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e -H scattering for a wider range of energy
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An integral form of the close-coupling approximation has been applied to the scattering of electrons

by hydrogen atoms with the retention of only the 1s state, the effect of exchange being included.

Results for the differential and the total cross sections have been obtained from 1 to 500 eV. The

calculated results have been compared with the experimental findings and other theoretical results and

are found to be fairly reliable throughout the entire energy range. The present results differ from Born

values by about 4' even at 500 eV.

INTRODUCTION

In the study of electron-atom collision problems,
the maximum number of theoretical investigations
have been centered around the e -H scattering
process because of its simplicity and the avail-
ability of exact wave functions. Recent experi-
mental measurements of Teubner et al. ' of the
differential cross sections of the e -H system at
low and moderately high incident energies have
given further impetus to the theoretical works.
For lom incident energies there are some meth-
ods' mhich yield satisfactory results. Some meth-
ods' have also been employed to investigate the
electron-hydrogen system in the intermediate-
and high-incident-energy regions with promising
results. However, none of these methods fur-
nishes uniformly satisfactory results for all in-
cident energies.

Here me are interested in finding a method that
may be applicable to a wider range of energies.
Several theoretical investigations' have been car-
ried out to study the e -H system by using the
close-coupling approximation. ' The close-cou-
pling method is based on the expansion of the total
wave function into an infinite number of eigen-
states of the target atom. In practice, it is not
possible to include more than a limited number of
bound states. In actual calculations, one has to
solve a set of coupled integrodifferential equations
for each value of the total angular momentum.
The number of coupled equations depends on the
number of bound states taken. At the time of ea1.-
eulations special devices have to be developed to
incorporate the boundary conditions and to evalu-
ate the integrals by the iterative method. Natural-
ly, computational labor is enormous. The condi-
tion becomes morse when the incident energy in-
creases, since the effects of the higher partial
maves become important with the increase of
the incident energy. It is not too practicable to
go beyond' moderate incident energies on account

of this fact. The convergence of the iterative
method is of prime importance. Near the excita-
tion threshold, Burke et aI, .' have encountered
convergence difficulties. The close-coupling
method, which is considered to be theoretically
sound, may be suitable for a mider range of ener-
gies if one gets rid of these difficulties.

In view of the situation, an integral form of the
close-coupling method as used by Ghosh and
Basu' for the investigation of e'-H scattering is
a suitable alternative. This method incorporates
the boundary conditions automatically and the re-
sult can be obtained quite straightforwardly,
whereas in the differential approach one has to be
careful at every point of the radial variable.
Further, this formalism has been found to be
free from any convergence difficulty throughout
the entire range of energies. Moreover, the
computer time required for this method mill be
less than the conventional close-coupling method.
Under these circumstances the present method of
solution, we think, is less laborious than the con-
ventional close-coupling method and is applicable
to a wider range of energies. For the sake of
simplicity, however, Ghosh and Basu' neglected
the rearrangement channels as mell as the excita-
tions of the target atom. Here, we have applied
this formalism to investigate the e -H scattering
problem including the effect of exchange which
is considered to be vital at lom and intermediate
energies.

THEORY

%e present here a brief derivation of the integral
form' '. of the close-coupling equations. Vfe

choose particles 1 and 2 to be the electrons and
the particle 3 the proton so that (in atonnc units)

1 1 1
V = —— V13 + t 23 + s 12

I 2 1 2

The close-coupling equations may be written as4'7
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satisfied by them are

where N is the number of bound states taken, E
is the total energy of the system, e„. is the ener-
gy of the hydrogen bound state P„, and T, is the
kinetic-energy operator for incident electron 1.
V„„.may be expressed as

V„„.= A~&„+ A'„&„(E), (2)

Ã
Z(",&'=5„,„~ k&+ g V„F"

m=1 E+ie -e r -T, "
tt

„&.„I =)&+ Q J &(»' lK'&

x(k'iv„. „i Z("&') . (5)

&n~n= n r2 ~is+Vu

and A„'".„ is the exchange potential operatox given
by

A'„"„&'(&)= f &»(r)(&&-z(&'(&(&(&,& (r(,„,
(4)

0 being the total Hamiltonian of the system. We
introduce the set of solutions E{&~(n =1,2, . . . , Ã)
which corxesponds asymptotically to a plane wave
with momentum incident in the bound state P„,
together with outgoing spherical waves in all open
channels. The Lipmann-Schwinger equations

%'e denote the amplitude for transition from state
s to state n' by (k's'~ F'~%n& with k' the final mo-
mentum. From a comparison with the asymytotic
form of Eq. (5), the transition amplitudes can be
written as

(%&n&) 1"
) ks& = Q (k&[ V'

)
P&"&'&

m=1

We now introduce the operators B whose matrix
elements are given by

(k'n'[ a'] ks&=(%' )
V„', „(k&.

On using relations (6) and (1) one can obtain the
required integral form of the close-coupling equa-
tions as

&k" Il"'iK &=&k"'if''IK &. 2 „(k's' [a'[ k"s")(k"s"
j F'[Ks)

~ PC

In this paper we have neglected the coupling to
the excited states of the target and as a result,
the summation ovex n" has been omitted from
E(l. (8). The matrix element of B' may be expres
sed Rs

(k' ls I
&'( k ls& = —(1/«')y "(k' k),

(k' ls (
y'~ k ls&= —(1/4s'}f '(k ', k }, (10)

so that f ' and f are the required normalized
singlet and triplet scattering amplitudes. With
the help of Eqs. (9) and (10), we can write E{l. (8)
as

where fs' =fsg go; fs is the 'familiar Born ampli-
tude, and on the energy shell g' is the Oppenheimer
exchange amplitude. In a similar way, we denote

the matrix elexnents of F' as

= —iw5(E —E")+
P

Et/
(12)

With the help of E(l. (12), E(l. (11) may be written

After the partial-wave analysis, these thx'ee-
dimensional integral equations are converted into
one-dimensional integral equations and the result-
ing form is given by

f', (0', 0) =f ( '(0', 0)

waif

s('(0', 0)f ((k, 0)

f'(k', &(=f 't&', »)& —f dk f'((& ( { &&"Z"&(«',

P -„f '(k', k")f '(k", k)

f '(k', k ) =f '(k', k)— «f &
'(+& ~«)f'l(~«& ~)

~„y"(k',k"y'(k", k)
E'

Now the pole term in E(l. (11) has a (i- function
part and a principal-value part:

with

f'(0', 0)=
~ Q (2l+1)f&(k', k)P, (k' (t,'),

(14)
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and a similar expressionfor fs'(k', k). It maybe
mentioned that on using the Faddeev equations
Sloan and Moore' and Sil and his co-workers'
obtained an approximate on-shell form which is
identical to the expression given by Eq. (14),
omitting the principal-value part. If one omits
the principal-value part and neglects the effect
of the exchange, Eq. (14) reduces to the unitarized
Born approximation.

In the Appendix, we have given the partial-wave
analysis of P.

RESULTS

t
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For a fixed value of k corresponding to a partic-
ular incident energy, the two uncoupled one-di-
mensional integral equations given by Eq. (14)
have been solved for each value of the angular
momentum. The Gaussian quadrature method
has been used for the integration of the principal-
value part. The integration range over 0 to
has been divided into two parts, i.e., from 0 to
2k' and 2k to ~, and an even number of points is
used to calculate the first part. The integral
equation is converted into a suitable matrix equa-
tion which is solved numerically. The on-shell
value of the solution gives the physical amplitude.
The convergence of the results has been tested by
increasing the number of Gaussian points. The
first Born and Born-Qppenheimer results have
been reproduced as a check of the program.

In Fig. 1, we have given our results for the dif-
ferential cross sections for the scattering of elec-
trons by the hydrogen atom and compared them
with results obtained by Burke et al. 4 as well as
the experimental points measured by Teubner
et al. ' and Gilbody et al. at 9.4 e7. In Fig. 2,
we have plotted the present values of the differ-
ential cross sections at 12.0 e7 along with the
corresponding results obtained using the 1s-2s-2P
close-coupling approximation (CCA); the experi-
mental findings of Teubner et al. ' have been given
for comparison. The observed sharp rise in the

forward direction as confirmed by the CCA cal-
culations is not represented by our curves. This
steep rise in the forward direction is presumably
due to the effect of polarization. ' The present
formulation excludes the coupling to higher excited
states and as such it cannot take proper account
of the polarization effect. This effect is expected
to be quite important at the energy selected for
comparison in Figs. 1 and 2. Therefore the dis-
crepancy between our results and the experimen-
tal findings, "as well as the values obtained by
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FIG. 2. Differential cross sections for e-H scattering
at 12 eV.
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FIG. 3. Differential cross sections for e-H scattering
at 50 and 200 eV.
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Burke et al. 4 can be explained. However, our
values are approximately 3.5 times higher than
those calculated from the Born approximation at
the zero-degree scattering angle. From the 40'
scattering angle and onward, our curves are in
good agreement with the experimental findings.
It may be mentioned that the results of the Born
approximation are approximately five to six times
smaller than those obtained by us at the backward
scattering angle.

In Figs. 3 and 4, we show our curves for the
differential cross sections along with the corre-
sponding results of the Born approximation and
compare them with the experimental points. ' At
50 eV our curve shows good agreement with the
experimental findings from 40' onward. It may
be mentioned that the results of CCA calculated
by Scott" (not given in the figures) at 50 eV are
very close to our curve throughout the entire
range of the scattering angle except for a slight
discrepancy in the forward direction. The agree-
ment between our results and the experimental
findings at 100 eV is satisfactory for a scattering
angle of 30' and onward. At 200 eV there are no
experimental points below 20 and beyond this
angle our curve rather coalesces with t6e avail-
able experimental points. It appears that the
region of discrepancy near the forward direction
shrinks with increasing energy. The results ob-
tained by the Born approximation always lie below
our values as well as the experimental findings
although the slopes of the Born curves are more
or less the same as ours. Even at 500 eV (Fig. 5),
the Born results differ in magnitude by about 4/o.
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FIG. 5. Differential cross section for e-H scattering
at 500 eV.

Table I contains the singlet and triplet partial
scattering amplitudes f' and f up to l = 14 (spin
statistical factors are not included) at 200 and
500 eV. It is apparent from the table that the ef-
fect of exchange is not vanishingly small even at
500 eV. This feature has also been noticed by
Sloan and Moorev and Sil and Ghosh s
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FIG. 4. Differential cross section for e-H scattering
at 100 eV.
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FIG. 6. Total cross section for e-H scattering. Re-
sults of Sehwartz and Armstead are the combined results
of s-wave calculations of Schwartz and P-wave calcula-
tions of Armstead.
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TABLE I. Real and imaginary parts of partial singlet and triplet ampl. itudes (in units of ao). Spin statistical factors
are not included.

Re
Singlet f~+

Im

200 eV
Triplet f,

Re Im Re
Singlet f;

Im

500 eV

Re
Triplet f,

Im

0
1
2
3
4
5
6

8
9

10
11
12
13
14

3.440 (-1)
2.096 (-1)
1.390 (-1)
9.567 (-2)
6.716(-2)
4.770 (-2)
3.415(—2)
2.458 (-2)
1.vv5(-2)
1.285 (-2)
9.322 (-3)
6.vv1(—3)
4.e22(-3)
3.5S1(-3)
2.606 (-3)

1.372 {-1)
4.6O3(-2)
1.970 (-2)
9.237 (-3)
4.531(-3)
2.281 (-3)
1.167(-3)
6.044 (—4)
3.151(-4)
1.652 (-4)
8.691(-5)
4.585 (-5)
2.423(-5)
1.282 (-5)
6.792 (-6)

3.550{-1)
2.226 (-1)
1.506(-1)
1.O52(-1)
7.470 (-2)
5.345(-2)
3.862 (—2)
2.vev(-2)
2.O31(-2)
1.477 {-2)
1.07 6 (-2)
v.845(-3)
5.v22(-3)
4.1V4(-3)
3.o4v(-3)

1.4ve(-1)
5.228 (-2)
2.322 (-2)
1.119(-2)
5.610(—3)
2.sv6(-3)
1.494 (-3)
7.829 (-4)
4.126(-4)
2.183(-4)
1.158(-4)
6.154(-5)
3.2V4(-5)
1.v43(-5)
9.281 (-6)

4.073(-1)
2.153(-1)
1.190(-1)
6.813(-2)
3.esv (-2)
2.365(-2)
1.415(-2)
8.498 (-3)
5.125{-3)
3.097 (-3)
1.874 (-3)
1.135(-3)
6.877 (-4)
4.167(-4)
2.525 (-4)

2.100(-1)
4.815(—2)
1.436(-2)
4.664 (-3)
1.592(-3)
5.594 (-4)
1.999(-4)
V.222(-5)
2.626(-5)
9.592 (-6)
3.512(—6)
1 ~ 288 (-6)
4.729 (-7)
1.737 (-7)
6.378 (-8)

4.362 (-1)
2.583(-1)
1.525(-1)
9.106(-2)
5.4S2(-2)
3.321(-2)
2.o19 (-2)
1.23O(-2)
v.5o2 (-2)
4.578 (-3)
2.ve4(-3)
1.704 (-3)
1.039(-3)
6.335(-4)
3.859 (-4)

2.556{-1)
v.1sv(-2)
2.938(-2)
S.356(-3)
3.015(-3)
1.1O4(-3)
4.078 (-4)
1.513(-4)
5.628 (—5)
2.096(-5)
7.804(-6)
2.905(-6)
1.080 (-6)
4.013(-7)
1.489 (-7)

Number in parentheses in each entry is the power of ten by which the amplitude value should be multiplied.

Figure 6 represents our total cross section
from 1 to 12 eV along with the theoretical results
of Schwartz' and Armstead. " The experimental
findings of Neynaber et al."and Brackmann and
Fite" have also been included in Fig. 6. Our
curves a,re the same as obtained by John'usingcon-
ventional CCA-retaining 1s states only. The pres-
ent value of the total cross section at 1 eV is
27.518ma', . This value, as expected, is slightly
greater than the Schwartz value and also greater
than the value obtained by Temkin and Lamkin'
and the 1s-2s-2p CCA' (not given in Fig. 1). The

present values of the total cross section ii: the ener-

gy range 10-500 eV are given in Fig. 7 along with

the values of Born approximation and the results
of Burke et aL. ' using the 1s-2s-2p CCA. From
Figs. 6 and 7, we can see that near the excitation
threshold, our values deviate most from the more
accurate theoretical results and the experimental
findings. As we move away from this energy re-
gion, the difference steadily decreases. This

feature has also been noticed for differential .

cross sections. The difference between the Born
curve and our curve steadily decreases with in-

creasing energy. Even at 500 eV, our values for
the total cross section differ from the Born result
by about 4%. Similar discrepancy has also been
reported by Banerjee et aL.' for the positron-hy-
drogen scattering and by Byron and Joachain'
for electron-hydrogen collisions.

CONCLUSION

Throughout the entire energy range, from 1 to
500 eV, the present formalism furnishes fairly
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FIG. 7. Total cross section for e-H scattering.

reliable results. This method of calculation en-
ables one to apply the close-coupling approxima-
tion to intermediate- and high-energy regions.
There is a general belief that the Born approxima-
tion is valid for E& 200 eV for the electron-hydro-
gen scattering problem. The present results,
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both for the total and the differential cross sec-
tions, differ from the Born results by about 4%%ug

at energies as high as 500 eV. This casts doubt
as to the energy region where the first Born ap-

proximation is expected to be accurate. Further
calculations including a larger number of states
are necessary to settle the high-energy behavior
of the cross sections.

APPENDIX

Our aim is to reduce the exchange partial-wave amplitude g, to a suitable form for numerical calcula-
tions; the analysis for the Born amplitude f is straightforward. The expression for the exchange ampli-
tude g' is of the form

d =(1/22) f f e 2' e ' ''(H —H)e ' 2' '"de, dr,

= —(1/22) f f e '"e "' (((/e, .) —((/e. )e (H'-H))e

On the energy shell, the final-state energy E' is
equal to E and g' is then the well-known Oppen-
heimer amplitude. The partial-wave amplitude
is given by

+y
Zo=-'0 goP (f)«,

-1

where

with

M = (p'+ q')(1 z') + —'(o('+ p-')z+ '((z'+ p-'),

N=-,'Pq(1 —z') .
Performing the integration' with respect to k,
we have

8 8 dg
A =4w' ——

So( SP (M+Nt)1/2(D+Ez)

The partial-wave analysis for the parts of the
amplitude containing 1/&, and (E' E) canbe easi-ly
performed, and we give the reduction only for the
part containing 1/r». This part, denoted by A,
may be expressed as"

8 d dk
sn sp 0'[(0-p)'+p'][(&-q)'+o. '] '

using the parametrization technique, A can be
written as

'I

+1 dk

so, up, k'[(k-p)'+&']' '

where

z =M+Nt,

where

D P)2 + q2 + Z2 + P2

q2+ z2 '

P2 P2 ~

Multiplying both sides by P, (t) and integrating
with respect to dt, we have

+' 8 8 2 " h'
AP t dt=4m' ——

ete 222(e( f, e(H ~ E*)

where

h = (1/2c)[(M+N)'/2 —(M —N)'/')

with

c =-,'[(M+N)2" + (M N)2/']

It should be noted that there is an error in the
partial-wave analysis of the scattering amplitude
given by Sil and Ghosh.
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