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A multichannel eikonal treatment of atomic collisions is presented and applied to the excitation of
atomic helium by electrons with incident energy E in the range 50 < E < 500 eV. Two different sets
of orthogonal wave functions are employed. A four-channel description yields differential- and total-
excitation cross sections in satisfactory agreement with experiment.

1. INTRODUCTION

Apart from the application of the first and second
Born approximations,'~® Ochkur modifications,*
Glauber-type approaches,®'® and impact-param-
eter methods”*® to collisional excitation of atomic
helium by incident electrons, theoretical knowledge
of these collisions for low and intermediate impact
energies beyond the inelastic thresholds is very
limited. The experimental measurement of the
vacuum-uv excitation functions is difficult®~!® and
requires high resolution, and full account must
be taken of cascade and other well-identified
problems. In order to provide absolute cross
sections, the measurements must then be normal-
ized to some high-energy theoretical cross sec-
tion, and the energy-point of departure of the
actual cross sections from the corresponding Born
and Bethe values is extremely uncertain.

In an effort to obtain an accurate description of
electron-(excited) atom collisions in the intermedi-

" ate energy region, a multistate-eikonal treatment
of atomic collisions has recently been devel-
oped.?°'2! The method achieved notable success
for e —H(1s) excitation and the resulting dif-
ferential and total cross sections agreed closely
with experiment and with other refined treatments.
Moreover, the basic formulae which acknowledged
different speeds in various channels reduced upon
successive approximation to those obtained pre-
viously by other authors.®'?2~2* In an effort to
probe the further reliability of the present method,
the 2 1S and the 2 'P excitations of atomic helium
by electron impact are examined in this paper.
The resulting total and differential cross sections
are compared with previous treatments and with
experiment.

II. THEORY

The scattering amplitude describing a transition
between an initial channel ¢ and a final channel
f of the electron-helium collision system of

reduced mass u is, in the center-of-mass ref-
erence frame,

fi7(6,0) == (Q/4m)@u/n?)
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where V (F, R) is the instantaneous electrostatic
interaction between the electron at R and the
helium atom with internal electronic coordinates
denoted collectively by T, both vectors being rela-
tive to the helium nucleus as the origin. The wave
numbers for the relative motion in the initial and
final channels asymptotically (R ~«) tend to k,
and k;, respectively, the final stationary state

of the isolated atoms in channel f is ¥,, and

¥/ is the solution of the time-independent Schrs-
dinger equation,

n2 - - = . - . =
(- g Vo He D4V (ER) W G R =541 (5, )
@)

solved subject to the asymptotic boundary condi-
tion

e ] large R : * R eiknR
V(R 22t § (R To, (6,005 )

x;w.. (f),%,), (3)

in which ¢, (¥}, T,) are eigenfunctions of the
Hamiltonian H, (¥) for the isolated helium atom
with internal electronic energy €,, such that the
total energy E; in channel i is €; +%2%k% /2., which
is conserved throughout the collision. In the
absence of the interaction the wave function for
the system in the final channel is therefore
@ (F,,T,) expG &, - R).

The eikonal approximation to (2) writes the
total wave function in the presence of the interac-
tion as ’
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¥ (F,R)=§ 4,5, 2)expis, (5,2)0, (F,, F) ,

@)

where the e-ion separation R=(R,0,®)=(p, ®, Z)
in spherical and cylindrical coordinate frames,
respectively. The eikonal S, in (4) is the char-
acteristic-function solution of the classical Hamil-
ton-Jacobi equation (i.e., the Schrédinger equa-
tion in the 7 -0 limit) for the e — He relative mo-
tion under the static interaction V,, (R), and is
therefore given by

S,,(ﬁ,Z):k,,Z+J [k, (R)-k,]dzZ , ®)

-0

_in which the local wave number of relative motion
at R is
K, (R) =[R2 - @u/r?WV,, (R)]'/2, ®)
and where dZ is assumed to be an element of
path length along the trajectory. The interaction

matrix elements coupling the various atomic states
are

Vum(R) =(0, (F,, T V E R @u(F, F) - (D)

By inserting Eq. (4) into (1), and with the aid of
Egs. (2)-(7), Flannery and McCann®' have shown
that the scattering amplitude then reduces to

£

Fir6,9)==i2 [ J5E)

x[I,(p, 8)=il,(p, 0)]pdp, (8)

where K’ is the XY component &, sin6 of K and
where J , are Bessel functions of integral order.
Both the functions '

Lo 600 [k (p,2) (2082} ez g

©)

and
I,(p, 6; @)= f (Kf (Kf-—k,)+% Vﬁ>Cf(p,Z)

Xe'aZdZ (10)

depend on the scattering angle 6, via the param-
eter

a=k, (1 -cosb) =2k, sin?(6/2) , (11)

the difference between the Z component of the
momentum change K and the minimum momentum
change k, -k, in the collision. The transition
amplitudes C; (p, Z) which are related to the
original phase ®-dependent coefficients A, (p,Z)
by

cf (p’Z)=Aj (T): Z)

X exp(i ﬁz (Kf—k,)dZ> exp(—iA®),

12)

where A is the change M; — M, in the azimuthal
quantum number of the atom, can be shown to
satisfy the following set of N-coupled differential
equations

in® 2C, (p,2)
u Kf(p)Z) 9Z

+(’i—2 Ke(Ks =Ry ) +V s (p,Z)>Cf (p,2)

N
= Co(p, 2 Wy, (p, 2)e! Fn002,

f=1,2,...N (13)

to be solved subject to the boundary condition

C; (p, =) =3,,. Equations (8)-(13) are basic to
the present multichannel eikonal treatment and

a variety of approximations readily follow. For
example, in the absence of all couplings except
that connecting the initial and final channels, i.e.,
C,=0,, in (13), then (8) reduces to

Fy 6,0 ==3- 5 [ Ve ®expeR Bk,

(14)

which is the Born-wave formula for the scattering
amplitude.

When &, (R) is approximated by k, — (i /7%k,) V;,(R)
then, with the aid of (6) for «%, both/, and the
term within large parentheses of the left-hand
side of (13) vanish identically to give

£6,9)==i%"? f JAK'p)pdp
(]

® ac4 ;
X f_w Ky —f-—aZ exptaz)dz ,

(15)

an approximation A to the scattering amplitude,
for which the N-coupled equations reduce to

in?  ach & iCry
g T 0 CR(R 2V o, 2) et TS,
n=1

f=1,2...,N. (16)

If the local wave number k, in (15) and (16) is
now replaced by its asymptotic value k., then a
further approximation B is obtained. For a one-
channel approximation B, CZ=C26,, in (16) with
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k; =k, . After some analysis, the customary
eikonal expression?? for elastic scattering by
a fixed potential V“(ﬁ) is then recovered. More-
over, if the distorted wave for the final state

- - = e = 1 z
¥, (f,R) =g, (T,,T,) expi (k,-R—;?— f Vi dZ)
Vg +o0

amn

is used in (1), then the theory follows through as
before, to give, in approximation B

FoMN(6, @)=~ A*‘f J(K'p)pdpf kf< )

xexpi<az +%,L v, dZ’)dZ
(18)

where, C? satisfies (16), with k,=k,. Equation
(18) represents the multichannel distorted-wave

treatment. By setting CE=C?6,, in a two-state
treatment of (16), then, after some analysis,
(18) reduces to

fV2 (6, 9)=-

Vfi(va)

x expi{[ (k; -k, )+ @]Z +6@(Z)} dZ ,

(19)
where
1 z 1 b
08(2)= - - f_m V”dZ—(ﬁ>fz v, dz
(20)

formulas which are identical to the distorted Born-
wave expressions of Chen et al.?® for e-H colli-
sions. Equations (19) and (20) have been used by
Shields and Peacher?® to evaluate differential cross
sections for atom-atom collisions.

In the heavy-particle or high-energy limit, the
asymptotic wave numbers &, in approximation 8
can be replaced by
kp=ky = (e /M0 N1 + (€4 /2003 ) ++ -+ ], €;=€,-¢,,

(21)

and a third approximation C(a) follows by setting
all the individual %, in approximation B equal to
k;, and any difference k, -k, =¢€,, /v;. Hence

fif(e <P)_ Aﬂk—{OQJA(K'p)

( f 20 2) oy az)dz> pap,

a =K, —¢€,/m,. (22)

‘In addition, for small-angle scattering at high

energies @ ~0 from (11) and the Z -integration
above can therefore be performed so that a further
approximation C(a =0) is characterized by

Fi°(6,0)==i%""k,
Xf JA(K'P)(Cf(P,”)‘th)pdp

(23)
where K'? =K? — €, /i v}, and the amplitudes C§
satisfy

z
zﬁvi az f: C‘(p,Z)V,,.(p,Z)exp(—ﬂ‘”—),
i

(24)

in which v, =iik;/u, for n=1,2,..., N, is the
incident speed. Equations (22)-(24) are simply
those derived previously?® for the differential
cross sections in the multistate impact parameter
description of heavy particle collisions. They have
recently been applied to various atom-atom and
ion-atom collisions.?” Equation (22) has previously
been obtained by Byron® who subsequently applied
(23) and (24) to e = H(1s) collisions. In order to
acknowledge polarization of the initial state due

to the incident electron, Bransden and Coleman?*
modified (24) and used (23) with K’ =2k;sin38. The
above derivation, however, demonstrates that the
validity of the impact parameter equations (22)-
(24) is confined only to the heavy-particle or
high-energy limit of atomic collisions when k; >k,
and the scattering is mainly in the forward direc-
tion.

The Glauber approximation which follows by
neglecting the exponential term in (24), and by
inserting the exact solution C, of the resulting
equations in (23), is also a heavy-particle-high-
energy approximation and one in which no account
is taken of the different relative momenta in the
various channels. In spite of this, however, it is
apparently remarkably successful.

II. RESULTS AND DISCUSSION

The full multichannel eikonal theory, as repre-
sented by Eq. (8)-(13), is now applied to the ex-
amination of differential and total cross sections
for the excitation processes

e +He(1!S)—~ e +He(21S,2'P) (25)
in which the four-channels e - (115,25, 2"Po' o)

‘of the e-He system are closely coupled. For this

investigation two relevant orthogonal sets of wave
functions were adopted. The first set includes the
normalized Hartree-Fock ground-staie function of
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Byron and Joachain,?®

@15, 15 (T}, ) = (1.6966/7)(e™1* ¥ +0.799¢~2¢ 8171)
X(ei1'4'2+0.7998'2’°1'2) , (26)
the 2'P function of Goldberg and Clogston,?®

$1s, zpm(Fn ;2)
=(0.37831/n1/2)[r e~ (0- 488, *2r)y. (F )
+1’2e'(°‘ 4857, +2r,) Ym(%z)], , 27)
and the 2'S function of Flannery’

- = 0.706 40 - - —ur
‘Pla.Zs(rl’rz):m [e?r2(e krl—clrle 1)

-y

+e"¥1(e” T2 —cv,e” Ts)] ,

(28)

in which the parameters A =1.1946, . =0.4733,

¢ =0.268 32, and A =0.007 322, which ensured ortho-
gonality with (26), were chosen so as to provide

a simple curve fit to the multi-parameter function
of Cohen and McEachran.*® With the aid of
standard integral techniques, the interaction
potentials (7), deduced from the above set of

wave functions (26)-(28), can be expressed as
analytic functions of R.

The second choice of wave functions are the
actual analytical multi-parameter Hartree-Fock
frozen-core set of McEachran and Cohen® and of
Crothers and McEachran,3? which yield very
accurate eigenenergies. The set is written

Vi m(Ty, Fz) =an[q’o( 1)@ nim( r,)+ ‘Po(Fz)‘Pnzm(Fl)] ’
(29a)

where the normalized function representing the
frozen 1s orbital is

@g(F)=25/2¢72 v, () , (29b)

and where the unnormalized orbital for the second
electron in state (ulm) is, in atomic units,

=10
Gum (D= SO ai@ry b L3 1 2pN Y, (P

j=21 +1

ST

B==, (29¢)

where the coefficients a4’ of the associated
Laguerre polynomials

L= 5 CIr G

R k=M1 01 (294)

k=0

have been tabulated®~* for various states of
helium. In order to evaluate the interaction -
matrix elements (7) as analytic functions of R,
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it is convenient to express (29c), with the aid
of (29d), as

=1 N
(Pnlm(-{‘): B'}IJI e-a'r”-‘Ylm(F) ’ (303')
N=1+1
with coefficients given by
n_ N~ (=DYTa2l( RN
- 3 n=I-DIJ-N-D)I=D1 > 300

§=N+1

which are tabulated in Table I for the 11§, 21S
and 2'P states of interest. The overall normaliza-
tion factor in (29a) is N,, =[2(H,, + G%;)]"/?, where

& (N+N)!
— nl pni
Hoi = N=1 +1N =141 By By W (30c)
and )
L N+1)!
G =28/ 640 2 : B'IV'%;%')W)?T’ (30d)

N=1

and is also given in Table 1. With the aid of (30a)
and (30b), and standard integrals, the interaction
matrix elements can be expressed in the form

1 +1")

anm,n'l'm' (ﬁ) = (“aﬁf—
L=11=1 1,1 1=0 +21
i « R 168
+) e a R’)Y R
2 Z SRV, (R)
(31)

The tabulation of the coefficients a,, for the various
a,=4, (1/n+1/n'), and L values is extensive and

TABLE 1. Coefficients BZ’, parameters $, normaliz-
ation factors N,;, and eigenenergies €, (a.u.) given by

- the Hartree-Fock frozen-core set of wave functions

(292)~(30a) for helium.

N\nl 1s 2s 2p
1 —-1.8385(0)*  —5.5677(~1) 0.0000
2 2.9332(=2) 5.2732(~1) ~1.2768(-1)
3 —1.2332(0) -4.1053(=1) ~5.8948(~2)
4 —4.7143(-3) 3.1444(-1) ~1.5165(~2)
5 1.0769(-1)  —9.0158(-2) ~1.3793(-2)
6 —-7.9926(-2) 1.7266(-2) 4.9854(—3)
7 2.0400(-2)  —1.5858(-3) -1.2073(-3)
8 —2.6249(-3) 7.3009(~5) 1.1661(~4)
9 1.2433(—4)  ~3.0679(—7) —5.2312(—6)
B 2.0 1.0 1.0
Nuy 2.2745 9.1927(~2) 3.6218(~2)
€, (cale)  —~0.8725 ~0.1434 -0.1224
€, (expt)  —0.9036 ~0.1460 -0.1238

#Numbers in parentheses indicate the power of 10 by
which the entry is to be multiplied.
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is available upon request. With a knowledge of
the interaction matrices (31), the appropriate
set of coupled differential equations (13) can be
solved for the real and imaginary parts of C; by
standard numerical procedures.

In Figs. 1 and 2, the resulting differential cross
sections,

d k
E%‘=73':‘lfif(6;(l’)lz (32)

computed from (8)-(13) as a function of scattering
angle 0 are displayed as solid and double-dashed
curves [labeled FE1 and FE2 associated with the
first and second choices (26)-(28) and (29a)-(29d)
for the wave functions, respectively] at two
representative electron-impact energies E; of

50 eV and 100 eV. Use of the more refined set

of wave functions (29a)-(29d) causes the scattering
to be increased only in the forward direction
(6=20°) in the case of 2 'P excitation, and into all
angles for the 2 'S collision. This amount of
enhancement decreases with energy increase.

Also shown are recent results labeled S, single-
dashed curves, obtained by Berrington et al.33

who used the first set of orthogonal wave functions
(26)-(28) in the second-order potential theory of
Bransden and Coleman,’* i.e. Eq. (23) with K’

=2k, sin3 6 and Eq. (24), suitably modified so as

to acknowledge polarization of the initial state.
While the long-range polarization is expected to be
more effective for small-angle scattering (i.e.,
distant encounters), Berrington et al.%® have shown
that the resulting reduction in do/d$ is nonetheless
relatively small at small 6 and vanishes for larger
6 and/or E;. Figure 1(a) and 1(b) show that the
present treatment causes a further reduction both
at small and large scattering angles for the 2 'P
excitation. In Figs. 2(a) and 2(b) the effect is
reversed for the 2 'S excitation. These effects

can be attributed to the presence in (9) and (10) of
a which tends to reduce all the cross sections
particularly at the larger scattering angles and to
the more important inclusion in the various chan-
nels of the different local momenta «, (ﬁ) which
tend to enhance?! the 2 !S excitation at the expense
of the 2 'P excitation at energies = 50 eV.

The 2 S Glauber cross sections of Yates and
Tenney?® and of Chan and Chen,* shown as crosses
in Fig. 2, agree closely with the Glauber results
of Franco®” who used the same 2 'S wave functions
as in FE1. The corresponding 2 P cross sec-
tions®® are in harmony with the present calcula-
tions in the angular range 5°-10°, but are larger
for scattering in the forward direction.

The 2 'P and 2 'S differential cross sections
measured by various groups?' 15719 are also
displayed in Figs. 1 and 2 for comparison purposes.
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FIG. 1. Differential cross sections for the process
e + He(11S) = e + He(2 1p) at incident electron energy (a)
50 eV and (b) 100 eV. Theory: FE1, Four-channel
eikonal treatment with first set of atomic wave functions
(26)—(28); FE2, four-channel eikonal treatment with
second set of atomic wave functions (29); S, second-
order potential method with first set of atomic wave
functions [Berrington et al. (Ref. 33)]. Experiment:
A, Chamberlain et al. (Ref. 17), x, Crooks and Rudd
(Ref. 18), ®, Truhlar et al. (Ref. 19) at 55.5 eV and
Vriens et al. (Ref. 15) at 100 eV.



10 MULTICHANNEL EIKONAL TREATMENT OF ATOMIC... 2269

10° L L L L
C 2's ]
C 50 eV (a) :‘
\ ]
N
107" —
o |
1072 —
|o"o
10° — T T T T T I La—
- 2's () 3
Q 100 eV 1
I\ 7
\ .
107 — \\ -
S N .
i ~FE2 i

g (a,?)
<
%

d
T
Va
+
1

3
T llllllln
-
P
%
m /
T .
Ll

IO-! 1 l 1
0 10 20 30 40 50

© (deg)

FIG. 2. Differential cross sections for the process
e + He(11S) ~ ¢ + He(219) at incident electron energy.
(a) 50 eV and (b) 100 eV. Theory: FE1, Four-channel
eikonal treatment with first set of atomic wave functions
(26)—(28); FE2, four-channel eikonal treatment with
second set of atomic wave functions (29); S, second-
order potential method with first set of atomic wave
functions [Berrington et al. (Ref. 33)]; +: Glauber
approximation (Refs. 34 and 35). Experiment: SMM,
Simpson et al. (Ref. 16); A, Chamberlain ef al. (Ref.
17); x, Crooks and Rudd (Ref. 18); ®, Rice et al. (Ref.
4) at 55.5 eV and Vriens et al. (Ref. 15) at 100 eV.
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FIG. 3. Total cross sections for (a) the 2P and (b)
the 21S excitations of He(11S) by electron impact.
Theory: FE1, Four-channel eikonal treatment with first
set of atomic wave functions (26)—(28); FE2, four-chan-
nel eikonal treatment with second set of atomic wave
functions (29); S, second-order potential method with
first set of atomic wave functions [Berrington et al.
(Ref. 33)]; B, Born-approximation (Ref. 2); +: Glauber
approximation (Refs. 35 and 36). Experiment: (21P),
A, Donaldson et al. (Ref. 9); B, Jobe and St. John (Ref.
10); %, Moustafa-Moussa (Ref. 11); @, van Eck and
de Jongh (Ref. 12); (219), A, Lassettre ef al. (Ref. 13);
x, Miller et al. (Ref. 14); O, Vriens et al. (Ref. 15).
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Although large discrepancies do exist between the
measured values, particularly for scattering at
all angles for 50 eV, and for large-angle scat-
tering, in general, the over-all agreement with
theory is satisfactory only for scattering into small
and intermediate angles < 50°.

While the present treatment includes several
important effects, e.g., the 2 'P -2 'S coupling
and the different relative local momenta in the
various channels, it ignores both electron-exchange
and that additional part of the polarization-inter-
action in the incident channel not included via the
four-state treatment. Electron-exchange is mainly
effective at the large scattering angles (i.e., close
encounters) while the long-range polarization
attraction mainly effects elastic scattering in the
forward direction. For e-H(1s) excitation at 50
eV, Chen et al.?® have shown the exchange effect
to be small for §<30°, an effect which is entirely
dominated by the more important 2p-2s coupling
included by Flannery and McCann,?! but neglected
in the treatment of Chen et al.?®* According to
Berrington et al.,® the neglect of the additional
amount of polarization in the incident channel
introduces relatively small error?® for e-He
inelastic scattering in the forward direction. The
present theoretical formulation is however amena-
ble to the inclusion of both electron-exchange and
the full polarization interaction.

However, both polarization in the incident chan-
nel and electron-exchange are significantly more
important for elastic scattering than for inelastic
scattering. Flannery and McCann®! have shown
that inclusion of these effects causes an overall
increase in the total cross section for e-H(1s)
elastic scattering, polarization being mainly
responsible for enhancement in the forward direc-
tion while electron-exchange is needed to properly
describe intermediate and large-angle scattering.

K. J. McCANN AND M. R. FLANNERY 10

In Figs. 3(a)-3(b) are displayed the theoretical
cross sections together with other theoretical
values and the measurements for the total 2 'P
excitations, Refs. 9-12, and for the 2 !S excita-
tions, Refs. 13-15. Donaldson et al.? normalized
their experimental data to the Born cross sections
at 2000 eV. As exhibited in the figures, the
present theory represents considerable improve-
ment over the Born B and the second-order
potential treatments, although a great deal of
scatter still exists in the experimental data. The
theoretical prediction of a peak in the 2 'P excita-
tion around 80 eV is consistent with the experi-
mental data. The use of the less accurate wave
functions (26)-(28) reduces the 2 'P and 2 'S (FE2)
cross sections by 6 and 12%, respectively. Com-
parison of FE1 and S in Fig. 3(b) shows that the
additional physical effects acknowledged by the
present treatment for the 2 'S excitation has in-
troduced closer accord with experiment, while
comparison between FE2 and FE1 demonstrate
the need for using wave functions as accurate as
possible.

Note that Berrington et al.3® obtained their total
cross sections by integrating the computed transi-
tion probabilities over impact parameter p, a
procedure which, in general, overestimates the
cross section calculated by integrating (32)
directly over all solid angles. It is worth noting
that the present Hartree-Fock frozen-core set
of wave functions are the most accurate employed
to date in a collision description more refined
than the Born approximation.

The Glauber cross sections®* % are in accord
with the present FE1 results for impact energy
E,>100 eV, for the 2 'P excitation, and E; > 200,
for the 2 'S excitation. The 2 P wave function
used®® was the same as in FE1 while the 2 !S wave
function®® differed.

TABLE II. Inelastic cross sections (ma,? for the process ¢ + He(1!S)—~e + He (2'P).

FE?® 2'p

E;(eV) 2P, 2lp,, 2'p pb s pd Born®
50 0.0732 0.0600 0.1332 41.9 0.215 0.232 . 0.1694
80 0.0637 0.0750 0.1387 25.9 eoe oo 0.1596
100 0.0547 0.0759 0.1306 18.1 0.155 0.161 0.1485
200 0.0347 0.0671 0.1018 1.7 0.105 0.107 0.1069
300 0.0237 0.0577 0.0814 -9.8 0.0822 0.083 0.0841
400 0.0173 0.0500 0.0673 ~18.2 0.0681 0.069 0.0700
500 . 0.0120 0.0466 0.0586 -32.0 0.0581 0.058 0.0602

2 Present four-channel eikonal treatment (refined set of wave functions, Eqs. (29a)-(29d).

bPercenta,ge polarization of emitted radiation.

®Second-order potential method [Berrington et al. (Ref. 33)].
. dImpact—parameter method [Berrington et al. (Ref. 33)].

®Born approximation [Bell et al . (Ref. 2)I.
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TABLE III. Inelastic cross sections (7ra02) for the pro-
cess ¢ + He(11S)—¢ + He(21S).

E; (eV) FE? sb IP° Born?
50 0.0215 0.0225 0.031 0.0390

80 0.0175 tee o 0.0270
100 0.0153 0.0154 0.0182 0.0222
200 0.0096 0.0093 0.0102 0.0118
300 0.0070 0.0066 0.0071 0.0080
400 0.0054 0.0052 0.0054 0.0060
500 0.0045 0.0042 0.0044 0.0048

2 Present four-channel treatment [refined set of wave
functions, Eqs. (29a)—(29d)].

bSecond-order potential method [Berrington et al . (Ref.
33)l. .

°Impact-parameter method [Berrington et al .(Ref. 33)).

dBorn approximation [Bell et al . (Ref. 2)].

In Tables II and IIT are displayed the actual
numerical 2 'P, ,, and 2 'S excitation cross sec-
tions FE2, together with those given by Born’s
approximation B, the four-state impact treatment
IP and the second-order potential method S. For
the 2 'P excitation at impact energies E; <200 eV,
IP and S are higher than B which at 50 eV is, in
turn, higher than the present four-state eikonal
results FE2 by 34%. For the 2 'S excitation all
the cross sections are lower than Born’s approxi-
mation and the use of the more accurate segond
set of wave functions (29a) has resulted in (for-
tuitous) closer accord with /P and S which were
determined from wave functions (26)-(28). At 500
eV, the Born cross sections are 3 and 6% higher
than the FE2 results for the 2 'P and 2 'S excita-
tions, respectively.

Also tabulated in Table II is the percentage
polarization P of the radiation emitted from the
2 1P level obtained from the formula3®

P =100(c, - 0,)/(0,+0,) , (33)

where o,, is the cross section for excitation of a
particular substate m. Direct measurement of
P for a vacuum uv emission is extremely difficult.
In conclusion, the theoretical acknowledgment
of the different local wave numbers &, ®) [Eq. (6)]
of relative motion in various channels, the impor-
tant 2 'P -2 'S dipole coupling, the momentum
parameter a[Eq. (11)], and various distortion
effects within a multichannel eikonal treatment of

~ atomic collisions has introduced closer accord

with experiment for e-He collisions and, in par-
ticular, has produced a theoretical peak given -
also by Glauber’s approximation but absent in
previous theoretical treatments of the 2 'P cross
section. The effect of including these physical
effects can, however, be rendered null for the

2 IS excitation by an inappropriate choice of wave
functions, i.e., the inclusion of refinements to the
collision theory should be preferably accompanied,
whenever possible, by a choice of accurate He
wave functions. The present agreement for
e-He(1s?) collisions taken together with the pre-
vious?! agreement for e-H(1s) collisions is en-
couraging and represents the status of the present
multichannel eikonal approximation. In particular,
this theoretical model finds ready application over
a large impact energy range to e-excited atom and
e-complex atom collisions, instances for which
application of the full wave treatment is pro-
hibitively difficult.

*Research sponsored by the Air Force Aerospace Re-
search Laboratories, Air Force Systems Command,
U. 8. Air Force Contract No. F33615-74-C-4003.
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