relaxation time for the exchange of energy with
the vibrational states should be 5.1 &&10 ' sec in
this temperature range at the critical density.
This time is related to the value of r, describing
the relaxation in sound propagation, through the
relation"

where C' is the heat capacity of the vibrational
states. The quantity C' can be calculated quite ac-
curately using the Planck-Einstein equation"

2 eh f1) /kg T

~II y T ( Ilv~ /ll sir)2
(20)

where g; is the degeneracy of the ith level, v, its
frequency, h is Planck's constant, and R is the
gas constant. For SF„C' is 0.47&&10' erg/g'C at
45'C and 0.48x10' erg/g'C at 55'C. Using these
values of C' and the values of C~ listed in Table
IV we calculated the expected relaxation frequency
as a function of temperature, and the results are
shown in the last line of Table III. The decrease
in the expected relaxation frequency as T- T, is
due solely to the accompanying increase in C~.
The fact that the:raine of f„required to fit the data

which holds for the case of a single relaxation,
and these values are shown in the last line of Ta-
ble II. Both the values of b, and the expected re-
laxation frequencies are quite sensitive to the val-
ues of C~ far from T, . For example, if at T —T,
=O'C the true value of C~ were lower than the ta-
ble value by 8%%up, this would increase the expected
value of 5, to 71 x10' cm'/sec' and would also in-
crease the expected relaxation frequency to 77
MHz, bringing both values into excellent agree-
ment with the parameters used in the fit. An er-
ror of 8%%uo in C» is completely reasonable at T —T,
=5=C. Since the value of C~ at T - T, =10 C was
obtained by extrapolation and may well be in error
by considerably more than 8/o no meaning should
be ascribed to the decrease in the calculated val-
ues of 5, and f„at this temperature. ft is clear,
however, that the expected decrease in b, as
T- T, is not reflected in the values of b, actually
required to fit the data. To some extent this should
be expected, since the presence of another relax-
ation process has the effect of increasing the values
of b, ." In fact it is possible to use the calculated
values of 5, and f„ to fit the data, provided that
the heat capacity appearing in the prefactor d is
allowed to relax with the frequency dependence of
a single relaxation at the expected value of f„. Al-
though we find this fact intriguing we feel that the
use of this more complicated model is not justified
by our present theoretical understanding of criti-
cal behavior in a fluid possessing internal degrees
of freedom.
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