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A method of variable reduction of the dimensionality of the coupled equations for inelastic scatterin&
is presented. The method is based upon a projection operator P with restricted ranges of values for
the orbital angular momentum and coupled rotational angular momenta of the two molecules. For
rotational states restricted by 0 & j, & j~i and 0 & j, & j~ and total angular momentum large, the
coupled equations have dimensionality 2(j*, + 1) (j*, + 1) —1 & N & (j~i + 1)-' (j~ + 1)-', here N
is controlled by the choice of P. This is in contrast to conventional partitioning techniques which
utilize further restrictions on the important molecular rotational states. In both cases the well-known

parity conservation causes blocking of the equations into two sets, each of which is essentially half the
size of the original set. The dynamics in the P subspace and its complementary Q subspace are decoupled by
various approximations on the equation of motion of QQ,,.„,Information about scattering into the 0 subspace

is retained within these approximations and is reintroduced at the end of the computation with little
additional labor. An expression for the error in the calculation of the resultant approximate reactance
operators is derived and its implications discussed. The general formal equations are then applied to the
case of scattering of two rigid rotors, although the inclusion of vibrational modes would in no way
aAect the procedures outlined. Various possible choices for P are presented, and additional constraints
on P for the case of two indistinguishable molecules are discussed. A method of solution for the PQ„„
equation is suggested, and it 'is shown to lead to the possibility of substantial savings in computational
labor.

I. INTRODUCTION

Recently, much interest has centered on the role
of rotational states in energy transfer between
colliding molecules. The consideration of rota-
tional effects has been hampered, however, by the
2j+1 associated m states for each rotational level
j. Under most experimental conditions the m'state
degeneracy is not removed, and measurements
involve appropriate averages over the m's. ' Thus,
exPerimentally considerable amounts of detailed
information are lost, but computationally the m
states must still be included prior to averaging.
The magnitude of this problem can be seen by con-
sidering two molecules whose rotational angular
momenta are restricted by 0~j, ~ j,* and 0&j, ~ j,*.
This leads to a total number of rotational states
given by

N= g g (2j, +1)(2j,+1)=(j,*+1)'(j~+1)'.
)g=o 52=0

Even for light molecules at room temperature, N
may be large. Also, the computational labor in
conventional calculations goes as N', where N, is
the number of coupled channels. ~

In an attempt to overcome this difficulty, several
groups of researchers have developed schemes for
reducing the dimensionality of the coupled scat-
tering equations. ' ' Basically there are two ap-
proaches one can follow. Either (i) something can

be done about the m states before the dynamics
are computed, or alternatively, (ii) the number of
channels can be reduced by restricting the range
of other nonconserved quantum numbers in the
problem, such as the orbital angular momentum l.
Recently, an effective Hamiltonian method has
been developed along the first line of attack, which
averages over the m states before carrying out
the dynamics. ' This leads to a set of coupled equa-
tions of dimensionality (j,*+1)(j,*+1)and results
in making the orbital angular momentum a good
(conserved) quantum number. However, no infor-
mation about m states can be extracted from this
method. Calculations have been carried out on
the systems He-H, ""and H, -H„"' and reasonable
agreement with conventional calculations has been
found. McGuire and Kouri" and Pack" ' have
also developed a method for reducing the dimen-
sionality of the coupled equations for the-atom-
diatom case. They consider scattering in a body-
fixed frame, and approximate the angular momen-
tum operator 1' =(J —j )' in this frame by the scalar
l(l+1)S' where J is the total angular momentum
operator. Thus l also becomes a good quantum
number and coupling by the centrifugal potential
is neglected. The interaction potential is treated
exactly in the body-fixed frame where the potential
matrix elements between states (j, m) and (j', m')
vanish unless m =m'. Upon returning to a labora-
tory reference frame, it is shown that the essence
of the approximation on l' is equivalent to neglect-
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ing the difference between the laboratory and ro-
tating fra.me. Thus the b, m =0 selection rule still
holds. The number of coupled equations then de-
pends on the initial state values of (j,m). Along
the second line of attack Wagner and McKoy' have
done calculations of atom-homonuclear diatomic
scattering involving an incomplete channel get
utilizing only a small restricted range of / values.
No attempt was made, however, to include explicit
effects of coupling to states outside this range.

Our method also follows the second alternative
and is most akin in spirit to Wagner and McKoy's
work. ' In this new method / need not necessarily
be "conserved" and information about explicit m

transitions is not completely lost. Furthermore,
our technique has several advantages over Wagner
and McKoy's work. First, it allows formal)y for
considerable flexibility in reduction of the dimen-
sionality in a controlled way. In addition, the
method does not throw away all information about
scattering into the "unselected" channels. Finally,
the sources of error can be pinpointed, and the
flexibility in the choice of the projection operator
can be used to reduce the inherent error in the
approximations of the Qg .„equation to within al-
lowable limits. A basic outline of this method was
presented earlier, ' and this paper expands on this
latter work.

In Sec. II for completeness we present the deriva-
tion of the formal equations of partitioning theory
as applied to our projection operator. We discuss
various approximations to the Qg„„equation of
motion which allow us to decouple the equations
for scattering in the P subspace from those in the

Q subspace. The implications of these approxi-
mations are considered in terms of their effect
on the resultant approximate reactance operator.
In Sec. III we develop a specific projection operator
P for the case of the interaction of two rigid ro-
tors, and present the equations which must be
solved. Restrictions on P for the case of indis-
tinguishable molecules are considered as well as
the reduction of the equations to the case of atom-
diatom scattering. ' Section IV discusses the ap-
plication of a method of solution to the equations
derived in Sec. III. The merits of the partitioning
techniques are also evaluated with regard to pos-
sible computational savings. Finally, in Sec. V
comparison is made between the present method

- and other techniques for reducing the dimension-
ality of the scattering problem.

II. FORMAL DERIVATION OF EQUATIONS

The use of partitioning techniques in the study
of problems involving rotational scattering is not
new. ' The generally reliable close coupling pro-
cedure is an application of partitioning theory.

The motivation behind previous partitioning tech-
niques has been to focus on a small restricted set
of physically important states which are "pro-
jected out" by an operator P. This has the im-
mediate advantage of reducing the problem from
one of essentially infinite dimension (including
coupling to all possible closed states) to one of the.
finite dimension of P. However, this still leaves
the problem of what to do when the dynamics sig-
nificantly couples states in the P subspace to oth-
ers outside it. There are two choices dictated by
practicality. Either these couplings can be thrown
away in the hope that the important dynamics takes
place in the P subspace, or one can approximate
the dynamics outside of P and introduce the resul-
tant approximate coupling into the equation of mo-
tion of states inside P. In either case, al' of the
computational labor is performed in the P sub-
space. Once the dynamics in the P subspace are
known, the problem is considered solved.

The motivation behind our method is somewhat
different. We do not a Priori impose the criterion
on P that it select a// physically interesting or
important states. Instead, we choose P to be
mathematically convenient as described in Sec. III.
The converse of the first statement implies that
we want to retain information about the dynamics
outside of the P subspace. We take the approach
that the physics of the problem is in the tota/ wave
function, which is reconstructed from its projec-
tion on both the P subspace, and its complementary
Q subspace. Various approximations to the exact
equations will be utilized in these procedures,
and the errors so introduced will be discussed. In
this' section, for completeness, we derive the
equations of motion for the wave function using this
motivation.

A projection operator P and its complement Q
are defined by the following properties:

(i) P =P' =P

(ii) P+Q=f,

(iii) PQ=O.

In addition, we choose P to be diagonal in a basis
of the asymptotic states of the Hamiltonian H.
Thus for H =H, + V, where H, represents the un-
perturbed part of the Hamiltonian, and V repre-
sents a finite-ranged mutual interaction, we desire
[P, H, ] =0. This choice is made because all mea-
surements are assumed taken beyond the range of
the mutual interaction where the wave function
propagates under H, alone. A projection operator
dependent on the relative distance between the
molecules is also a possibility, provided

lim[P(p), If,(p)] =0,



10 DIMENSIONALITY CONTROL OF COUPLED SCATTERING. . . 2189

where p is the distance between the molecules.
However, we make the simpler choice that P not
have any p dependence, and that [P, Ho] =0 for all
p

In previous partitioning methods, a criterion
for the choice of P was that g and Pg have the
same asymptotic behavior. ' Since Pg is at least
assumed to include a contribution from elastic
scattering, it follows that Q annihilates the initial
state. Our method requires neither assumption.
The results in this section are general and inde-
pendent of the choice of P, except for the restric-
tion that it commute with Hp.

We begin with the Schrodinger equation in the
form

[Q(E'-H, )Q] '=Q(E'-H, ) 'Q,

where we have used the property [Q, HO] =0. An

approximation equivalent to this has been developed
by White and co-workers" and is discussed in the
Appendix.

For computational reasons we choose to use the
principal-value Green's function and the associated
standing-wave boundary conditions on g, ." This
has the advantage of leading to equations which
will be strictly real. However, the principal-
value Green's function" '" corresponding to the
total Hamiltonian does not have a Lippmann-
Schwinger iteration. In fact the equation analogous
to Eq. (2.4)

(E —H)g, = (E —Ho)y, =0, . (2.1) Qx'; =tp[Q(E -H, —v)Q] '[QVPx';+Q(E -H, )Qy ]

where H is the total Hamiltonian described above,

g, is the scattered wave function, and (It), is the
initial state. Inserting the identity as I P +Q and
operating on the left-hand side with either P or Q
leads to the equations

P(E H, )Pg, -PVP(; -PVQ); =P-(E H, )Py;, -
(2 2)

Q(E -H.)Q4, -QVQP; -QVP0, =Q(E-H, )Qy, .

(2.3)

We have made use of [P, Ho] =0 and the property
QP =0. The exact Eqs. (2.2} and (2.3) are coupled
by the terms PVQ(, and QVP(, , respectively.
This is a consequence of the fact that P does not
commute with V.

The basic motivation behind all partitioning tech-
niques has been to effectively decouple Eqs. (2.2)
and (2.3). One approach is to neglect the PVQg,
term in Eq. (2.2) and then solve only the resulting
equation for Pg, . Clearly this is reasonable for a
P which is assumed to cover all basii states that
would contribute significantly during the dynamics.
Unfortunately, this is not the case in many prob-
lems where the number of states is large, and so
we take a different approach. In our method, Q
can include states moderately coupled to P states.
To decouple the dynamics in the tw'o Iubspaces,
we consider an approximation based on R, sugges-
tion by Rotenberg. s Equation (2.3}may be rewrit-
ten as a Lippmann-Schwinger-type equation' of the
form

Q0(' =[Q(E' -Ho —v)Q] '[QVPkg +Q(E Ho)Qy(]-
(2.4}

Rotenberg's approximation' consists of replacing
the outgoing Green's function [Q(E'-H, —V}Q]
by the first term in its Lippmann-Schvringer itera-
tion

(2.5)

does not yield the same solution as that of Eq.
(2.3). In Kq. (2.5) we have used 6' to indicate the
operation of taking the principal value, and the
superscript p in Qy~ to denote that the scattered
wave function obeys the standing-wave boundary
conditions. The correct resolvent I ~ leading to
the same Qgf as that defined in Eq. (2.3) does have
a Lippmaan-Sehwinger-type iteration given by"

r', =tv[Q(E -H, )Q]-'+ tl'[Q(E -H, )Q]
-'

QvQ r', .
(2.5)

This may be seen by rewriting Eq. (2.3) as

QP& =Qc,'Q[QVPI+Q(E H, )Qy~]-+Qc'. QvQ4&,

(2.7)

and iterating on QP. In Eq. (2.7) we have used the
notation

C =5'(E H) '—
and that

6'[Q(E -H.) Ql-' =Q6'(E -H.)-'Q,

again due to [Q, H, ] =0. Rotenberg's approxima-
tion' is then analogous to defining an approximate
QP& by

QP& =Qc', QVPI+Qy&, (2.8)

which neglects the last; term in Eq. (2.7}. Here-
after a tilde is used to indicate quantities obtained
from this particular approximation. Substitution
of Kq. (2.8) iato (2.2) yields an equation of motion
for I'g~

Pjf = C', PVPP+ C,'PVQC,'QVPP

+ G~oPVQy, +Py (2.9)

Equation (2.9) is the equation to which we will seek
a solutioa. Substitution of PP from Eq. (2.9) back
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gf =rp, + GOVPg~+G~~(I —Q}VQP(

= yq + Go (V —QVQ)$q . (2.11)

Equation (2.11) has the same form as the Lipp-
mann-Schwinger equation" for g~ but with a poten-
tial given by V =V —QVQ. Thus the operator V

takes the role of an effective potential for the sys-
tem. The approximate reactance operator derived
from Eq. (2.11) will therefore obey the equation

K =V +VGOE. (2.12)

Since V may be expressed as a real symmetric
matrix, K is real symmetric on-shell. The
guaranteed Hermiticity of the approximate on-
shell K matrix has the important physical implica-
tion of leading to a unitary spattering matrix""

S = (1 —I vK)(1+ i vK) '. (2.13)

A formal expression for the error in K may be
derived. The exact reactance operator satisfies
the equation"@

K = V + VG~~K. (2.14)

Subtracting Eq. (2.12) from Eq. (2.14) leads to

(2.15)b, =QVQ +QVQGOK+ VGOE,

where 4 =K -K is defined as the error in the ap-
proximate operator K. Solving formally for 4
yields

into Eq. (2.8) will give the approximate wave func-
tion's projection on the complementary Q subspace.
Thus we will generate an approximation to the full
wave function P from PP+Qgf. It should be ob-
served that the treatment leading to Eq. (A4) will
yield Eq. (2.14) provided H is time independent and
Q4'(-") =Qy.

We now consider the error introduced by the ap-
proximation given in Eq. (2.9). We begin by adding
Eqs. (2.8) and (2.9) to obtain

(f = y, + G~~PVPP+ G, QVPg,

+ G~PVQG~~QVP(, +GOPV. Q rp;. (2.10)

Replacing Qy,. in the last term by QP QGOQV-PP
from Eq. (2.8) and combining the resulting terms
leads to

first in a hierarchy. Clearly an approximation
to 'Eq. (2.6} may be taken to second order to yield
a different QP given by

QP =QG'. QVPP&+Qei

+QG~OQVQGOQVPQ)+QGOQVQ y;.
Addition of Eq. (2.17) and

PPf =Pep, +G~OPVPP(+G~~PVQ$(

yields

(2.17)

(2.18)

(I + G', QVQ)-' =g (-G'.QVQ)".
n=Q

Equation (2.19) is also in the form of a Lippmann-
Schwinger equation, " again with a symmetric po-
tential defined by

V' =V —QVQ(I+G~~QVQ) 'GO~QVQ.

This can be shown to be Hermitian by using the
operator expansion abave. Similar arguments to
those above for the error in the new K operator
lead to an error term of the form

6' =K -K
= (1 —VG~~) '[QVQ(I +G~~QVQ) 'G~OQlQ]

x (G~OK ~ 1).

Expansion of the above equation in powers of V

shows that at worst the Q, Q block of the K matrix
is in error by second order and the other blocks
are exact through even higher order. The PP,'

equation to be solved would then be

PI( =
VPg +GoQP(VQyg+GOQVQe()

yf =y, +G~Vp —G~OQVQ(I+G~~QVQ) 'GfQVQpg

(2.19)

Note that Eq. (2.18) is equivalent to Eq. (2.2) but
with the approximate wave function p, . To obtain
Eq. (2.19) we have substituted in

Q y( = (I + G~~ QVQ) '(Q g~) —G~~QVP gf —G~~QVGO QVP gf)

from Eq. (2.17) and made liberal use of the formal
expansion

4 = (1 —V G~~)
'

QVQ(1 + G~ K). (2.16)
+ GOPV(1+ G~~QVP +G~~QVG~~QVP)PQ(.

Expansion of 4 in powers of V shows that in the
matrix representation K is exact through second
order in the P, P block, has second-order errors
in the P, Q and Q, P blocks, and is in error in the

Q, Q block by the first-order QVQ term. As we
show later, the flexibility we can build into P will
allow us to reduce these errors to within rea-
sonable bounds.

The approximation generated above is only the

(2.20)

Unfortunately the multiple nonlocal nature of the
last term introduced by the many Green's functions
makes Eq. (2.20) difficult to solve.

We have also considered a second set of approxi-
mations to the equation of motion of QP&, Eq (2.3). .
Replacing the second term on the left-hand side by
Qp, leads to a formal expression for a new ap-
proximate QP giv'en by
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Qgf =Qy, +G~OQVQy;+G, QVPg, (2.21)

Substitution of Eq. (2.21) into Eq. (2.2) yields
another approximate equation of motion for PP

PtIj,. =Py j + GoPVQy'+ GoPVQCo QVQy

+ Go PVPg; + Go PVQGoQVPg

Addition of Eqs. (2.21}and (2.22) gives

lI, = P, + G~OVg~ —G~o QVQ(1+ G, QVQ) 'QG, VP„

(2.22}

(2.23)

again using the formal expansion of (1+G~QVQ) '.
Equation (2.23) is also in the form of a Lippmann-
Schwinger equation"

qP @ GPV II+

with

(2.24)

V" = V —QVQ(1+G~OQVQ) 'QG~OV. (2.25)

Besides being not readily evaluated, V" is not
symmetric. Hence a symmetric on-shell K matrix
will not be generated, and the resulting S will no~

be unitary. Thus this particular approximation
is not guaranteed to be probability conserving.

The point of the above discussion is that great
care must be exercised in the choice of approxi-
mations to decouple the equations of motion. Equa-
tion (2.21) looks at first glance to be a better ap-
proximation than Eq. (2.8) since it appears to be
good through first order in V . However, it leads
to very unphysical behavior in that probability is
not conserved, and the resultant K matrix is not
guaranteed symmetric. Therefore, we choose to
work exclusively with PP, and QP& defined by Eqs.
(2.9) and (2.8) respectively, resulting from the
first-order equations in the hierarchy of iterations
on QP.

Finally, we note that the K matrix is essentially
obtained to infinite order in a perturbation sense.
This is apparent from the formal solution of Eq.
(2.12). Perturbation theory has been used to ap-
proximate the resolvent function I'~c in Eq. (2.6),
but the resulting equations are effectively solved
to all orders.

III. SCATTERING OF TWO RIGID ROTORS

In this section we consider an appropriate form
for the projection operator P, and the resulting
explicit expansion of the Pp, ' equation for the inter-
action of two rigid rotors. We have not included
the presence of vibrational modes since this would

unduly complicate the notation. Their inclusion
would, however, in no way effect the precepts of
the following discussion. We have chosen to dis-
cuss the two-molecule case since it will best il-
lustrate the possibility for large savings in com-

putational labor.
We begin with a Hamiltonian H(p, 0, +„+,) de-

fined in center-of-mass coordinates by

H(p, Q, ~„~,) =H, (p, Q, ~„~,) + V(p, A, &u„Pu,),
(3.1)

where

H, (p, Q, ~„~,) = H„(p,Q)+ H„., (~,)+H„., (~,).

The relative separation of the two molecules is
given by p, with the orientation of the separation
vector with respect to a space-fixed coordinate
system given by Q. The angles , and +, represent
the orientations of the, linear molecules 1 and 2,
again with respect to a space-fixed axis system.
The operators H„„,(to, ) and H„„(~,) are the rota-
tional Hamiltonians for the two molecules with
respective eigenvalues e,„e,„andH„(p,A) is the
kinetic energy operator. The potential
V(p, 6, ~„Co,) between two linear molecules can be
expanded in terms of products of spherical har-
monics Y~„(Q)as"

(3.2)

where (A, p, ,h.,p. ,~kp) is a Clebsch-Gordan coeffi-
cient, "and ~, + ~, + ~ is restricted to be an even
integer.

For an initial state we choose, to within a phase
and normalization factor, one of the terms in the
expansion of a plane wave in terms of spherical
harmonics"

exp(ip k, , )~ j«m„j„m„).
(3.3)

where

&, &

——[2g(E —e~ —e& )/I'] ' (for open channels)

=i[2'(e, +e, —E)/K']'' (for closed channels).

The notation j„indicates the initial rotational
state of molecule 1, and similarly for the other
labeled quantities. The summation over vj may be
removed by choosing 0J1jJg to def ine the z axis
in the space-fixed reference frame and noting that

where [l,] =2l, +1. The function j,(k, , p) is a
regular Ricatti-Bessel function. " Finally, one
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may go to a coupled angular momentum represen-
tation given by the relation"

l j,m, j,m, lv&= g (j,m, j,m, l J„m»&
12 12
JN

Let us examine the number of states in P in more
detail. For a given j, and j, there are 2j&+1 val-
ues of J„restricted by l j, - j,l

& J„&j, + j, where
j& is the smaller of the pair (j„j',). For J~ J»
there are then 24»+1 values of l restricted by
l
J —J„l&l & J+J„.In total then, there are

x(J„m„lvlJM)lj,j,J„lJM).

Therefore, y, may be defined as

(3.4)
J1+J2

N) ) = (2J~+I)
J12

=(j, +j.+1)'-(l j, -j.l)'=(2j, +1)(2j.+1)

x p (j„m„.j„.m„lJ„m»,)
12i

x (J;„m„,l, Ol JM), (3.5)

where we have introduced the k&~2,
& . normalizationli 2i

factor to symmetrize the problem at a later stage.
The molecular state on the left-hand side of Eq.
(3.3) is expressible as a linear combination of the

q7, s.
%e have chosen to work in the coupled angular

momentum representation because this yields the
well-known result of the coupled equations separa-
ting into blocks labeled by J, the total angular mo-
mentum, and independent of M. In addition, be-
cause of parity conservation each 4 block will
factor into two blocks of dimensionality approxi-
mately one-half of the original. The parity of
state

l j,j,J»l JM) is defined as (-1)~~"~"'~. Not
all projection operators preserve these desired
blockings and some alternative choices are dis-
cussed in Sec. V. Consideration of total angular
momentum conservation as well as the require-
ment that [P, H, ] =0 leads to the following choice
for P:

Ij,j,J„l JM) 8 (j',j„E)
j1j2 JJt(X

x(j,j,J»~l„JMl. (3.6)

The function 8(j,j„E)(perhaps energy dependent)
has been used to restrict the sum over rotational
j's. It takes on the values 0 or 1 depending on
whether or not a given (j„j,) pair is to be in-
cluded in the summation. It is apparent that P' =P.
The index & is used to denote a rule for generating
values of 4» and l on their ranges of allowed
indices given j„j„andJ. For example, o. =1
might imply choosing &j2 j1+j, and l =J. This
form for P has great inherent flexibility, in that
the number of states in P can be varied by choosing
more rules (increasing the range of &r} in a con-
trolled way. It is important to note that restricting
& does not directly limit the numbers of physically
important rotational states ), and j,.

possible (J», l) pairs for each set of indices(j„j„J,M). If 8(j,j„E)selects all states such
that 0-j,-j, and 0&j,- j,*, then there are

Ij j,J„lJM)(j,j,J„lJMI.

This leads to

Q= 1, ljj & lJM)(1 —e,(i.,j;..E)
122J12l J N

x l ~7 ~ J yJ

x(j,j,J„lJMI. (3.7)

Reference to Eq. (2.15) shows that the error in K
is most sensitive to the QVQ term. Clearly, as
more states are put into P, the error in K should

NJ= N
~

= j*, +1' j,*+1'
),=0 )2=0

states consistent with a given J and M. The number
N J is the maximum size of P resulting from the
use of all possible rules. If P was of a minimum
size, containing only one rule a which would gen-
erate only a single ( J», l) pair of each parity
(-I)'&+'~" ~ for every (j„j„J,M), then

N,'= g g (2-5, ,5, ,)
g, =o $2=0

=2(j,*+1)(j,'+1) —1,

where N~~ is here the minimum of states [(j,*+1)
x (j,*+1)of even parity and (j,*+1)(j~~+I)—1 of
odd parity] in P for that given value of J. The
Kronecker-6 term arises from the fact that the

j, = j2 =0 term only contributes to the symmetric
parity block. Thus by increasing the number of
rules for selecting values of (J;,„,l„),N~z may
vary on the range

2(j,*+1)(j,*+1}—1 &N~~ & (j,*+1)'(j,*+1)'.
This expression differs from the one reported
earlier, ' since parity considerations were not
explicitly treated then. It is now possible to de-
fine Q =I -P by representing the identity as
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decrease. However, as we shall show later, the
computational labor in the method depends on a
power of NP. Thus the built-in flexibility in the
choice of P allows us to play off error versus
cost of calculation in a controlled way.

Having defined P in Eq. (3.6), we return to Eq.

(2.9) and set up the coupled equations for the coef-
ficients in the expansion of PP. Since P is diag-
onal in 4 and M, we may use the well-known re-
sult that the sets of coupled equations are inde-
pendent of M to def ine

1j i
'

i i .(P)=P(j j 4 t PM(/( 4) (&tkpft, l)".E &j„„j. , I.v.. , &&4.....
12i

The Clebsch-Gordan coefficients in the parenthesis are always nonzero since they correspond to only
physically allowed initial states. Using Eq. (3.8), Eq. (2.9) may then be expressed as

(3.8)

gJP
' jlfj2& 12k & jllj2$ 4 j1]j2] 1 'j1f j2 'j2f' f ' n 12k ' 1201

x(j j 4 l„IP,M(p v)(j ij* t4 iip(M1 &O(j j tt)'+* 4'4 k j (ki 4 p )

~ Z 4] pp 4 4,"(p'p')&j jp„',tv,M(v.(p.)(j j 4 ', 't ', PM'„&tk'.(j, j;z)'',
j1j2R 0

j 'i' ' i i . (P )IP' '2 P f ' P'p4'tt(P P')(j j 4 t PM(l v&4') l(ji j P(PM)
1 2 12

j1j2CK

x (f J,I»l JM~ V(p")~ jIj,' J'&2„l'. JM)e(j,' j'; E)f'~ . «(.p")/p'. (3.9)

The matrix elements (j,j,J;,l JM~V(p)~j ',j,'J,', l' JM) are diagonal in J, M and independent of M. They are
given by"

(j,j,J,l JMIV(p)jj Ij,'J'„l'JM)= g A&, qz(p)(4v) '~'([Z]'[& K~,][j,][j.lflK J„][j,'][j,'][I'][J,',1)~'
X1X X

00 Oj} ~0 0 Oji ~0 0 Oj J&2J&2 J

In Eq. (3.10) the array in parenthesis denv)tes a 3-j symbol, whereas the last two in braces denote
6-j and 9-j symbols, respectively. " In obtaining Fq. (3.9). use has been made of the expansion of
the principal-value Green's funcl. ion in the coordinate representation,

(3.10)

G'. (p, p')= g lj,j.J,.IJM)Zl'j2(p, p')
j1j2J12

1JN

x (j,j,J„lJM~,

where

g"j2(p, p') =(2P/k')k, j,(k» p&)

xy, (k, , p&) (open channels)
1 2

=-(2PII')ik, ; jt(kj j P&)

x[j,(k, , p, )+ iy, (k, , p&)]

(closed channels) (3.11)

The symbol p& (p&) represents the smal'ler (larger)
of the pair (p, p'). The closed-channel representa-
tion where kj1j2 is imaginary was chosen to ensure
that g', &'2(p, p')-0 in the limit p&-~. G~o(p, p') was
generated from the definition"

Go = g (G,'+ Go),

where G' = (Ek —Ho)
' are the, incoming/outgoing

Green's functions. Closer examination of the last
term in Eq. (3.9) indicates that the sum over
(Jj,I»l) is unrestricted. However, this does
not create problems in practice since the potential
given by Eq. (3.2) is usually expanded to only a
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finite number of terms such that 0&~&A.*, 0&~,
~ A.,*, and 0 ~ A ~ A,,*. Thus l, J„andj, are limited
by the relations i&max(l„)+&*, j, ~max(j»)+&,*,
and j, & max(j») + A.,* where j» and j»designate
those values of j, and j, projected out by the P
operator.

Equation (3.9}represents the general set of
coupled equations that must be solved for the inter-
action of two rigid rotors. The analogous equation
for atom-rigid-rotor scattering follows immedi-
ately from Eq. (3.9) upon requiring that j,=0,

where we now consider molecule 2 to be the atom.
We include it here, for completeness, as a spe-
cialization of the two-molecule case. Since mole-
cule 2 is spherical, only ~, =0 terms survive in the
potential expansion. The Clebsch-Gordan coeffi-
cient then constrains A,, to be equal to A.. A further
consequence of j, =0 is that J, = j, since the perti-
nent Clebsch-Gordan coefficient in the definition
of the coupled basis becomes (j,m, 00~ J»m»)

Thus Eq. (3.9) reduces to

f'„,. (p)=k 'pj, (k. , p}d, ., d, , +p l dp'p"g", (p, p')(j, f„JMiv(p')~j„f,zM)
Jp

X 1-0j.E & k~'j, k& p + p dpp 1 ppq'a' 0 IXi 1

x(j,l„/M~V(p')j j',l'„.JM)8(j '„E)f,'~. .» (p')/p'+ g p ~t dp'ply, "(p, p')
~1 ' li i

jan) o af

00 A

x(i,i.zMlv(u )li izM&'(x -o(i„.&)Z~", ;,, dd pz; (p 'p

x(i, f~MIV(p")I j,'f'; JM)e(j'„s)f,"„,, (p")/p"

The potential matrix elements for the two molecule case given in Eq. (3.10) reduce to

(3.13)

(j,l JMIV(p)l j,'l'~M)=+A~(p)(4v) ' '[&]([j,][j,'][i][f'])~'(-) ' ~'
I I

. (3.13)
(0 0 Oj (0 0 0 j j, j,'J

We note that the 3-j symbols require that A. +l'+l
and A+ j,'+ j, be even. This will lead to additional
simplification for the case of homonuclear mole-
cules both here and in Eq. (3.10).

So far in our discussion we have implicitly as-
sumed that the two molecules were distinguishable.
Systems of identical molecules, such as para-H, —
para-H„have been predicted to exhibit additional
structure in differential scattering cross sections,
etc. , due to the presence of exchange symmetry
for the two molecules. " ' Although one may treat
the two initially state selected molecules as dis-
tinguishable in a molecular beam experiment, this
property is lost once they enter the smattering
region. When they emerge, the molecules can no
longer be labeled with any certainty as having been
81e original molecule 1 or 2. This indistinguish-
ability (exchange symmetry) is the source of quan-
tum interference effects. " If the partitioning tech-
nique is to be generally applicable, then it should
not quench such effects.

The molecular exchange symmetry of the scat-
tered wave function depends on the wave function's
behavior with respect to the interchange of the
skeletons of the two molecules. Thus we must
consider the effects of the exchange transforma-

~total ~electronic binuclear /spatial ~ (3.14)

If we assume g,i„„,„;,to be symmetric, the phase
introduced on exchange is simply- the phase change
of tI)„„,i, times the phase change of |tj,„,Appro-
priately symmetrized spatial functions may then
be constructed. In the uncoupled representation
they are given by

tion (&o„Fu„Q)—(&u„&„-0)for our system. The
relative separation vector reverses direction since
it is defined formally as going from molecule 1 to
molecule 2. For molecules whose nuclei contain
an even number of fermions, the colliding system
obeys Bose-Einstein statistics. For molecules
whose nuclei contain odd numbers of fermions,
Fermi-Dirac statistics are followed. If it is as-
sumed that the molecules have symmetric ground
electronic states, and further, that collisions are
not of sufficient energy to D~ nuclear spins, then
the total wave fuaction of the Bose-Einstein sys-
tems would be unchanged upon the above transfor-
mation, while Fermi-Dirac systems would be
antisymmetric under the transformation. " In the
Born-Oppenheimer approximation the total wave
function for the two rigid rotors can be written as
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(Q, ~„~,II,'", „,&=
[2(1 6 ))g. [Yx. .(&,)Y.. .(&,)+Y,„(-)Y.. .(~.)Ye (&,))Y,.(Q),

f1ei2
(3.15)

where we have used Y, „(-Q)=(-)'Y, „(Q)." The
index y,x is +1 for symmetric and -1 for antisym-
metric states. The square root factor is present
for proper normalization of the rotational part of
the problem. The labeling of the basis states is
always taken to be well ordered, namely that
j & j, since (Q, ~„&,Ily m&gxmx)v&, ) differs from
(Q, ~„~,!IPm q, m, i v q,„)by at most a phase factor.
Converting to a coupled representation leads to

(Q ~ ~ II'
g g ~ggy )

)) ~, [(Q, ~„Co,!j,j,J»l JM&
f1 sj2

f + j1+j2+ J12
ex

x (Q ~„~,Ij,j,J»l JM)),

(3.16)

where the states in the coordinate representation
are

(Q, 9» ~,!j,j,d„lJM&= g (j,m, j,m, !J»m»&
m1 782

ftt P»

x (J»m»l v!JM)

x Y, (&u, ) Y~ (~,)Y„(Q).
(3.1'7)

The additional factor of (-)~&' x» in Eq. (3.16)
comes from reversing the order of j, and j, in

the first Clebsch-Gordan coefficient in the defini-
tion of (Q, ~„~,!j,j,J»l&M). The appropriately
symmetrized projection operator now becomes

. ,„,&e(j,j„E)
f1f2~&

~&ex

where O=Hp or V. The proof is trivial for Hp. For
V, use must be made of the fact that the potential
is symmetric with respect to the exchange opera-
tion (~„~„Q)-(~„~„-Q)." This in turn leads to
the following symmetry property for the Aq, y, q(p)
coefficients defined by Eq. (3.2) in the case of
identical molecules"

&q~, ~(p) =(-) ' ~&~ ~ ~(p) (3.20)

Use of Eq. (3.20) to exchange the dummy indices
A., and A, combined with Eq. (3.10) and the proper-
ties of 9-j symbols on interchange of two adjacent
columns" leads to Eq. (3.19) for 0=V.

Thus the case of scattering of identical mole-
cules, where symmetrization is carried out prior
to computation, can lead to additional savings.
One has to solve two problems of half-size, but
since the computational labor goes as a power of
the number of coupled channels, this leads to a
decrease in computing time. The effective cross
sections for unpolarized systems are then given by

o —W„o~, +W, (x~
ex ex

The two cross sections 0&» are obtained from
ex

the separate symmetrized wave functions f&~ex
The W's are weighting factors corresponding to
the total nuclear spin probabilities for the system.
For molecules each with total nuclear spin I„
there are (2I„+1)'possible combined spin states
of which (I„+1)(2I„+1)are symmetric and

I„(2I„+1)are antisymmetric with respect to ex-
change. For fermions, where $,„,„., should be anti-
symmetric to exchange, W„,= I„/(2I„+1)and W,
=(I„+1)/(2I„+1).For boson molecules, the defini-
tions of W , and W 1 are reversed.

!&& (I ex
&1j2~12f)I&I)l~"&eX ' (3.16)

IV. METHODS OF SOLUTION

where the prime on the sum indicates that only
well-ordered (j„j,) pairs are included. Rules
o.'formulated upon the allowed range of 4» and I,

will lead to a correctly symmetrized P'", as op-
posed to rules based on the rotational level of a
specific molecule.

Use of these symmetrized basis sets allows the
problem to be divided into two blocks corresponding
to y,„=+1. This follows from

& I j'"g z, t su &,„IO(P )I Ig'"y' z ' t ' z iv y '„&—0 IOr Yex + &ex ~

(3.19)

We now return to consideration of Eq. (3.9) and
methods of solution applicable to it. The case of
two distinguishable molecules is dealt with for
notational convenience and simplicity of presenta-
tion. Entirely analogous procedures may be ob-
tained using the constraints necessary to ensure
proper exchange symmetry in the case of identical
molecules. The first two terms on the right-hand
side of Eq. (3.9) may be combined into a single

JPterm X...,m;, „qx,.q»,.~, (p) which represents an in-
homogeneity in the coupled equations of motion.
The last two terms on the right-hand side may
also be combined to yield
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dp'pp'g'&'2(p, p') t dp" (j,j,J„„l»lU(p', p")lj,'j,'J,', , 1'„.JM)
g'g'a' 01 2

&at

"(j j ' )f'y' ';g y g, t (p ).

The potential U(p', p") is now nonlocal and has matrix elements given by

& j,j,~„1 ~MI U(p', p")li &i 2~i I' ~M& = (i,i.~„l~~M I V(p'}li',i,'~,', ,l', ZM) (p'- p")

+ + (i,i.~..l.»IV(p'}li,i,~,.l~»
~1~2 12

x ]. -Oj j„E 5;

xp'd "(f ', f "}p"(j,j,J,.l ~MlV(p")I j,'i.'~„;I;~M).
1

(4.1)

(4.2)

A A A

The sum over (j,j,J»1} in the second term is again
restricted in practice since only a finite number of
terms usually enter in the expansion of V(P,Q, (u„g).
The matrix elements given by Eq. (4.2) are diago-
nal in 4 and M, and are independent of M, for po-
tentials defined by Eq. (3.2). Equation (3.9) may
be written in matrix representation as

I"(p)=X"(p)+ dp'G'. (p, p')
0

dP" U'(p', P")f' (P'),
0

(4 3)

where G~(p, p'} is a diagonal matrix whose ele-
ments are given by

(4 4)

The indices (j,j,J»„l„)must be consistent with
the given J.

The dimensions of the matrices in Eq. (4.3) are
not at first apparent. From their definitions,
f (p) and X~ (p) are matrices whose rows are
labeled by states in the P subspace and whose
columns are labeled by initial states. Let the num-
ber of initial states included in the calculation be
iV,'where N~&(j,", +1)'(j,*, +1)'= No~iwth j~, and j,*,
being the maximum rotational levels energetically
allowed for molecules 1 and 2, respectively, and
J' assumed large. The total number of open states
is N, . The maximum initial j, and j2 states may
be chosen smaller than j„andj2*„respectively,
in some problems. The matrices f~~(p) and X~(p)
are thus of dimension NI, &&Nf . The G~~(p, p') ma-
trix is equivalent to the coordinate (p, p'} repre-
sentation of G~~P =PG~~P times pp'. It therefore
can be represented by an N~~XN~ square matrix.
The matrix U~(p', p") is also of dimension N~~xN~~

since its rows and columns are both labeled by
states in the P subspace.

It should be recognized that Eq. (4.3}blocks into
separate coupled sets of equations according to
whether the parity of the states is even or odd.

This will also apply to the corresponding Q sub-
space equations. This observation is of primary
importance in carrying out actual computations.

Equation (4.3) may be viewed as the matrix rep-
resentation of a set of coupled equations, where
U~(p', p") plays the role of a nonlocal interaction
potential. The potential has the following property
from the definition of its matrix elements

U (p p )=lU (p p'))

where the superscript T refers to the matrix
transpose operation. The potential is nonseparable
due to the presence of g.~~2(p', p") which is ex-
pandable [see Eq. (3.11)f in functions of p&'&&& which
denote tbe smaller (larger) of the pair (p', p"). The
presentee of the Ricatti-Bessel functions can make
the matrix elements of U~(p', p") rather oscillatory
when the wave vectors are large. However, the
nonlocal interaction potential is well behaved in the
sense that it only has an appreciable magnitude
over a small range of arguments p', p" -a where a
is the range of V(p, 0, tu„~,).

Let us now consider ways of solving Eq. (4.3)
given the above properties of U~(p', p"). Several
authors' "have developed methods of solving
such equations but with seParable potentials

U (p', p") =Qu,.(p')u, ."(p").

In practice this may not be a particularly severe
restraint since fairly well behaved nonseparable
functions may be approximated quite well by a
finite sum of separable terms. Gordon' has de-
veloped a method based on the differential equa-
tion form of Eq. (4.3) where the purely local first
term on the right-hand side of Eq. (4.2) is treated
as part of the zeroth-order Hamiltonian. Both
the local potential and the separable terms in the
expansion of the nonlocal part are then approxi-
mated by piecewise polynomials on intervals
throughout the range. The separability of the pure-
ly nonlocal part of the potential then allows it to
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be treated as an inhomogeneity in the equation of
motion with the local potential. Solutions of the
problem are the sum of a solution to the homo-
geneous equation and particular solutions of the
inhomogeneous equations, one for every separable
term in the nonlocal part of the potential. This,
however, requires solving the problem (1+s*)
times, where s* is the number of separable terms
in the nonlocal potential.

Sams and Kouri" have also developed a method
for solving equations of the form of (4.3), again
with separable nonlocal potentials. Their proce-
dure differs from Gordon's' in that they solve
the integral equations, which upon combining vari-
ous terms can be shown to be equivalent to a set
of Volterra equations of the second kind with an
inhomogeneity arising from the nonlocal part of
the potential. They show that the solution evalu-
ated at a given p depends only on values of the
solution at points p & p, and so may be found by
outward integration from the origin noniteratively.
However, it is again necessary to solve an in-
homogeneous equation for each separable term in
the nonlocal part of the potential. The complexities
involved with these two methods"" suggest that
they may not be the best initial approach to try.

Wolken" has developed a somewhat different
approach to the solution of equations of the form
of (4.3) which does not require that U (p', p") be
separable. Instead, a separable approximation to
the principal-value free Green's function is em-
ployed. Once this approximate form is calculated,
the resulting equations can be solved noniterative-
ly. The major computational step involves in-
verting a q*E,&&q*X matrix, where q* is now the
number of terms in the separable approximation
to the free Green's function and N, is the dimen-
sionality of the coupled equations. Since the ap-
plication of Wolken's method" to Eq. (4.3) is a
promising approach, we include a detailed review
of it below. The possible computational savings
of the partitioning theory will also be illustrated.

When the integral

dp" U~ p', p" f~ p"
0

for different channels) for the quadrature point
pn . We will use n* to denote the total number of
quadrature points. The diagonal elements of
G~o(p, p„.) are given by

(j,j,J» falGO(p. p, )Ij ij 2 Ji2~f„)=pp,g i'2(p, p .).
These elements are now only functions of p and
can be expressed as column vectors where p is
evaluated at the points p„.. . , p„,. . . , p„~=[p„}.
Note that the magnitude of the elements does not
depend on 4»„.Only each unique diagonal element of
Go(p, p') need be computed. This may be done by
expressing a given element as an n*&&n* square
matrix g(j,j,l„)whose (n, n') element is

(4.6)g(i,i,f.).. =p. p„g',"'(p„,p. )

Each g(j,j,l„)„„maythen be approximated by a
sum of separable terms

g(j,j,l„)„„=pa(j,j,l )„,b(j,j,l„)„,.
a=l

(4.7)

[g'(&,&,f )g(j,&,~ )1b(j,j,f.)
=b(j,j,f )~ (j,j,~ ).

(4.8)

However, g(j,j,l„)is equal to its transpose, as
can be seen by reference to Eq. (4.6). Thus
A.,(j,j,l„)=X,(j,j,l„)andthe columns of a(j,j,l„)
and b(j,j,l ) are identical to each other to within
a normalization factor which Bolsterli and Norton"
have shown satisfies the following constraints:

g j,j,l„„„aj,j,l„-„n
n=l

=b(j,j,l„)„„g[a(j,j,l„)„-„.]',
n=l

Bolsterli and Norton" have shown that a best fit to
the terms a(j,j,l„)„andb(j,j,l„)„canbe ob-
tained as the q* eigenvectors corresponding to the

q largest eigenvalues of the equations

[g(j,j,f.) g'(j, j,f.)1a(j,j,f„)

is a sufficiently well-behaved function of p', then
the integral over p' in Eq. (4.3) can be approxi-
mated to high accuracy by a discrete quadrature

(P)=X' (p)+gW G'.(P, P. )

Pn= 1
g j,j,l„„-„bj,j,l„-„n

=a(i,i.l.)..g [b(j,j,f.);„1',
n=l

(4.9)

n =1

dp" U'(p. , p") f (p").
Jp

(4.5)

aj
n=l n'=l

The term W„ is a constant N~~xN~ diagonal ma-
trix of weighting factors (which may be different

The least-squares error in approximating
g(j,j,l„)„„.in the above fashion can be shown to be
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E»»(j,i,f )=»[g(j,j,~ )g(i,j,~ ) ]
q*

A. j,j,l„„. (4.10)

gral over p„:
C =D, -QT„C„ (4.15)

Each of the X~~ diagonal elements of g(p, p')
can be approximated by these procedures. The
results can then be combined to represent 6~0(p, p')
itself as a sum of products of P~&E~~ diagonal
matr ices given by

a+

g(P„,P. ) =g A, (P.) ~, (p. ), (4.11)

where

T~r = B~ p„- ~W-
n=l

dP„U'(P;,P.) A, (P.)

(4.1'I )

n ~ oo

D, ~ =Z ~~~(p,")~- dp„U (P P",)x (P,)
n=l ~0

(4.16)

(4.12)

x dp U p~ p f p
' 0

where

=X"(p„)++A,(p.) C,',
q=l

(4.13)

C'=g~(p )~ dp" U'(p p")I"(p")
n'=1

(4.14)

This expansion of Go~(p„,p„t)constitutes the major
approximation in the numerical procedure. For a
given set of quadrature points (PJ the error for
the (j,j,n) diagonal element in Eq. (4.11) can be
reduced below a prescribed limit calculated frcm
Eq. (4.10) by choosing additional terms in the ex-
pansion corresponding to successively smaller
eigenvalues of Eq. (4.8). In fact, for q*=n* the
least-squares error in the approximation is zero
for the given n*-point quadrature scheme. It is
especially important to note that Eq. (4.11) is
dependent on 4 only insofar as to which particular
(j,j,o') states are included. The elements them-
selves, however, are independent of J, and so need
to be calculated only once. Equation (4.11) may
now be substituted into Eq. (4.5) to yield

n+

f"(p.) =X"(p.)++A, (p.) g &,(p. )~.
n' =1

One would be likely to perform the integrals in
Eqs. (4.16) and (4.17) by quadrature, using A, (p„)
evaluated at the (p„}in the integral for T~, .

We must now solve for the C~~ matrices. The
coupled algebraic equations represented by (4.15)
may be expressed equivalently in terms of super-
matrices

gJ' ~Z cr J ~ 6J' (4.18)

(g
J'

(8 gJ')-lg)z (4.18)

The matrix 8 is the identity matrix of dimension
q ~ xq*E . Thus we need to invert a single
q*N~~&q*N~~ matrix for each total angular momen-
tum 4 considered. We can now substitute the q*
component blocks of 8~ back into Eq. (4.13) to
generate the f~"(p) matrix evaluated at the (p„j
quadrature points.

This does not, however, complete the computa-
tion since we have essentially only generated I'g~.
Information about scattering into the Q subspace
can be calculated by returning t'o Eq. (2.8) written
in a form similar to Eq. (3.9) upon defining

where t: is a q*N~~&EI~ supermatrix whose first
Ã~ rows are given by C,-„whose second E~ rows
are given by C» etc. , and similarly for S . The
supermatrix v ~ is of dimension q*Npxq*N~~ with
its q, q' block of dimension N~~ N~~ given by T~, .
The supermatrix 8~ may be solved for to obtain

C, is an Np&&z matrix indePendent of any radial
coordinate. Equation (4.13) may be converted into
a set of coupled algebraic equations for the C~

matrices by first operating on the left with

12$

x (z„m„,),Dl zM))

(4.20)

B,, (p-„)w„-U'(p-„,p„).

The following equation is then obtained assuming
that the functions evaluated at the points (pg pro-
vide sufficient information to approximate an inte-

where it is understood that the (j,j,J„/)row in-
dices are restricted to only those projected out by
Q. Technically there are an infinite number of such
states, but in practice the number of Q states is
restricted to those either in the initial manifold
or those coupled directly by the potential to P
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(4.21)

states. The latter source of Q states for which f, & «, , 2, (p} is not identically zero will naturally
be limited if the potential expansion has a finite number of terms. Let us call the maximum number of Q

states N~. We then obtain
f~o . (p)=k~2 pj k. . p)5 6 . 5 5i112~12 'ilii2i~)2( i ilii2i i 11 1~2 i ' ili'il i2i'i2 i' 12i' 12

+ Q p Jt dp'p12g')'2(p, p')(j,j2J2l PM~V(p')~j', j2J,' .L'„JM&

lj2 }flli''u':ilii2(~)2il, (

Written in matrix form Eq. (4.21) becomes

("(P) = )(P ) + j dP G'( P 'P )2)', ( P')("('P )'
0

(4.22)

where f o(p} and j(p) are Nq~xN~~ matrices and

Go(p, p') is a diagonal Nz~x Nz~ matrix defined anal-
ogously to G2o(p, p') in Eq. (4.4). The matrix V~(p')
is local and of dimension Nq~xN~~. Equation (4.22)
is not an integral equation since f o(p) does not
appear on the right-hand side. It may be evaluated
by a simple quadrature using the previously de-
fined set of points (p„).Equation (4.22} then be-
comes

stricted to only energetically allowed states.
The matrix y(p} is diagonal, of dimension N~

x No~ with elements defined analogously to Eq. (4.25)
except that the irregular Ricatti-Bessel functions'

yl, (k,„;„p)are used. The matrix K~ is of dimen-
sion N0J&N~ and corresponds to a block of the usual
reactance matrix except that it is not necessarily
square here. The relationships among the various
matrix dimensions are pictorially summarized in

Fig. 1.

N -N0 I
A

f"(p.) = j(p.}++Gl(p. , p. )
n' =1

xW. V'(P. )f"(P. ), (4.23)

where W'„i is the N~XN& diagonal matrix of weight-
ing factors for the quadrature. All of the factors
in Eq. (4.23) are either easily evaluated or have
been previously calculated. Note that G22(p„,p„.)
is evaluated exactly.

The matrices f~(p) and f~(p) may now be com-
bined into a supermatrix f~(p) of dimension
(N~~+Nz~)xNi~ The rows o. f f~(p) may be rear-
ranged to yield a new matrix f ~(p} where all the
asymptotically open states are in one block desig-
nated f c~(p) and all of the asymptotically closed
states are in another block f ~(p). These two blocks
must be subject to the standard standing-wave
boundary conditions" given by

f ()(P) = j(P) —y(p) K (open channels),
p ~()o

f.'(p) (closed channels).

(4.24)

Since P +Q =I, all open states appear as row in-
dices in f ~(p). Thus, f f(p) is an N~xNz~ matrix
as is j(p}. The elements of j(p)are given by

j(p) =k~2 j (k o)flf2 J12l:fl» f2» J12» l» fl»f2»»» fl»f2»

x5. 5 5 5
1» f2 'f2» 12 ~ 12» ~

(4.25)

where it is understood that the (j,j,J„L)are re-

N P

f-Z~.'o+'
0

'N -N0 I

A J'c

FIG. 1. Schematic indicating the relative dimensions
of the component blocks of the matrices, f (pj and f (pI
as well as the resulting approximate K matrix. The
situation pictured corresponds to A I, the number of
initial states included in the calculation, less than 1V p,
the total number of open states, and the P subspace con-
taining no closed states. Furthermore, the potential
expansion is assumed to contain only a finite number of
terms thus restricting No. Diagonal shading corresj)onds
to those matrix elements calculated. The diagonally
shaded area within the heavy border represents fo(p).
Matrix elements in the horizontally shaded region may
be generated by reflection of f 0(p) about the diagonal.
The resultant K matrix, of dimension NoxNO, corre-
sponds to the entire region within the heavy border.
Note that the (No-N I ) x (No -N z) block in the lower
right-hand corner of KJ is identically zero. For sim-
plicity we have not indicated the additional blocking due
to parity.
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The rearranged supermatrix f ~(p) must also
satisfy the matrix representation of Eq. (2.11);
namely

K'=-„'". I d'l(')V'(')f'(p),
0

(4.2V)

where j(p) is now an No~ diagonal square matrix
and V (p') is an N~x (N~+N&) matrix defined anal-
ogously to the matrix in Eq. (4.26), with all the
open states now grouped into the first N, columns.
Equation (4.2"I) is then evaluated by quadrature at
the set of points (p„jat which f ~(p') has been
evaluated. All of the needed j(p„)and V~(p„)ele-
ments have previously been calculated.

We note that K~ is only a square matrix when

NI =No. However, aside from possible numerical
(round-off) errors, this method is guaranteed to
generate a symmetric K matrix even if N, is
smaller than N~. One can obtain a square ma-
trix by reflection about the diagonal. Of course a
block of that matrix would be identically zero, as
shown in Fig. 1. A check on the numerical accura-
cy can be obtained by comparing calculated ele-
ments of the matrix symmetrically placed about
the diagonal.

Let us consider the quality and extent of the
information in K~ in more detail. We see from
Eq. (4.21) that states in the Q subspace not directly
coupled to states in the P subspace by the poten-
tial are essentially treated in a first-order Born
approximation for the function fJ j&z»l;f lf, l j g ll (p). '

Therefore, an additional criterion for picking
states in P might then be to have them interspersed
throughout the entire energetically open part of the
solution space so that the Q states could always be
directly connected to P states by the potential.
This would ensure a maximum amount of feedback
of scattering information between the two sub-
spaces in the calculation of K~.

In summary, the labor in a calculation using
Wolken's numerical method" and our partitioning
technique for a given value of J involves the eval-

f'(P)= j(P)+ ) dP'G'(P, P')V'(P')f'(P'),
Pp

(4.26)

where the first N~ rows of l(p) are just j(p), the
rest of the matrix being identically zero. The ma-
trix Go~(p, p') is now of dimension (N~~+Nz~)

x (N~~+N~) and defined analogously to the other free
Green's function matrices. The matrix V~(p')
is also an (N~~+N~~) x ( ~~+N~~) square matrix and
corresponds to the local V = V —QVQ operator.
Comparison of Eq. (4.26) in its asymptotic limit
and the boundary conditions given in (4.24) leads
to the identification

uation of all possible open gilt'(p„,p„)(assuming
P automatically excludes energetically closed
states) on an n*xn* grid. However, one can take
advantage of symmetry with respect to interchange
of p„and p„sothat in all for J-j,*+j,* one must
calculate

n* ~+(f, f2&

2 1= j,*+1 j2*+1 n*n*+1
f =0 f2=0 n=l l=J-(f +f )1 1 2

x (j,*+j,*+1)
Ricatti-Bessel functions. " It is then necessary to
calculate the best-fit separable approximations to
the N~~ diagonal elements of G~(p, p'). Since the
gIl '(p, p') are independent of J»~, the number of
fits which must be obtained may be considerably
less than N~~ if the set of rules designated by the
o. s selects more than one value of 42 for each set
of indices (j,j,l J). Recall that these fits were ob-
tained by finding the eigenvalues and the eigen-
vectors corresponding to the q* largest eigen-
values of an n*xn* matrix. Finally, to evaluate
the f~~(p„)matrix at the various (p„},we kneed to
invert a single (q*N~~) x (q*N~~) matrix which is also
parity blocked. Evaluation of f~(p) and K~ in-
volve only matrix manipulations (i.e. , no inversions
or diagonalizations). The sum total of the matrix
operations should then go, at a maximum like

2[-'N n '+(-'q*N )'],
since inversion and finding eigenvectors both go as
D' where D is the dimension of the matrix. The
multiplicative factor of 2 outside the bracket comes
from recognizing explicitly that we must solve
the problem twice, once for each parity block.
These blocks are essentially of dimension —,'N~.
For Gordon's close-coupling method, ' without in-
troducing our partitioning technique, the labor-
goes as 2n, (-,'N~)' where n, is the number of steps,
N~ =N~~+N~, and again parity factorization has
been taken into account. The following parameters
might be applicable in a typical problem of in-
terest: n -n -50, q =5, j,*=j, =9, J large.
Assuming N~ is a minimum, the running time in
our method would then go as

2[10'(50)'/2 + (5 x 10'/2)'] —5 x 10',
versus

2[50(10 /2) ]-10",
using Gordon's method. ' This saving would of
course decrease if Np were not a minimum (i.e. ,
several o's present). The enormous computa-
tional savings is at the expense of some allowed
additional error in the results. However, this
may be controlled in a practical and flexible fash-
ion. Clearly, the possibilities for computational
savings are extremely attractive.
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V. DISCUSSION

P = Z I jl& ~M&e(j; E)&i&& ~II (5.1)

Their approximate equation of motion is different,
however, in that they choose to solve

In this paper we have developed a formal method
for reducing the dimensionality of the coupled scat-
tering equations, and suggested a possible numeri-
cal method of solution for the resulting nonlocal
equations. In this section we will try to place
our method more firmly in the context of other
work on dimensionality reduction of the coi led
scattering equations. ' ' We also discuss other
possible choices of projection operators and some
problems inherent in their use.

We begin by looking at Wagner and McKoy's
work which is most similar in spirit to our meth-
od. They were specifically interested in vibra-
tional transitions in atom-homonuclear -diatom
scattering. Consider only elastic vibrational scat-
tering so as to conform to the notationally simple
case considered in this paper. Then their model

1, which chooses an incomplete channel set in

which I,„=l,
„

is equivalent to defining a minimum
size projection operator in our method given by

in the v' vibrational manifold.
A formal solution for the error in Wagner and

McKoy's method can be found by steps analogous
to Eqs. (2.14}-(2.16). This leads to a n, ~ =K -K~
given by

o.~ = (1 —VG~o) '(V -PVP)(1+ GO~K~) (5.3)

Expansion of K~ and (1 —VG~O)
' shows that the

P-P block of K~ has second-order errors while
the rest of the K~ matrix is identically zero. This
result should be compared with that of Eq. (2.16)
where the P-P block error resulting from our
procedures is third order. Thus our method would
be expected to be more accurate. Furthermore,
Wagner and McKoy's method provides no informa-
tion about P-Q coupling.

Figures 2-4 consider the case of atom-diatom
scattering with an interaction potential given by
Eq. (3.2) with & restricted to be 0 and 1. Note the
blocking due to parity in each diagram. We have
chosen J = 5, the maximum open j as 3, and e(j;E)
as selecting j &3. The initial states considered
are all those energetically open (i.e. , Nz~ =N,).
Finally, we have truncated the Q states shown in

the figures to only those for which j «4 for sim-
plicity. Our rules designated by the n's are such

(E PH P)Pg( ——-(E —Ho) P rp, =0, . (5.2)

where Py, =—y, and the assumption is made that

Pg, -g, Their final result would then be a unitary

S~~ matrix since the approximate Hamiltonian is
Hermitian. Equation (5.2) should be compared with
our Eq. (2.11}. The potential

V = V -QVQ =PVP +PVQ +QVP

in our method contains the additional terms QVP

and PVQ. As discussed in the previous sections,
our method also leads to a unitary S matrix, but of
dimensionality Np~xN~~ as opposed to Wagner and
McKoy's which will be of dimensionality N~~p&Npp

where N~~p-N, is the number of open states in P.
Furthermore, the motivation behind their choice
of projection operator is that it be dependent on the
initial state of the transitions of interest. Our
method is not necessarily so motivated in that
we have not restricted Qy, =0. The severity of the
error in either method could be tested by compar-
ing the K and K~ matrix elements resulting from
various choices of P to see the actual order of the
differences in the calculated transition probabili-
ties. Wagner and McKoy' also have done calcula-
tions using a different L selected model, and ob-
tained excellent agreement between the two models

v'
for partial cross sections cr„",, These cross sec-
tions correspond to transitions from an initial
vibration-rotation state (vj, ) to all possible j states

L
I~ A % A % tA C) IA

C}c- A P$~ CJ Ff

0,5
1,4
2, 5

P» 34
1,5

-2,6
3,5
1,6
2, 3
2.7
3, 2
3,6

+3,8
4, 1

4, 3
4,5
4,7
4.9
2,4
3.3
3, 7

-4,2
4,4
4,6
4,8

+ I

g)P)WAC)~P)IAP 0)'f WNCV'C(D(G
~ oJ(UPfp) pl cf 0 4 cl f f45) p) 0 f f 0

FIG. 2. Schematic of the matrix V = V~-QV Q for
the case of an atom-diatom collision. The matrix rep-
resented corresponds to J= 5, A, restricted to 0 and 1,
and P containing only rotational levels j«3. The rules
selecting (j, l) states to be included in P are l =J for j
even and l =J-1 for j odd in the even-parity block (+).
For the odd-parity block (-) we have chosen l =J+1
for j even and l =J for j odd. Those matrix elements
not identically zero are shaded. Only states in Q with

j ~4 are shown for simplicity. Note the blocking due
to parity, and the identically zero Q-Q block of the
matrix.
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that the values of l included in P are l = J if j is
even, and L = J-1 if j is odd for the even-parity
block. For the odd-parity block L = J+1 if j is
even, and l =J if j is odd. This would then be a
minimum size calculation. Figure 2 represents
the resulting V~ = V~ —QV~Q potential matrix for
our particular choice of P. Matrix elements not
identically zero are shaded. Figure 3 represents
the f (p) matrix. The identically zero columns
in f~(p) come from initial states requiring inter-
mediate QVQ coupling to reach P states. Such cou-
pling has not been included in our approximation.
This can be confirmed by reference back to Eq.
(2.9). The f~o(p) block of the matrix has nonzero
matrix elements arising from either the Qy, term
of Eq. (2.8) (labeled by Ip), or from direct cou-
pling by the potential to states in P by the

I + I
t

~ lQ f (0 P) lA W N N CO (6 A f G3 p) IQ (

Q ~ ~ CU OJ OJ F) P) N P) ~ CU CU P) P P)
J, L

0,5
1,4
2, 5

P» 34
1,5

—2,6
3,5
1,6
2, 3
2, 7
3,2
3,6

+3,8
4, 1

4,3
4,5
4,7
49
2,4
3,3
3,7

-4, 2
44
4,6
4,S

/'1118
J 1/11

/11/ I

/'1111

Xl
11

FIG. 3. Schematic of the matrix f (p) corresponding
to the parameters used in Fig. 2. Diagonal cross hatch-
ing in the f +(p) block labeled by P indicates those ele-
ments not identically zero. The unshaded columns cor-
respond to those initial states in the Q subspace requir-
ing intermediate Q VQ coupling to reach P states. Such
coupling has not been included in our approximation.
This can be verified by reference to Eq. (2.9). Those
states in the f~~(p) block arising from the Qp; term are
labeled by p while those arising from the QG~IQ VPIlII
term are shaded. We have again shown only those states
in Q with j—4 for simplicity. Again note the blocking due
to parity. Those initial states in P are indicated with
an arrow for clarity.

QGo~QVPP, terms (which are shaded). Finally, using
Eq. (4.27), one can obtain the resulting K~ matrix
which is represented by Fig. 4. Cross hatching
horizontally represents elements not identically
zero in our method. Vertical shading indicates
nonzero elements in Wagner and McKoy's method. '

Figure 4 captures the essence of our method.
Although it employs a first-order approximation
to the Green's function in the Qg~ equation of mo-
tion, the method produces overall coupling to all
orders in V through the PP part of the problem
The rows and columns of K~ that are identically
zero are labeled by Q states that are not Chrectly
coupled by.the potential to states in P. These
states will not participate in scattering. This
leads to a further, rather obvious criterion for
choosing P if we are interested in specific transi-
tions —the two states should both be in P, or if
only one is, they must at least be directly coupled
by V.

In the limit P =I both our technique and Wagner
and McKoy's' go over to the exact coupled equa-
tions (of infinite dimension. ). In intermediate
cases our method yields more nonzero K matrix
elements than Wagner and McKoy's method. ' Our
procedure is expected to be more accurate [i.e. ,
exact through second order in the P-P block as
shown by Eq. (2.16)], but at the cost of dealing

+ I

+ 8 rJ 6 M 6 4 & 'f (0 (O IA '0 S M 0 f~ C) ~ ~ OJ CU CU P) P) P) Pl ~ % 4 P) P) W
J, L

+0,5
+1,4

1,6
2, 3

+2,5
2,7
3, 2

i3,4
3,6
3,8

+ 1,5
2, 4

+2,6
3,3

+3,5
3,7

FIG. 4. Schematic of the resulting approximate K~
matrix corresponding to the parameters used in Figs. 2
and 3. Arrows indicate those open (j,l) states in P.
Horizontally shaded elements are nonzero in our method.
Vertically shaded elements correspond to those generated
by Wagner and McKoy's method. Identically zero rows
and columns are labeled by Q states not directly coupled
by the potential to states in P. These states do not par-
ticipate in scattering in our approximation. In this
example we have chosen Nz = N~&.
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with nonlocal equations. In comparison with stan-
dard close-coupling calculations, ' certain informa-
tion may be lost in our procedure. However, we
will have the advantage of dimensionality reduc-
tion, even considering the nonlocal nature of the
equations. The nature of the interplay of these
effects can. only be determined by carrying out
comparative calculations.

We may also compare our technique to other
methods for reducing the dimensionality of the
coupled equations, "but the interrelation is not so
straightforward. Written in a coupled representa-
tion, the effective potential method' consists of
defining matrix elements between effective states
by

(j,j,lo'"(p)i j',j,'} = g ~
l

' ' " " fl
l

r'jj~ m

J/2miz (jl j/ J/ m/ jZ' m'
12 12

x(j,j,J„m»lo(p fl)l jij2
(5.4)

where O=Hp or V and f is a function to be deter-
mined that satisfies certain constraints. These
restrictions are that the resulting H" be Hermi-
tian, that the energy spectrum of H,"(int) should
be identical to that of H (int), and that g should be
physically meaningful for the problem (i.e. , it
should not introduce additional couplings into V'
not present in V).

A suitable choice for ( in the coupled representation can be shown to be

g (4~[~,][~,][~„][a,',])~'y„„(fl)
j/ j/ J/ m/ sl17ft2&1ffa2Q

1 2 12 12 P1)f2P

(-m, Iu, m,' 1 (m, m2 -mi2) km,
' m,' -m,',f

(5.5)

where N and 6 are normalization and phase fac-
tors. By defining

(5.6)

the following set of coupled differential equations
may be obtained

tf' d' h'l(l+1)
+ +e +t —E $ . p)

2p, dp' 2pp ~i ~2 'i'2"i&~a&

= —Z(j,j.lv"(p)lj,'j.'}(,'. . . (p). (5.7)
IJ/ 1 2'li'2f
1 2

This set of equations is of dimension (j,*+1)(j,*+1).
The orbital angular momentum l has now assumed
the aspect of a "good" (i.e. , conserved) quantum
number and J no longer appears. One could then
guess that the "rule" for selecting P states is that
l =J and we are solving an equation analogous to
(5.2). This is not the case however. The defini-
tion of the effective matrix elements given by Eqs.
(5.4} and (5.5}cannot be put in the form
(j,j,& =1lPOPl j,'j2o/=1). This is because the func-
tions in & are not separable in terms of the primed
and unprimed indices, which are coupled by the ~'s.
It is this point that prevents & from having the

characteristics of a normal projection operator.
Thus g has operator characteristics more like
that of a tetradic operator. " One advantage the
partitioning technique has over the effective po-
tential method is that specific j,m, j,m, -j,'m', j,'m,'

transitions can be obtained. At present no satis-
factory method of returning to the "unreduced"
space can be made using effective potentials. "

We may al'so return to consideration of approxi-
mations neglecting centrifugal potential coupling
in the body-fixed system. ' The essence of the
approximation is that l is a good quantum number,
and that m is conserved for atom-diatom scatter-
ing. It is necessary to solve one set of coupled
equations for each value of m, of dimension
[(j*+1)—m] where j* is the highest rotational
level considered. The computational labor in-
volved is intermediate between a minimum parti-
tioning technique or effective potential calculation
and a fully coupled exact equation. However, the
method is not simply related to the partitioning
technique due to an approximation of the l2 opera-
tor in the body-fixed frame. Only transitions of
the type jm- j'm can be calculated, in contrast to
our method which again allows jm- j'm' transi-
tions. However, the body-fixed theory can be for-
mulated in a rigorous fashion" ' before making the
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approximation of l being a good quantum number.
This approach should be able to provide the next
correction to the uncoupling of the l components.

In the course of our investigations we have also
considered other possibilities for projection opera-
tors. The following form was considered in the
case of atom-diatom scattering

(5.8)

where

Ij l) = peg„ljmlv). (5.8)

The normalization (jll j'I') =5, ,i5» is required
so that the P =P' property is satisfied. Use of
diagrammatic angular momentum methods" indi-
cated that a suitable choice for the 8"„would be
a sum over Clebsch-Gordan coefficients
Q, (jmlvlSs) where S (essentially the total angular
momentum) is chosen as a simple function of j and

l, and only the s =m+v term survives. This would
impose an additional selection rule on the poten-
tial, namely, that for (jll VI j'1') to be nonzero,
S =S' and s =s' in the sum over s and s'. If S were
defined, for example, as l, then the desired de-
coupling of j and l would have been accomplished.
This may not be obvious, but it can be shown after
some lengthy algebra. The equations developed
in Sec. II would still be valid, and the approximate
Hamiltonian would be H =Ho+ V -QVQ. However,
with the definition of P given by Eqs. (5.8) and
(5.9), it can be shown that H has some very un-
physical behavior. The total angular momentum
operator's projection on the z axis is not con-
served during the collision. This can be seen by
writing Q as

Q = g Ijmlv)&j m'Iv'I
fgmv
m' v'

x 5 ib„„i— jmlv Ss) j m'lv' Ss') .
SS

(5.10)

Clearly !jl&MIQIj l&M')e0 for MwM' because of
the second term in the parentheses. This problem
has arisen because of the nature of P and the
aPProximations on the Qg equation of motion. Any
P would be satisfactory, provided the Qg equation
is exact. In order to avoid this problem, it is
desirable to choose P such that it doesn't remove
any of the symmetries of the original Hamiltonian.
Of course the P defined by Eq. (3.6) does not have
this problem.

The actual choice of P is still a problem in the
sense that the rules + must be selected. One could

systematically increase the scope of the rules
and test for convergence of the final K~ matrices.
This would undoubtedly work, but it can be tedious.
Perhaps the problem should be posed in a different
fashion. That is, if only one rule & were allowed,
then what would be the optimum choice for this
rule~ This clearly suggests the use of variational
principles for such an optimization. This then
could be extended to the case of two rules, etc.
Additional formal development and numerical
calculations would be necessary to examine these
points.

APPENDIX

We show here the equivalence of Rotenberg's
time-independent approximation to decouple the
equations of motion of the P and Q subspaces' and
that of White and co-workers' in a semiclassical
time-dependent treatment. The approximation
scheme, however, need not be formulated in a
semiclassical context. White and co-workers'
consider t!&e yroblem in an interaction representa-
tion for a system subjected to a time-dependent
potential V(t). Thus the wave function is defined
as

g(t) =exp(-iH, t/if) g~(t),

and P(t) obeys the equation of motion

(Al)

where

It has been assumed that QP(-~) =0 as a boundary
condition. The evolution operator Ulo(t, t') satis-
fies the equation

sf U'g(~, i') =-
~ QV'(~) QUo(i, i'). (As)

White's approximation consists of replacing Ulo(&, &')

by U~+(t, t) =1, the lowest-order perturbation re-
sult. The resulting PP(t) equation is then

Z I
t

+ ——PV t Q dt'QV t' P
~ OO (A4)

V'(t) =exp(+iH, f/k)V(t) exp(-iH, t/0)

Taking the P and Q projections of Eq. (Al) and
substituting into the PP(t) equation the formal
solution of QP(t) they obtain"

sPtI'(i) I
at

= ——PV (t)PQ (t) + ——PVI (t) Q

t
x di' Uo(t, i')QV'(t')PP(t') (A2).
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The equivalence of this result to Rotenberg's ap-
proximation' can be shown by considering the
QP(t) equation of motion

sQ4' t
= —

g QV (t)Qg (t) ——QV (t)PQ(t)

The analogous approximation would be to neglect
the first term. Again using the boundary condition
on QP(t), we obtain

Substituting Eq. (A5) into the exact equation of
motion for Pp(t) given below

=-
+ PV'(t)P) (t) ——PV (t)Qg (t)

leads to the result given in Eq. (A4).

(A5)
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