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Discrete-basis-set approach to nonspherical scattering. II.~
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A method is described for computing scattering amplitudes for a cylindrically symmetric potential
using square-integrable basis functions. The addition of variational corrections using the Kato formula is
also outlined. Results for a two-center Gaussian potential are presented.

I ~ INTRODUCTION

In a previous article, hereafter referred to as
I, we outlined a method for computing scattering
amplitudes for a nonspherical potential. ' The ap-
proach involves representing the potential in a dis-
crete set of Gaussian basis functions and solving
the Lippmann-Schwinger equation for the full scat-
tering amplitude as a matrix equation in this sub-
space. In this paper we present a more complete
discussion of the details of the method. We also
show that improved results may be obtained by a
variational correction of the calculated scattering
amplitudes. We report numerical results for a
two-center Gaussian potential at several energies
and scattering angles.

The outline of this paper is as follows. In Sec.
IIA the details of the calculation, in particular the
choice of basis functions and computation, of the
necessary matrix elements, are examined. Sec-
tion IIB discusses a method for obtaining varia-
tionally stable results, and in Sec. II C we com-
ment briefly on an alternative approach to the
problem of scattering from nonspherical potentials.
Our numerical results are reported in Sec. III.
Section IV contains a brief discussion.

II. THEORY

A. Use of Gaussian functions in solving the

Lippmann-Schwinger equation

As discussed in I, the ansatz which forms the
basis for the approach used here is the approxi-
mate representation of the potential in a finite,
discrete basis. We denote this truncated potential
as V to

If this approximation seems severe, it should be
noted that whenever the Schrodinger equation is
solved by diagonalization of the Hamiltonian in a
basis set, the same approximation for the poten-
tial (as well as for the kinetic energy) is being
used. The advantage of this truncation of the po-

tential in scattering problems is that it leads to a
separable kernel' in the Lippmann-Schwinger equa-
tion which may then be written as a finite matrix
problem. Denoting the truncated transition oper-
ator as T', its matrix elements in the finite basis
satisfy the equation

&o I
T'(&)

I P) = &o I
ff

I P& + Q &~ I
~

I y&

x &y IG, (E) I 5&&5 I &'(h) IP&, (2)

where U = 2V in atomic units. The solution of this
equation yields the exact scattering amplitude for
the truncated potential V' via the transformation

f(k,„(-k;„)= ——&k, ( I
T'(E)

I k~&

where

(ale)= Je"''(
I

)d'r. (4)

The solution of Eq. (2) requires only matrix ele-
ments of the potential and the free-particle Green's
function.

As in I, we restrict our attention to cylindrically
symmetric potentials which possess a center of in-
version. If one chooses basis function'is which
transform with the irreducible representations of
the point group D„„, then Eq. (2) may be solved
separately for each symmetry (Z,', Z„', II„etc.).
This is an extremely important consideration,
since it greatly reduces the size of the matrices
that must be handled at any point in the calculation.
The basis ( I o&) can then be obtained by orthonor-
malization of a set of functions of the form

=g„(r —A) yg (r+A),
where + determines the symmetry under inversion
(g or u).

In multicenter problems, it is normal to choose
g (r) to be a Gaussian function. ' This choice is
particularly convenient here since it leads to great
simplification in the calculation of matrix elements
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of the free-particle Green's function. Specifically,
we choose &jj. lG.(E) IP&= Ijm . . , . d'k (7)

&olk&PIP&

0

(r A) —Xjym(Z —A) 8 tl u U 4 A Iga
A matrix element of G, (E) can be written as

(8) where E = —,'k, '. 'The required Fourier transform
of q& [Eq. (5)] can be done in closed form'.

I

etk I y r y' e'fk y e 'tkz e k j (8)

where H, is a Hermite polynomial.
In performing the triple integration over k in

Eq. (7) we choose the z direction of k to lie along
the symmetry axis. The 6 integration to be per-
formed is then of the form

1

dx P(x) Q(x) .
—1

P(x) is a polynomial in x where x = cos6, and Q(x)
is either cos'(kAx}, sin'(kAx), or sin(kAx) cos(kAx)
depending on the symmetry of the basis functions.
This integration was performed analytically. Ana-
lytic integration over 9 is important since numeri-
cal quadrature of the 6 integration would be made
difficult by oscillations of sin(kAx) and cos(kAx)
for large values of the integration variable k. The

P integration is simply that of a polynomial in even
powers of cosp and sing; hence a low-order Che-
byschev quadrature of the first kind' can be em-
ployed to perform this integration exactly. The re-
maining integration over k requires more care,
since the integrand possesses a simple pole at the
point k = k, . Before numerical quadrature can be
used, the singularity must be subtracted .off. Spe-
cifically, an integral of the form

" f(k)k'dk
lim

0+ 0 ko —k +St

can be approximated with little resulting error by
the expression'

f(k;)k td; f(k, )ko

x P — ' —in, 9

where k,. and (d,. denote quadrature weights and
points, respectively, and k =P,. ~j. In perform-
ing the k quadrature in Eq. (7}, it was found that
20 to 30 Gauss-Legendre points were sufficient to
perform the integration to better than five signifi-
cant figures.

After the matrix representations of G, (E) and U

have been constructed, the discrete matrix T'(E)
can be obtained by a single matrix inversion:

T'(E) = [1 —U'~G(E}] 'U'. (10)

The scattering amplitude for any relative orienta-
tion of the incoming and outgoing wave vectors is
obtained by the transformation of Eq. (3). T'(E) of
course only depends on the magnitude of the energy
and not on the directions of % and%, „t. This is an

important consideration, since in any molecular
problem an average over target orientations would
have to be performed in order to obtain physical
results. The transformation of Eq. (3) can be done
quite rapidly when compared with the recomputa, -
tion of T'(E) If the .energy is changed, T'(E) must
be recomputed.

B. Variational corrections

gill, ollt —~ill, ollt y Q C jo, llut
I ~& (14)

The method we have outlined provides a solution
for the exact scattering amplitude corresponding to
the truncated potential P'. This amplitude, how-
ever, will generally contain errors that are first-
order in the difference (V —V') when compared
with the amplitude for the exact potential V. Vari-
ational stability may be obtained by solving for the
wave function corresponding to T'(E), which we de-
note by g„and employing it in a generalization of
the Kato formula. ' The stationary amplitude is
then given by the prescription

$- I
T'(E)

I
tt

&
= $,, 1T'(E) ltig

+ 2&gout IH E I q in) ~

'"' is easily expressed in terms of T'(E} as

q
Ill, out ~to, ollt +G (E)II j(E) jo, Ilut

where y0
'"' is the incoming, outgoing plane wave.

It is important to notice that while g, certainly has
components outside the truncated L' space em-
ployed here, only its L' components are needed in
defining the trial scattering amplitude, as can be
readily seen from the identity

P..tl T'(E) Ik.&
= &k... I

~'I g~, ? .

Bearing this in mind we can write g,
'"' in the

form



RESCIGNO, McCURDY, JR. , AND McKOY 10

and this form will be perfectly consistent with
T'(E). It is easily verified that the coefficients
c~'"' are obtained as

i.e., in computing T'(E), we have already done all
the work necessary to compute the coefficients
c '"'. If on substituting tI;,

'"' into the Kato for-
mula, we assume that (H, + V'-E}g, ""' = 0 [which
is not strictly true in this case since the scattered
wave in Eq. (12) has been truncatedI, then the Kata
formula, as Heller and Yamani pointed out, re-
duces to the distorted-wave Born formula, with
0' as the unperturbed distorting potential:

(16)

The price for variational stability is that bound-
free and free-free matrix elements of V are now

required.

C. Comment on the direct quadrature of the

Lippmann-Schwinger equation

Several authors have suggested calculating
(%,„(IT(E) IR. ) by direct quadrature of the Lipp-
mann-Schwinger equation in momentum space. ' "
This approach was first carried out successfully
for the full amplitude by Walters' for the case of
spherical potentials. Quite recently, Schneider"
showed that this technique could be simplified by
employing the same L' truncation of the potential
used here. In momentum space, the Lippmann-
Schwinger equation for the scattering amplitude
reads

If V has spherical symmetry and if one uses spher-
ical coordinates to perform the above integration,
letting the z axis coincide with the direction of k. ,
the p integration drops out of the above integral
since &KIT(E) IRJ is independent of the azimuthal
angle that % makes with %. . A finite matrix equa-
tion for (k,„,I T(E) IRJ is then obtained by subtract-
ing the singularity in the integrand at 0= 4, and ap-
proximating the two-dimensional integral by nu-
merical quadrature. If the potential is energy in-
dependent, this approach can lead to an efficient
algorithm for computing the scattering amplitude
at any energy after a single prediagonalization of

a (possibly large) matrix is carried out. If the
potential has an energy dependence, this diagonal-
ization must be done at ea.ch energy.

If V does not possess spherical symmetry, then

&k,„, I T(E) I
R ) is not independent of the azimuthal

angle between k,„t and k. . However for a cylindri-
cally symmetric potential, a simplification can be
found. Since the L' truncation of V allows one to
solve the Lippmann-Schwinger equation one sym-
metry (T,,', z„', etc. ) at a time, (R,„,I T(E) Ikg can
be written as (for one symmetry)

(19)

where m is the component of the angular momen-
tum along the symmetry axis and $«t IT (E) IRJ is
independent of p and p,„,. Thus the Lippmann-
Schwinger equation for $,„, I

Tr(E)
I
k & can again be

reduced to a two-dimensional equation. We should
like to stress the point that this approach would
lead to matrices of much larger dimensionality
than those used in the present work and that such
a quadrature, even if carried out to arbitrary ac-
curacy, would only yield the result obtainable by
solving the equation for T' as outlined in Sec. IIA.

III. NUMERICAL RESULTS

As a model application of the method outlined
in Secs. IIA and IIB we have computed amplitudes
for scattering from an attractive, two-center
Gaussian potential:

P(r) — & (e-(r —To +e ( + } (20)

For these computations, we took IAI=1.0. The
matrix elements of this potential between the basis
functions of Eq. (5) can be written in terms of one-
and two-center overlap integrals of Gaussians
which are well known. ' In this paper we report
results for choices of the incoming wave vector
R. along the symmetry axis of the potential and
perpendicular to it.

For R along the axis of the potential, nonzero
matrix elements of T'(E) exist only for basis func-
tions of p' and p,', symmetries, and, as noted ear-
lier, &o I T'(E)

I p& is diagonal in these symmetries.
The contributions of functions transforming with
other irreducible representations of D„„vanish
because their Fourier transforms &o. Ik„,), with E.

along the axis of V, are zero. It was found that,
although basis functions of Z' and p„' symmetry
may be constructed with g in Eq. (5) chosen to be
a z-type Gaussian [I=m =0, n =1 in Eq. (6)], the
contribution of such functions is negligible at the
energies considered here. Table I compares re--
sults at k= 0.447 a.u. for basis sets of 14 and 20
functions with g of S symmetry. The exponents
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TABLE I. Comparison of scattering amplitudes at k =0.447 a.u. for sets of 14 and 20 basis
functions. Incident wave vector is along the symmetry axis of the potential.

No. basis
functions

Exact Born
(Z++ Z+)

Born
(Z+ ) f (e) (z, ) f (e) (z+

14

20

4 Tr

2'
'tr3

4

0
+76
1

2r
47r3

1r

0.443
0.427
0.362
0.270
0.227

0.443
0.427
0.362
0.270
0.227

0.336
0.354
0.373
0.354
0.336

0.328
0.346
0.364
0.346
0.328

0.112
0.080
0.0

-0.080
-0.112

0.115
0.082
0.0

-0.082
-0.115

0.405+ 0.088i
0.427 + 0.093i
Q.449 + 0.098i
0.427 + 0.093i
0.405+ 0.088i

0.399+0.086i
0.421+0.090i
0.443+ 0.095i
0.421+0.090i
0.399+0.086i

0.125+0.0024i
0.089+ 0.0017i
0.0

-0.089 —0.0017i
-0.125 —0.0024i

0.127+0.0025i
0.091+0.0018i
0.0

-0.091-0.0018i
-0.127 -0.0025i

of the Gaussian functions were chosen in geomet-
ric series over a range of values between 6x10 '
and 5. Studies of convergence showed that results
converged to within less than I

%%d
could be obtained

for each symmetry with 15 to 20 basis functions.
For %;„perpendicular to the axis of the potential,

T'(E) has nonzero matrix elements for functions
of p,', II„and symmetries of higher angular mo-
mentum projections. The contributions of p„' and

II symmetries vanish, as do the contributions of
certain other symmetries, because their Fourier
transforms evaluated at % are zero. A simplifi-
cation involved in calculations of II contributions
should be noted. In computing the scattering am-
plitude we made use of the fact that the L'-matrix
representation of T'(E) is the same for basis func-
tions of II symmetry chosen with g as x-type or
y-type Gaussians. However the Fourier trans-
forms of x and y Gaussian functions are not identi-
cal. In Table II we give the contributions of g,'
and Il„symmetries for fc perpendicular to the axis
of the potential for k = 0.447 and 1.0 a.u.

As a check on the efficacy of our numerical
codes, several tests were performed. The separa-
tion of the two-center potential was made vanish-
ingly small, and it was found that the results so
obtained agreed with those of Holt and Santoso".
for a one-center Gaussian potential at k = 0.447
a.u. In addition, it was also verified [by integra-
ting (k,„, ~

T'(E) (~ over all orientations of k,„,]
that the optical theorem holds exactly for contribu-
tions to the scattering amplitude from each sym-
metry. It should be expected that the optical theo-
rem is satisfied exactly, because solution of the
matrix equation (2) should yield, as we have
stated, the exact T matrix for the particular choice
of truncated potential V'.

'The application of the variational correction de-
scribed in Sec. IIB permits the use of much small-
er basis sets than those employed in the above cal-
culations. Using Eqs. (14) and (15) we may write
the second term on the rignt-hand side of Eq. (16)
for the Kato correction as

TABLE II. Scattering amplitudes with 20 basis functions per symmetry. The incident wave
vector is perpendicular to the axis of the yotentia), and the outgoing wave lies in the plane of
the incident wave vector and the axis of the potential.

0 (a.u. ) Exact Born
Born
(II„) f (e) (z,') f(~)(II„)

QA47

1.0

0

zr1

1'
22r

4 tr
1
22r

4 jr

0.443
0.409
Q.362
0.355
0.363

0.443
0.291
0.145
0.143
0.163

0.403
0.383
0.364
0.383
0.403

0.295
0.224
0.159
0.224
0.295

0.044
0.030
0.0

-0.030
-0.044

0.147
0.079
0.0

-0.079
-0.147

0.491+0.105i
0.467+ 0.100i
Q.423+ 0.095i
0.467+ 0.100i
0.491+0.105i

0.295+ 0.066i
0.224+ 0.050i
0.159+0.036i
0.224+ 0.050i
0.295+ 0.066i

0 ~ 046+0.0003i
0.031+0.0002i
0.0

-0.031-0.0002i
-0.046-0.0003i

0.156+0.0067i
0.084+ 0.0036i
0.0

-0.084-0.0036i
-0.156—0.0067i
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TABLE III. Comparison of scattering amplitudes using Kato correction and two basis func-
tions per symmetry with 20 function results. Energies are k' = 0.447 and k =1.0 a.u. and inci-
dent wave as in Table I.

k (a.u. )

0.447

1.0

4'
1

m2

7r
3
4

0
1

1
'22r

xm

7r

Two basis functions
uncorrected

0.693+0.163i
0.677 + 0.170i
0.561 +0.168i,
0.446+ 0.165i
0.372 + 0.155i

0.451 +0.073i
0.407 + 0.071i
0.173+0.043i

-0.145 -0.018i
-0.264 -0.027i

f(0)
Two basis functions

+ Kato correction

0.515+0.093i
0.499+ 0.096i
0.431+0.098i
0.331+0.094i
0.283+ 0.090i

0.465+ 0.052i
0.382+ 0.053i
0.141+0.038i

-0.049+ 0.008i
-0.097 —0.005i

f (0)
20 basis functions
+ Kato correction

0.528+ 0.089i
0.511+0.092i
0.440 + 0.095i
0.336+0.089i
0.287+ 0.084i

0.473+ 0;057i
0.389+ 0.058i
0.147+ 0.040i

-0.045+ 0.008i
-0.094 -0.005i

&0;"'I ff &'I e,-) =(li-t IUlkd —&li-t IU'Ikd+ Q $-t I o)&~l T'(E) IP&&PIG.(E) I &)&yl&-&'lkk
6;, 0, f

+ Q &k-tl0'-ff'lo)&olG. (E)IP)&PIT'(E)ly)&rlk ) (21)

The usual separation of the contributions of dif-
ferent symmetries may be made for all but the
first term in Eq. (21). As mentioned earlier, the
only matrix elements appearing in (21) which have
not been used in the calculation of T' are free-free
and bound-free matrix elements of the exact poten-
tial V. Due to our choice of a Gaussian potential,
the free-free matrix elements may be expressed
in terms of the Fourier transform of a Gaussian
given in Eq. (8). The bound-free matrix elements
reduce to matrix elements of e'"'' between Gaus-
sians on different centers, and these integrals are
known in closed form. "

In Tables III and IV we compare the results of
Kato corrected calculations using only two basis

functions of each symmetry (exponents of 1.0 and
2.0) with 20 function results The. agreement of
these calculations suggests that, for potentials for
which free-free and bound-free matrix elements
can be computed, the Kato correction will allow the
use of conveniently small basis sets.

It should be noted that a significant proportion
of the variational improvement is carried by the
leading term of the Kato correction jfirst line of
Eq. (21)j, which is simply the exact matrix ele-
ment of the Born term. One would generally ex-
pect this to be true at intermediate energies, and
even at very low energies for potentials without
bound states. Furthermore, this leading term
automatically adds in the Born contributions from

TABLE IV. Comparison of scattering amplitudes using Kato correction and two basis func-
tions per symmetry with 20 function results. k = 0.447 and 1.0 a.u. Orientation of incident and
outgoing wave vectors as in Table II.

k (a.u.)

0.447

1.0

0
+7f1

2m

+7r
3

7r

0
1
44r
1
22r

Q7l
3

r

Two basis functions
uncorrected

0,724+ 0,191i
0.667+ 0.18li
0.583 + 0.171i
0.561+0.180i
0.568+ 0.189i

0.558 + 0.094i
0.371+0.068i
0.178+0.043i
0.115+0.051i
0.081+0.063i

Two basis functions
+ Kato correction

0.518+0.104i
0.481+0.100i
0.430+ 0.096'
0.425+ 0.100i
0.435+ 0.103i

0.445+ 0.064i
0.290+ 0.051i
0.141+0.038i
0.135+0.045i
0.152+0.055i

f (8)
20 basis functions
+ Kato correction

0.530 + 0.104i
0.492+ 0.100i
0.440+ 0.095i
0.435+ 0.099i
0.446 + 0.104i

0.450 + 0.066i
0.296+ 0.053i
0.147+0.040i
0.140 + 0.047i
0.155+0.055i
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all higher symmetry groups not explicitly treated
and one certainly expects these contributions to be
Born dominated. As this term only involves cal-
culation of free-free matrix elements, its addition
should be quite feasible in molecular applications
of this technique.

IV. DISCUSSION

In this paper we have outlined an efficient meth-
od for computing scattering amplitudes for cylin-
drically symmetric potentials and applied it to a
model case. Our results indicate that the use of
the Kato correction will allow one to obtain accu-
rate answers with very few basis functions.

This method should find application in the area
of low -energy electron-diatomic -molecule colli-
sions. In this case, one would probably construct

an energy-dependent optical potential" to describe
the target. In this context, the necessity for re-
constructing matrix elements of the transition op-
erator at such energy is not a drawback. A major
portion of the computational effort in this work in-
volved construction of matrix elements of the free-
particle Green's function. Much of this effort [the
8 and p integrations in Eq. (7)j need be done only
once. Applications of this technique to electron-
diatomic-molecule scattering are presently under
study.
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