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In a previous 'study of bound-state matrix elements of a Hermitian operator W, it was possible to
obtain at most an upper (or lower) stationary bound. The possibility arose only for the diagonal matrix
element case, and only for W nonpositive (or nonnegative). In the present treatment, both upper and
lower stationary bounds are obtained, for diagonal and off-diagonal matrix elements, and, though some
restrictions on W remain, the requirement that W be of well-defined sign can be dropped. The deriv-
ation also improves upon that given previously in that the possibility of any difficulty with near sin-
gularities in the equation defining the trial auxiliary (or Lagrange) function is unambiguously avoided.
As an example, the method is applied to the problem of the zero-energy scattering of positrons by
atoms or ions, and an expression is derived which provides a rigorous stationary upper bound on the
scattering length; the target ground-state wave function need not be known exactly. Crude but rigorous
numerical results are obtained quite simply in the Born approximation.

1. INTRODUCTION

Matrix elements of the form
Wom= (s W), . (1.1)

where W is a Hermitian operator and , is a nor-
malized bound state eigenfunction of a Hamiltonian
h, satisfying

(7~ €2, =0, 1.2)

appear throughout physics, and it is useful to be
able to calculate bounds on them. Simple numeri-
cal bounds have been obtained! for a wide range of
operators W; even if crude, they can be useful as
input data in the determination of the more ac-
curate bounds to be described below. First order
bounds, in which one introduces normalized trial
functions ¥,, and ¥,,, which contain variational
parameters and for which the error is of first
order in some weighted average of the errors
8y, in the trial functions, have also been ob-
tained''? for many operators W, as have quasi-
stationary bounds,® with errors of the 3 power of
some weighted average of the 6y,,. We will be
concerned here with the development of true sta-
tionary upper and lower bounds, with errors of
second order in the 63,,. One such bound was ob-
tained for the particular case of the diagonal ma-
trix elements of an operator of definite sign.?
More precisely, it was shown that

W 2Weo', W20, (1.3a)
and, as follows from an identical technique
W sWEP, Ws0, (1.3b)

where WS¥, which are given explicitly, differ in
second order from W,,. [The superscripts (+) and

10

(=) will always denote upper and lower bounds,
respectively.] We will extend the above results
to the much wider class of operators for which
one can readily perform the decomposition

W=W, +W_, (1.4a)
where
w,=0, W_<O0. (1.4b)

Furthermore, botk bounds are obtained for such
operators. While further generalizations may be
possible we have confined the discussion (in Sec.
III) to those cases, of interest in atomic physics,
where W can be bounded by a number, or where
W can be expressed as (or bounded by) a sum of
terms, each term being a power of electron-elec-
tron or of electron-nucleus coordinates (or of
conjugate momentum variables). The method is
applicable to off-diagonal matrix elements W,,,,
n#m. (The off-diagonal case is treated in Appen-
dix B.)

The determination of bounds can often be much
simplified by the use of three tactics. The first
tactic is to proceed in small steps. Thus, sta-
tionary upper and lower bounds on the integral

(@, ¥,), (1.5)

for & a known quadratically integrable function,
have been obtained?; the problem is much simpler
than that of obtaining bounds on W,,. But (2, y,)

is equal to W, for the choice ® =Wy,,. The proce-
dure will then be to bound (®, ,) with & =Wy,
thought of as known, and then to bound the matrix
elements containing ¢ in the bound on (®,y,). The
bound on (2, ¢,) will contain not only ¢ and y,, but
the trial approximation L,, to the Lagrange-like
function L, similar to that appearing in variational
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principles,*~® the overlap integral

S0 = Wns Yme)s , (1.6)

and the exact energy €,. S, and €, are relatively
simple to bound, and they will often be carried
through in the analysis, though of course they must
ultimately be replaced by the appropriate bounds
wherever they appear in the formulas.

The second tactic is not to directly bound the
quantity of interest, say W,, or (®,y,), but® to
express the quantity of interest as an explicit cal-
culable variational estimate plus a formal second
order error and to obtain bounds on the second-
order error term; these bounds may be simple,
but they must preserve the second-order error
aspect.

The third tactic is the replacement of non-posi-
tive-definite Hamiltonians by modified Hamiltonians
which are positive definite. This tactic was em-
ployed earlier in the development of an upper
variational bound on the scattering length A for
the scattering of B by C. If B+C at zero incident
relative kinetic energy represents the lowest ener-
gy state of the system then with E, and E, the
ground-state energies of the isolated system, we
have H — E g, — E,>0 with respect to functions
which decay or approach a constant at large sepa-
rations of B and C, and the problem of bounding A
is then very little different from the Rayleigh-
Ritz variational bound on the ground state energy.'®
To obtain a bound on A if B and C can form one or
more bound states, one must extract the effects
of these states without knowing the associated wave
functions or energies. The extraction is possible
and leads!! to a stationary bound on A. The ap-
proach has been extended to a number of other
problems.'?

In Sec. II we obtain stationary upper and lower
bounds on (&, y,) slightly different from those ob-
tainedvpreviously.s The advantage of these new
expressions is that they make contact with some
very recent work on variational principles for
matrix elements; in this work, it is shown that
difficulties associated with near singularities in
the equation defining L,,, near singularities which
had been present in all previous papers on the
subject in which generality of approach was pre-
served, can be avoided by use .of a subsidiary
minimum principle based on a modified Hamil -
tonian.®

In Sec. ITI, we show how the bounds obtained in
Sec. II (which are often useful in their own right)
can be used to obtain stationary upper and lower
bounds on W,,. More precisely, we find inequalities
conjugate to those of Eq. (1.3), namely,

W, <WIT, w=0, (1.7a)

and, as follows from an identical technique

W2 Wii™, W <0, (1.7)
where W.{*), which will be given explicitly, differ
in secord order from W,,. Whenever the decom-
position (1.4a) is pessible, Eqs. (1.3) and (1.7) give
the stationary upper and lower bounds on W,, that
we are seeking.

In Sec. IV we apply these results to obtain a sta-
tionary upper bound on A for the scattering of
positrons by atoms or ions. The rigorous sta-
tionary upper bound on A previously obtained is
valid only for scattering by a target system whose
wave function and energy are known precisely.

(In the atomic case, we are thereby restricted to
hydrogenlike systems.) Appendix B contains an ex-
tension of the results te off-diagonal matrix ele-
ments. We also obtain simple numerical results
for e*-He scattering in the Born approximation.

H. STATIONARY UPPER AND LOWER BOUNDS ON (9,y )

A. Seme notatien and some known properties

It will be convenient te restrict considerations
to the (n=1) ground state. (The restriction can
be readily removed; see Appendix B.) We will
write  rather than ), and y, rather than ¥, when-
ever no confusion can arise. Our ground-state
energy estimate is given by

€= (g, BY,). (2.1)

(Note that we retain the subscript 1 on the energy.)
We introduce the exact and trial projection opera-
tors onto the ground state p and p,, and the or-
thogonal projection operaters ¢ and ¢,,

P=|¢>(¢|, q=1—p’ (2-2)

P9=l¢’:><¢gly q,=1-p,, (2.3)
and the modified Hamiltonian

k- (2.4)

€t

It has been shown'® that, with respect to quadrat-
ically integrable funetions,

r=(e,/e,4)€,, (2.5)

where €, is the emergy of the first excited state if -
there is more than one beound state or the energy
of the continuum threshold if there is only one
bound state. For a gooed trial function ¢, the num-
ber on the right-hand side of the inequality (2.5)
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will vapproach €,. It will therefore normally be
possible, using even relatively crude lower bounds
on €; and €,, to determine a number €, such that

(€,/€,4)€,2 €, 2 €, . (2.6)
Under these circumstances, we have
h-%,=0. 2.7

Associated with % is the resolvent operator
&gle)=(e—h)™. (2.8)

It will also be convenient to introduce a modifica-
tion of g(e), namely,

g'(€)=g(€) - (p,/e). (2.9)

It is an immediate consequence of the definitions
(2.1), (2.3), and (2.4) that

hy, =0, (2.10)
and, consequently, that

)b, =p, 2() = (p,/0),
and thus that

:8'(€)=§(€)p, =0 @.11)

for any €. Neither g(e) nor g’(e) will normally be
calculable, and we introduce the trial resolvent
operator 3;, chosen to satisfy

&i(€)p, =P 8i(€)=0. (2.12)
6g’ is formally defined by
68’ (€)=2i(e) - &'(e), (2.13)

and therefore, by Eqgs. (2.11) and (2.12), satisfies
68’ (€)a, =q,08" (€)=08'(€). (2.14)
Using Eq. (1.2), we observe that

(6= (o - 2Ry gy, 15)
€1t

where
N= (el/elt)(d)b ‘P) =€ S*/eu .

Provided only that €,,<€,, which we assume
throughout to be the case, it follows from Eq. (2.5)
that 2> ¢, and therefore that the inversion of €, — h
is unique. By (2.9), and (2.15), we can then write'*

Y =Ng(e,)hy, =N((e,s/€,); +§l(€1)h¢t] ’ _(2-173-)

where the normalization constant N is given by Eq.
(2.16). From Eq. (2.13), we have

(2.16)

Y =N[(€1g/€1)ll)t +§‘(€1)h¢¢] —Négl(€1)hd)‘. (2.17b)

The first term of Eq. (2.17b) represents an ex-
plicit variational approximation to ¥, the second
term being equal, by virtue of (2.14), to

NOZ’'(e,)(h — €, )y,

a product of two first-order factors. Note that the
appearance of €, as the argument of g} is a mere
notational matter; gj(e,) is to be chosen, and €,
need not be known. The ¢€,’s appearing elsewhere
in the expression for ¥, on the other hand, ulti-
mately have to be replaced by the appropriate
bound. Note too that #’(e,) by construction, 2}(e,)
by choice, and therefore 62’(e,) are all nonsingular.
We note for future reference that we can rewrite
2'(€), using’(2.9), (2.8), (2.10), and (2.3), as

€)= -1 - (e -h)(p, /)] =5, (2.18)

Since the unknown component of ¥ of Eq. (2.17b)
is of second order and is nonsingular, the ¢ of
(2.17b) serves as an excellent starting point for the
determination of bounds on matrix elements con-
taining 3.

B. Bounds on (®,¥)

Taking the inner product! of ¢ with ¥ as given by
Eq. (2.17b), and introducing the entity

L,=gi(€,)®,
assumed to be knowﬂ, we immediately obtain
(@, SN[, /€)@, 9,) + (L, by £]a] ),
(2.20)

(2.19)

where |A|*) is an upper bound on
IA|E l(¢5 621(61)(}1 - eu)lpt)l

and N® is N or N°), as required by the sign

of the quantity in square brackets. We must now
obtain expressions for |A|¢*) and for N**? which
are to differ from A and N, respectively, by terms
of second order.

To obtain |A|‘*?, we start with Eq. (2.13), use
Eq. (2.8) to replace 2} by —2(%k —€,) 2;, and use Eq.
(2.18) to replace 2’ by Zg,. It then follows at once’
that!e.l'l

6§J(€1) = —2(61)[0; - 61)21(61) +q:]'

We insert this in (2.21) and use the Schwarz in-
equality and (2.18) to obtain

(2.21)

(2.22)

lal< 2 Nx It =€)l - (2.23)
The function J is defined by
J=q,[(ﬁ—el)g’, +q,]<1>=(;z—e,)L,+q,<I>. (2.24)

We use the notation ||| to represent the norm of
f, defined by

I7ll= 12
From the inequality

&) Il< (& &), (2.25)



a consequence of the definition (2.8) and the in-
equality 2> €, noted above, it follows that

lal< (& - ) 1% N0 - ey )l =1A] . (2.26)

We thus-have an explicit expression for |A|*). The
crucial point is that |A|*, a bound on a second
order quantity, is itself of second order; thus, the
norm involving ¥, is clearly of first order, as is -
the function J since the operator (i - €,)3 +q,
which appears in Eq. (2.24) is of first order as can
be seen from Eq. (2.22).

The determination of bounds on N requires bounds
on S. Choosing the arbitrary phase factor such
that S is positive we write

SI<S<SH

and note that the literature contains many expres-
sions!® for S*). We record here only S‘*’ =1 and'®

S(-)=[(€z‘€1t)/(€2—€1)]l/2' (2‘27)

Note that S and S*’ all differ from unity, and
therefore from one another, by terms of second
or higher order. From (2.16) we have

N = (¢, /e,,) S, (2.28)

Substitution of Egs. (2.26) for |A|‘*) and Eqgs.
(2.27) and (2.28) for N'®) into Eq. (2.20) gives us
the desired calculable stationary upper and lower
bounds on (®, ), superior to that obtained pre-
viously in that there is no possibility of near-sin-
gularity difficulties arising. The parameters in
the trial Lagrangian can be obtained either directly
by extremizing the bound on (®, ) or else indirect-
ly from a subsidiary minimum principle.®

IIIl. STATIONARY UPPER AND LOWER
BOUNDS ON (y,Wy)

If W is a non-negative operator, the Schwarz
inequality gives the as yet formal stationary lower
bound

W, W)= @, Wi, )/ (g, Wi,). (3.1)
It is readily verified that the bound equation (3.1)
is indeed stationary, that is, that the first-order
error.terms cancel. The bound is formal since
(¥, Wy,) is not known, but with the choice ® =Wy,,
a stationary lower bound on (, Wy,) follows from
the results of Sec. II. The insertion of this re-
sult in Eq. (3.1) gives the explicit stationary lower
bound on (¥, Wy) for W =0 referred to in the Intro-
duction. (Note that even if W is not a non-negative
operator, but is bounded from below by a number
Wﬁcr)n, the inequality analogous to (3.1) for the op-
erator W-W ;) still leads to a stationary lower
bound on (y, Wy). Similarly, if W is not non-posi-
tive but is bounded from above by Wf“}‘,,)1 , We can
get a stationary upper bound on (3, Wy). These re-
marks may be verified by writing
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W, Wy) =@, [W - WL 1) + Wi,

and noting that W =W’ <0 and W -W®’=>0. If
W is bounded from above and below, as for the
interesting case W =¢**", where W{:) =11, both
bounds can be obtained.) '

The above results are contained in Ref. 3. We
will now show how stationary upper bounds on
(¥, Wy) can be derived for a rather wide class of
operators W to be defined below. This class in-
cludes operators which are not of definite sign.
The stationary upper bound on (¥, W) just noted
provides us at the same time with a mechanism for
obtaining a stationary lower bound on (y, Wy).
Thus, if W is a member of the class of operators
under consideration, and if the decomposition
W =W, +W_ of (1.4a) is possible, a stationary lower
bound on (¥, W,¥) can be obtained using the previous
results and a stationary lower bound on (¥, W_y) is
provided by the stationary upper bound on
(¥, [-W_]4). The results can be extended to off-
diagonal matrix elements.

A. Identity for y and properties of D(W)
Starting from the obvious identity

Ve =Py, +q9;

and using the relationship py, =Sy, we have the
much used identity

SY=9, -q¢,. 3.2)
This enables us to write

W, wy) =[25@, W,) - &, W) + DW)]/S2, (3.3)
where we have introduced the notation

D(B) = (q¥¢, Bqy,), (3.4)

where B is an arbitrary operator. (;, Wy,) is
known and we can obtain stationary upper and lower
bounds on S and on (y, Wy,). The determination of
stationary bounds on (, W) thereby reduces to the
determination of appropriate bounds on D(W).
Since gy, is of first order (gy being equal to zero),
D(W) is of second order. It follows that even a
simple bound on D(W) will suffice to provide a sta-
tionary bound on (y, Wy). More precisely, the use
of D(W) si)(”(W), where the ratio differs from 1
even in zeroth order in 6y, so that ) (W) is of
second order in &), would suffice to provide a sta-
tionary upper bound on (y, Wy). (We could not
allow 9*)(W)/D(W) to diverge as g, ¢, that is,
we could not allow an error of inverse order.)
Correspondingly, the use of D(W)=D) (W),
where D' (W)/D(W) differs from unity even in
zeroth order, would suffice to provide a stationary
lower bound on (, Wy).

In particular, since D(W) is linear in W we have
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DW)<DW ™) for W<w, (3.5)

If we can obtain a simple upper bound D) (W¢*’)
on D(WH), then D)W ) will also provide a
simple upper bound on (W) and can therefore be
used to obtain a stationary upper bound on (3, Wy).
Bounds on D(W) for certain simple types of opera-
tors W can be obtained by methods similar to those
introduced by Aranoff and Percus®® in a somewhat
different context. The possibility of bounding
D(W) by bounding D(W*), to the accuracy of in-
terest, greatly widens the range of W for which
the required bounds on D(W) can be obtained.

As an example of the use of D(W*"’), we note
that in the determination of a stationary upper
bound on A for the zero energy scattering of a
positron by an atom, one is faced with the need to
bound D(W) for a known operator W which is finite
for finite », behaves as yr? for large 7 (with vy
known), and has a rather complicated functional
dependence upon 7 for  small. It would then be
difficult to bound D(W) by the method of Aranoff
and Percus, but their method could be used to ob-
tain D(W "), where

WE)sW™H (r)=a+pr+yre,

with o and B appropriately chosen. We shall re-
turn to this example in Sec. IV.

B. Simple bounds on D(W)

The remainder of this section will be devoted to
obtaining simple bounds on D(W) for various simple
forms of the operator W. The derivations given
below are patterned after similar derivations in
Ref. 20, and in some cases represent slight im-
provements over the latter. There are also some
differences in definitions; the significance of some
of these, and some questions of rigor, are men-
tioned in Appendix E of Ref. 1.

In what follows, we shall employ the language of
atomic physics, and suppose that & is the Hamil-
tonian of an atom of nuclear charge Z with Z’
electrons. (The approach could also be applied to
other types of Hamiltonians.) We will focus atten-
tion on operators which are functions of the elec-
tron-nucleus distances 7; and the electron-elec-
tron distances 7,;, but it will become clear that
other types of operators, particularly momentum
dependent operators, can be treated as easily.

A property of D(W) which will be useful in the
following is recorded here: Using the indistin-
guishability of the electrons, it follows that for

zl
W= w, _ (3.6)
=1

where w; is a one-particle operator,

DW)=2'Dw),). (3.7)

It is shown in Appendix E of Ref. 1 that for Her-
mitian operators B that have the property of be-
coming large at infinity, a bound on D(B?) that is
often useful may be written

o(B%)<{(h - €, I, BLh -, ], ) /2
+02( BT, n]«[1, B I} (e, - €,)?, (3.8)
where B’ is a vector of odd parity satisfying
B''-B =B (3.9)
Choosing B’ =7,, this becomes
o) <{lh-eW,,7ilh -, v
+@Yz'm) (0} (e, - €,
(3.10)

where ¢ is the total kinetic energy operator of the
electrons, and where we have used Eq. (3.7) to
give

D(p?) = (2m/Z")D(t). (3.11)

We note that, once having obtained a calculable
bound on D(r%), we can calculate similar bounds
for the operators 7;, 7,,, and 72, since

D(r,) < (1 -8%)/20!/2(r2), (3.12)
o(r,,)<2D(r)), (3.13a)
D(r2,)<4d(r?). (3.13b)
Equation (3.12) follows from
D2(r)) = @by, 7199,V <llqy.ll®
| x|l7,a9l? = (1 -53)2r3).
(3.14)

Equations (3.13a) and (3.13b) are immediate con-
sequences of 7,;<7, +7,. That these bounds lead
to stationary bounds on W,, follows from the re-
marks made in conjunction with Eq. (3.5) above.
It remains, therefore, to obtain an upper bound
on D(t). To this end, we note that since t=h -,
where v is the sum of the electron-nucleus and
electron-electron interactions, it follows that

() <|o®)|+ D). (3.15)
Moreover,
|®(v)l<Ze2i:ﬁ)<l)+ez D(L>
=\ 1= \"yy
! ’ -
ez Zrez,)(i) ALt ezﬂ)(L) ,
7 2 LT
(3.16) .

where e is the electronic charge. Using (3.3) with
W =h, one readily finds that

D(h) =€,, —S%,. (3.17)
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Comparing Egs. (3.10), (3.15), (3.16), and (3.17),
it can be seen that the last obstacles in the path of
obtaining the desired bound on D(r %) will have been
removed if we can obtain stationary bounds on
D(1/7,) and D(1/7;,). This can be most easily ac-
complished?® via the commutation relationships

JE_E S\ 2
,(p‘ L4 p‘> -z, (3.18a)
f, T, .\ 20
1(9;' Iy Ty .p‘> - (3.18b)
ij LY, 47

It then follows from Schwarz’s inequality that

o(1/7,)<s 1 /R)D /2(1,?)5)1/2(1)
=(@2m/m2Z") /(1 —S2)t/2991/2(¢)  (3.19a)
and similarly

3)(1/1’”)$ (zm/h—zzl)llz(l _32)1/25)1/2(1;).
(3.19p)

Combining Eqs. (3.17) and (3.19) with (3.15), we
find

D(t)-(1 _SZ)I/ZbDI/2(t) _ |€” —52€1|SO,

where
b=(@2m/r2Z' M3 zz' +32'(2' -1)].  (3.20)
1t follows that
D/2()<3{1 -5%/2
+[(1 -S2)2 + 4]e,, -S%, |13} (3.21)

If Eq. (3.21) is not sufficiently accurate for the
purposes at hand, one can use an alternative bound,
though at the price of additional computational
effort. The alternative bound may be derived using
the virial theorem

W, tv) =|e,|. (3.22)
We use (3.3) to express D(¢) in the form
:D(t)=(¢;,t¢:)—23(w, t¢,)+Szl€ll. (3.23)

If we replace €, and (9, t§,) by stationary lower
bounds, Eq. (3.23) will give rise to the (simple)
upper bound

D)< Wy, t0,) =25 @, £,)77 +5% ¢, |. (3.24)

The lower bound (¥, t,)"’ on (3, tp,) may be ob-
tained via Eq. (2.20) and the choice ¢ =ty,.

The bounds we have obtained on D'/2(¢), Egs.
(3.21) and (3.24) are each of first order, as is
easily verified. Thus, when D'/2(¢) in Eq. (3.10)
is replaced by either of these expressions the re-
sulting bound on D(r%) is a second-order quantity,
and, in turn, the bounds on D(r;), D(r,,), and
D(r%,) calculated from Egs. (3.12)-(3.14) using
this bound will also be second order quantities.

We note that in the process of obtaining these
bounds, we have obtained upper bounds on D(1/7,)
and D(1/7,,), when Egs. (3.19) are combined with
Eq. (3.21). Bounds on D (W) for other powers of
7, and 7, can be obtained by similar methods.
Bounds on D (W) for operators which are functions
of momenta can similarly be obtained from equa-
tions such as Eq. (3.11).

Thus, when W is any operator of the form of
sums and products of powers of 7;, 7, p;, and
Py, rigorous, stationary upper bounds on (¥, Wy)
can be calculated directly from Eq. (3.3). Even
when W is not of so simple a form, we can never-
theless still compute the required stationary upper
bound using (3.5) provided we can construct a suf-
ficiently simple W),

The results of this section can be generalized
to the case of off-diagonal matrix elements, as
shown in Appendix B.

IV. APPLICATION: RIGOROUS STATIONARY
UPPER BOUND ON THE SCATTERING LENGTH
FOR POSITRON-ATOM SCATTERING

We apply the bounds derived in Secs. I-III to
obtain a stationary upper bound on the scattering
length for the collisions of positrons with atoms
or ions.?! As mentioned previously, apparently no
rigorous upper bound of any kind has previously
been given for this quantity for atoms with more
than one electron, because of the appearance of
matrix elements involving the unknown target wave
functions.?

Consider first a system consisting of a positron
incident at zero energy on a neutral atom of nuclear
charge Z. The case of Coulombic potentials re-
quires a slightly different approach, and will be
treated later on.

Let the target atom have exact energy levels
€,,€,, ..., wWith corresponding exact normalized
wave functions ¢, §,, ... . Let us temporarily
assume that ¢, and €, are known; these restrictions
will be removed at the appropriate points in the
derivation. If the target is initially in its spheri-
cally symmetric ground state, if no composite
bound states are possible, and if pickup is not
possible at zero incident energy, then a stationary
bound on the (L=0) scattering length is given by*°

m -
A<A,+ wa,(ﬂ-e,)\p,dfdp. (4.1)
Here
H=H(T,p)=T(p)+h(T)+V(F,p) (4.2)

is the total Hamiltonian of the system, p denotes
the positron coordinates and T stands for the
space and spin coordinates of the target electrons,
T(p) is the positron kinetic energy operator, and
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V(F,p) is the positron-atom interaction. The exact
wave function for the system ¥ can be written

w,ﬁ)=‘Z=J¢.-<f)ui<5)=zpl<f)ul(p)+x<f,5),

4.3)

where, in the zero-energy limit, u,(p) has the
asymptotic forms )

u,(p)~const., p-0, (4.4)
u;(P)"‘ (A ‘p)/P, p~x,

and where x(T,p), which represents the effects of
all the closed channels (e.g., virtual pickup pro-
cesses) falls off faster than 1/p. Accordingly,
without loss of generality, ¥, can be taken to be of
the form .

¥, (T, B) =4, (Fuy, (0) +X:(F,5) (4.5)

where the asymptotic behavior of ,, is given by
u,4(p)~const., p-0, (4.6)
u e~ (A =p)p, p~=,

and where x, is some approximation to x which
also falls off faster than 1/p. In order to calculate
the bound (4.1) we must therefore evaluate the
integral

I sf\p,(y -€,)¥,dFdp = fu”T(ﬁ)u“dﬁ
+ [0 D) V(E Dy, (), (PdF df
+2 [XT(E)+V (F, Bl (P (p) dF dp

+ fx:(H" €;)X¢ dFdﬁ- 4.7)

The bound (4.1) is thus far only a formal one,
since ¥, and €, in (4.7) are not known exactly. How-
ever, if each term on the right-hand side of (4.7)
which contains these unknown entities is replaced
by a stationary upper bound, the sense of the in-
equality (4.1) will be preserved, as well as its
stationary character, and the resulting bound on A
will become calculable.

To this end, let us examine each of the integrals
on the right-hand side of Eq. (4.7). The first such
integral can be calculated as it stands; it is fur-
thermore finite as can be seen from Eq. (4.6), and
need not be considered further. Similar considera-
tions hold for the last integral on the right-hand
side of Eq. (4.7), except that the result will contain
the unknown number €,. This can be then replaced
by a stationary lower bound.

Consider next the third integral on the right-hand
side of Eq. (4.7). After the integral over dp is

performed, it is of the form
(@@(7), ,(T),

where ®?)(T) is the known square-integrable func-
tion

(4.8a)

<I>‘2’(F)=fxt(T+V)und5, (4.8b)
and so may be bounded by the methods of Sec. II.

Finally, integration over dp in the second inte-
gral on the right-hand side of Eq. (4.7) results in
the expression

W, (F), W (), (F)), 4.9)

where

W)= [u, (oW (F,B)uy,(p)db, (4.10)
so that Eq. (4.9) may be bounded by the methods

of Sec. ITII. Specifically, we note that the bound
obtained using Eq. (3.3) is the one which is ap-
plicable since W(r)=0. To see that W(¥)=0, note

_that Eq. (4.10) breaks up into Z integrals of the

form

w(r;)=4ne? f

0

=/1 1
(; - IF——E—) uZ,(p)p*dp
i

7i/1 1
—are [(5 - S ) oetd, @)
o \P 7
which is clearly a positive quantity. It is unlikely,
however, that a bound on D(W) can be obtained
directly. Rather, we must first construct an oper-
ator W in accordance with the discussion of Eq.
(3.5). It is not difficult to do this since it can be
seen from (4.6) and (4.11) that w (r;) behaves as
4ne?(tr?) as v, ~ whilew -0 as ;- 0. We can
therefore choose
W (F) = anzZeé*(a+Bry+573) (4.12)
and obtain a stationary bound on D(W¢*’(r)), and
hence on D(W(r)), with the help of Eqs. (3.10),
(3.12), and (3.21). In Eq. (4.12), @ and B are con-
stants which depend upon W(») and therefore upon
the choice of u,,, and thus, in general, can only
be determined numerically.

We have thus accounted for all of the integrals
on the right-hand side of Eq. (4.7) and shown how
stationary upper bounds can be obtained for each
of them, and hence how a stationary upper bound
can be found for the scattering length of Eq. (4.1).

Explicitly, if the conditions listed above Eq. (4.1)
hold true, and assuming real matrix elements, we
have



10 NEW STATIONARY BOUNDS ON MATRIX ELEMENTS... 2253

2mn®
m

- . 2
(A -A,)sfu”Tul,dp+ fx,(H—el)x,drdp+ p

<_€Eu- (¢ty szt)"' (L§1)9 tht) + |A(l)| (+)>

2
- 57 00 W) + 2 (a1 =59 4801 -] /2 4 300 D)]
S s
+——szi (%L (@@, 9,)+ (L, h¢t)+lA‘2’l‘*’). (4.13)
1 1

Here, W =W(F) and '? =4(?(¥) are defined by
Egs. (4.10) and (4.8b), respectively, and LY and
L(tz) are approximations to g 'Wy, and 3 '®‘?, re-
spectively, chosen as described in Sec. II. The
quantity |a™® |9 is given by Eq. (2.26), with L{V
as the trial auxiliary function, and #=¢V=Wwy,.
Similarly, |a‘® | is given by Eq. (2.26) with L,
=L? and # =&'?. Finally, the quantity 9% (»?)

.appearing in (4.13) is given by Eq. (3.10), and
either (3.21) or (3.24).

It is also understood in (4.13) that appropriate
bounds, so as to preserve the sense of the inequal-
ity, must be used to replace €,, €,, and S wherever
they appear.

Consider next the scattering of a positron by an
atom of nuclear charge Z with Z’ electrons. The
case Z =Z' represents scattering by a neutral
atom, which we have just considered. The case
Z >Z' represents scattering by an ion of charge
(Z -2Z'). The foregoing procedure must in this
case be modified as follows: we write, in lieu of
integrals of the first type on the right-hand side of
Eq. (4.7), the integrals

Z-2'le? .
fu,,(T +[——p—]—~>u“dp.

Integrals of the type (4.14) have vanishing inte-
grands as p -« because now u,, has Coulombic
asymptotic behavior. The corresponding V which
appears in (4.10) is now of the form

(4.14)

z'e? & &
P - it1 l-f; —TJI ’
so that Eq. (4.10) breaks up into Z’ integrals each
of the type (4.11), which we studied previously.
Thus, the foregoing procedure is readily modified
to include Coulombic potentials of this type as
well.

The extension to the case where the positron and-
the atom can form # bound states is trivial. One
need merely use the appropriate extension of Eq.
(4.1), in which one introduces terms that effectively
account for the n states.! The additional terms
involve the unknown target function in the form of
an inner product with a known function and there-
fore may be treated by the method described in
Sec. II. We exclude scattering by a negative ion
because of the associated infinite number of com-
posite bound states.-

r

The extension to the “scattering length” A, that
characterizes low-energy scattering in a state of
total orbital angular momentum L is also immedi-
ate. We need merely replace the L =0 zero-energy
asymptotic boundary conditions of Eqs. (4.4) and
(4.6) by the boundary conditions appropriate to
zero-energy angular momentum L scattering.

The extension to electron-atom scattering is a
more difficult problem. The origin of the difficulty
lies in the appearance of exchange integrals. A
typical such integral is of the form

ful,(1)¢1(2,3)(_rl+l+l>

2 /rl 3 7’23

Xy, (@), (L, 3) dF, dF, dF,.

Stationary bounds on integrals of this type, which
require a considerable modification of the methods
given here, will be presented shortly.?

Finally, we note that—for computational rea-
sons—it may not be desirable to obtain the various
trial functions for use in these bounds directly
from expressions such as (4.13), i.e., by varying
the open parameters in the trial functions to pro-
duce a minimum. The reason is that all such
parameters, whether initially introduced in a lin-
ear fashion or not, will become effectively non-
linear because of the form [Eq. (2.23)] of the bounds
on [A| and |A®|. A simpler procedure would be
to obtain these trial functions independently via
some linear variational principle —for example,
the trial target wave functions can be obtained
from Rayleigh-Ritz (or Hylleraas-Undheim) cal-
culations, the trial scattering function from the
Kohn variational principle, and the trial auxiliary
functions can be obtained from subsidiary mini-
mum principles.® Of course any additional infor-
mation, e.g., regarding polarizability, can be built
in as desired. The trial wave functions so obtained
can then be substituted into Eq. (4.13) to obtain
the required rigorous stationary upper bound.

It may be useful to comment on the fact that sta-
tionary bounds on bound state matrix elements
were used to obtain a stationary bound on A, which
characterizes a continuum problem. This is pos-
sible because of the existence of the very general
stationary upper bound on A provided by Eq. (4.1),
a stationary upper bound in which the trial scat-
tering wave function ¥, is chosen, subject only to
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boundary conditions. Once ¥, has been chosen, the
only unknown is the target ground-state wave func-
tion, and the problem is reduced to the evaluation
of bound-state matrix elements. Since stationary
lower bounds on A are not known, even assuming
that the target ground-state wave function is known,
we of course cannot use the methods of the present
paper to obtain stationary lower bounds on A when
the target ground-state wave function is imprecise -
ly known.

Despite its complicated appearance, (4.13) can in
certain cases be used to obtain at least crude
bounds with very little effort. Within the frame-
work of the Born approximation, we have y, =0 and
A, =0 and therefore u,, =1, and we further have
W =(4nZe?/6)rE, which allows the choice a =8=0;
finally, we have ®® =L{® =A® =0, and (4.13) be-
comes’ '

=iy 2
2_;’””_ A<(2-5"2)(4nZze?/6)(b;, 720,)
AL 5D+ 1@, )+l ),
65° €1t

(4.15)

[We can arrive at Eq. (4.15) more directly by noting
that in the Born approximation (4.1) reduces im-
mediately to

(2% m)A <(dnZe®/6)w, r2Y), (4.16)

and that (;72y) can be readily bounded by using
the results of Secs. II and III.]

In the particular case of helium, the exact value
of (,732y) is for all practical purposes known ex-
actly, and is given by Pekeris? as 1.1935a2, where
a, is the Bohr radius. Since it is known that an
e*-He bound state does not exist,?® and since the
other requirements given above Eq. (4.1) are also
fulfilled for He, we can set Z=2 in (4.16) and ob-
tain the rigorous stationary upper bound for e¢*-He
scattering:

A <0.79a,, (4.17)

As anticipated, this result is quite crude, since it
is rather well established® that A ~-0.5a,. It is
nevertheless encouraging that a rigorous varia-
tional upper bound can so readily be obtained. (A
rigorous lower bound?? is -0.7a,.)

APPENDIX A: COMPARISON WITH A PREVIOUS RESULT

It will be useful to make some remarks com-
paring some of the present results with those con-
tained in Ref. 3, where a stationary lower (upper)
bound on W,, was obtained for W=0 (W <0).

The starting point of Ref. 3 was effectively an
identity for W,,, with W,, written as the sum of an
explicit variational expression for W,, plus a (for-
mal) second-order error term which was bounded.
The starting point of the present paper is an iden-

tity for ¢, with ¢ written as the sum of an explicit
variational expression for  plus a (formal) second
order error term which was bounded. Variational
principles for wave functions obviously generate
variational principles for matrix elements and the
approaches do not differ in any significant way in
this respect.

The approaches do differ in a significant way in ’
that the present results are free from any possible
near -singularity difficulties. We have been unable
to determine whether or not the previous results
are free of such difficulties. There is little doubt
that the previous results represent a bound, but
the interesting question arises as to what the best
choice of L, is in the bound, that is, in Eq. (2.10)
of Ref. 3, for the case where the energy eigen-
values are not known precisely. The suspicion
arises that the best choice of L, is the solution of
the differential equation (2.7) of Ref. 8, or of some
other but similar differential equation, one which
also possesses the near singularity difficulty dis-
cussed in detail in Ref. 8. The present paper
makes it unnecessary to answer the question, be-
cause the results of the present paper have no
doubts associated with them. The question should
be answered nevertheless since the earlier re-
sults, if they do not in fact contain near singular-
ities, would be somewhat simpler to use, where
the earlier and present results overlap. (The
present results, as noted, cover a broader range
of cases.)

APPENDIX B: OFF -DIAGONAL MATRIX ELEMENTS

We begin by describing a generalization of the
result of Sec. II, in which stationary bounds on
(®,9,) were obtained, for ¢, the ground-state wave
function ¢,, to the case where ¥, is an excited
state. We assume that a set of trial functions have
been constructed, which satisfy

(79 hwjt) =€;40;;,
(‘p(, lp]) =5;j

for ¢,j=1,2,...,n. A variational approximation
to ¥, was given previously.'* It takes the form

wnv = ‘pnt +§$h¢nt' R (BZ)

Here g is an approximation to the modified re-
solvent operator

(B1)

§J(€")=(€"_ﬁ)-1 —pt/en’ (BS)
where .

R [

h=h ; < (B4)
and

pt=iz::ll¢u><¢ul~ (B5)
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Consider now the identity

= No[ Uy +8(€,) (0 = €00, ], (B6)
where N, is a normalization factor and
gnley)= Y Laktdal ®7)

We have the inequality
() < (€7 - €,)7%, (B8)

where € is the eigenvalue closest to €,. While
this bound may be crude we note that g appears
in Eq. (B6) operating on a second-order quantity.
The method of Sec. II may now be applied to pro-
vide upper and lower bounds on the overlap of ¢,
either with itself (this is required to determine
bounds on N,) or with a given function of finite
norm.

The above technique may be used, along with the
appropriately generalized version of the method
described in Sec. III, to provide stationary upper
and lower bounds on off-diagonal matrix elements
($,, W9,). Thus, writing Eq. (3.2) in the form

lpn = (1/3,.)[4!“ -4, lpnt] ’ (BQ)
where
qn=1 - |wn><¢n|r (BIO)

along with a similar representation of i, we have,
as a generalization of Eq. (3.3),

(lpm Wlpm) - (zpnh me) + (lpm met)

- _Sms,, (¢nh Wlpmt) + S"Sm (qnwng, qulpmt)-
(B11)

The first two terms are overlap integrals of the
type discussed above. The integrals S, and S, fall
in the same category. Finally, the Schwarz in-
equality gives, for the last term in Eq. (B11),

@nlonts Wl me) S (1 =S2) /205 2(W2), (B12)

The methods described in Sec. III may be used to
bound DY/2(W?), the appropriate generalization of
D to the mth excited state.

Note that the identity (B6) does not reduce to
(2.17a) for n=1; we have adopted a slighty different
approach in our treatment of excited states. The
identity for the excited-state function 3, which re-
duces to (2.17a) for n=1 is given in Eq. (4.17) of -
Ref. 14. While this latter identity provides the
basis for the variational approximation (B2) in-
troduced above it is not the most convenient rep-
resentation for the purpose of obtaining error
bounds. The difficulty lies in the diagonalization
procedure which must be carried out on the level-
shift matrix, Eq. (4.18) of Ref. 14. This matrix
involves a contribution of second order which is
unknown and hence must be bounded. This would
entail algebraic complexities (the effect of the er=
ror must be traced through the diagonalization
procedure) which we avoided in the present ap-
proach based on (B6).
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