PHYSICAL REVIEW A

VOLUME 10,

NUMBER 6 DECEMBER 1974

Classical trajectory treatment of inelastic scattering in collisions
of H* with H,, HD, and D,

Clayton F. Giese
Tate Laboratory of Physics, School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455

W. Ronald Gentry
Chemical Dynamics Laboratory, Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
(Received 29 July 1974)

A semiclassical model for vibrational excitation in molecular collisions is proposed, in which three-
dimensional classical trajectory calculations are used to evaluate the quantum vibrational transition
probabilities. Using an accurate analytic fit to 138 ab initio points in the important region of the Hf
potential surface and a new Monte Carlo interpolation method for averaging over initial conditions, we
apply the model to vibrational excitation in collisions of H* with H,, HD, and D,. The calculations
reveal the necessity of correcting our previously reported experimental vibrational transition probabilities
for rotational contributions. Once this is done, the experimental data and the model calculations are in
very good agreement. The theoretical results support our previous conclusion that vibrational excitation
in this system is caused primarily by dilution of the molecular bond by the passing proton. The ob-
served maximum in the experimental inelastic differential cross sections at approximately half the rain-
bow angle is shown to be associated with the second classical rainbow, which results from the aniso-

tropy of the potential.

INTRODUCTION

In a previous paper,' we reported experimental
measurements of the quantum transition probabil -
ities and differential cross sections for the excita-
tion of resolved vibrational states in nonreactive
collisions of H* with H,, HD, and D,. These ex-
periments spanned the range of initial relative ki-
netic energy from 4 to 21 eV and the range of cen-
ter-of-mass (c.m.) scattering angle from about 5°
to slightly beyond the rainbow angle for a given en-
ergy. From qualitative considerations involving

- the shape of the H; potential-energy hypersurface,
the large magnitude of the vibrational excitation
probabilities at small scattering angles, and the
observed isotope effects, we concluded that the
principal mechanism for vibrational excitation in
this system is an effect which we called “bond di-
lution” —the temporary withdrawal of electron den-
sity from the molecular bond by the passing pro-
ton. In this picture, the vibrational excitation is
caused by a stretching force which acts simultane-
ously on both of the H, nuclei. This mechanism is
quite different from those theories of vibrational
excitation in which the incident atom interacts di-
rectly only with the nearest atom of the molecule.
Here we present a theoretical treatment of the col-
lision dynamics in the energy and scattering angle
regime of the experiments. The calculations con-
firm our original point of view regarding the
mechanism of vibrational excitation in this system
and also illuminate some features of the experi-
mental data not previously understood.

The H +H, system is a highly propitious one for
comparison of theory and experiment since there
is little averaging to be performed over experi-
mental parameters. In the experiments a struc-
tureless particle collides with a molecule in a
well-defined quantum state (r=0;J=0, 1) leading to
scattering at a specific angle into a resolved mo-
lecular vibrational state with the rotational state
probably unchanged. Also, the H; potential-ener-
gy hypersurface has been calculated accurately for
a large number of configurations in the region of
interest.

Progress in the theoretical treatment of vibra-
tional excitation in molecular collisions has been
reviewed recently by Secrest,? and earlier by Rapp
and Kassal,® and by Takayanagi.?* A wide variety of
methods have been employed, including fully clas-
sical, fully quantum-mechanical, and many differ-
ent semiclassical (or semiquantal) schemes. Al-
though complete quantum-mechanical close-cou-
pling calculations in three dimensions are now
within the state of the art for some three-atom
systems,'5 we have chosen instead to use a semi-
classical model which provides a particularly
graphic description of the vibrational excitation
process.

The utility of semiclassical methods for molecu-
lar scattering problems is widely appreciated, not
only for the savings in computational effort which
are usually realized, but also for the physical in-
sight which knowledge of the classical motion often
makes possible. There are essentially two ap-
proaches to the application of classical mechanics
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to the dynamics of inelastic and reactive scattering
of molecules, corresponding to whether the bound-
ary conditions employed are classical or quantal.
Both have been applied to vibrational excitation in
molecular collisions.? In the conventional semi-
classical approach, those degrees of freedom in
which the quantum numbers are large (usually
those which are asymptotically translational) are
treated classically, while those with small quantum
numbers are treated quantum mechanically. Any
classically allowed values of the initial and final
dynamical variables are permitted for the classical
motion. This procedure results in a set of coupled
differential equations® (for example, Hamilton’s
equations coupled through the potential energy to
the time-dependent Schrddinger equation) which,
for a specified set of initial conditions, permit
either direct numerical integration or the use of
approximate solutions for the classical motion,

the quantal motion, or both.

Recent theories of vibrational excitation formu-
lated along these lines include those of Locker and
Wilson,® Wartell and Cross,” Pechukas and Davis,®?
Penner and Wallace,® Ritchie,!® and the “string-
plucking” model of Gordon and Kuppermann.'! A
semiclassical treatment of the H" +H, system using
an approximate potential was recently reported by
Collins, Preston, and Cross.!2

An alternative approach, recently developed by
Miller and Marcus, is to use the classical equa-
tions of motion for all degrees of freedom, but to
permit only those solutions which satisfy quantal
boundary conditions.!® This method is sometimes
called “semiquantal”? to distinguish it from the
more common semiclassical approximations. For
vibrational excitation, it is required that the clas-
sical action in the vibrational mode have only quan-
tally allowed values both initially and finally. This
requires an iterative search of initial parameter
space to find all classical paths (complex and real)
which couple the desired initial and final states.

No great problem arises in the case of a collinear
atom-diatom collision, because only the initial
phase angle of the oscillator must be varied to find
the required solutions. For a meaningful compari-
son with experiment, however, a three-dimension-
al calculation is needed; therefore a simultaneous
search of several variables must be performed to
find all classical paths leading to the specified vi-
brational state, rotational state, and scattering
angle. Such a treatment would be computationally
formidable. A practical alternative recently sug-
gested by Doll and Miller'* is to treat only the vi-
brational degree of freedom semiquantally, per-
forming a classical average over the coordinates
and momenta of all other degrees of freedom. This
approximation is in the spirit of the semiclassical

approach, in that those degrees of freedom in
which the energy-level spacings are small are
treated by conventional classical mechanics, while
the semiquantal double-ended boundary conditions
are applied only to the vibrational motion. The ad-
vantage this method has over the usual semiclassi-
cal approach is that only classical equations of
motion need be solved. In general, however, there
are important contributions to the cross section in
this method from “classically forbidden” trajecto-
ries—those which are analytically continued
through complex coordinate space. This makes the
intuitive appeal of a classical description some-
what less than it otherwise would be.

The model which we propose here is an extension
of some previous theories of vibrational excitation
which exploit the very special relationship between
the classical and quantum-mechanical equations of
motion for a harmonic oscillator subject to a time-
dependent force. Operationally, the model is very
simple. For each set of initial conditions (transla-
tional energy, impact parameter, and molecular
orientation) the exact three-dimensional classical
trajectory is calculated for an initially stationary
oscillator. The final vibrational energy acquired
by the molecule is used to determine the quantum
vibrational transition probabilities according to a
semiclassical prescription. The transition proba-
bilities for individual collisions are then averaged
over initial conditions by a Monte Carlo treatment.
We call our method the DECENT model, for dis-
tribution (among quantum states) of exact classi-
cal energy transfer.

Unlike the method of Doll and Miller,'* the DE-
CENT model is appropriate for the semiclassical
treatment of vibrational transitions only. For this
special class of scattering problems, however, it
has several distinct advantages. As in a semi-
quantal formulation, the dynamical equations which
are solved are solely those of classical mechanics.
The DECENT approximation, however, requires
the calculation of only real trajectories, even for
the treatment of classically forbidden transitions.
It also uses classical boundary conditions, but ob-
viates the necessity of averaging over the initial
vibrational phase.

DECENT MODEL

Our starting point is the harmonic-oscillator
problem. The special relationship which exists
between the classical and quantum-mechanical de-
scriptions of simple harmonic motion is a familiar
textbook example.!® The result may be viewed as
a manifestation of the Ehrenfest theorem.

Consider the one-dimensional classical motion
of a body of mass M subject to a force F. The
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Newtonian equation of motion is

d%x
F(x)=M ek (1)
which may be solved for the classical coordinate
x,(t). The Ehrenfest theorem gives the corre-
sponding relation for the quantum-mechanical
average values of F and x:

az{x)

(F®) =M
Ordinarily, one must first solve the appropriate
Schrddinger equation to obtain the wave functions
required for the evaluation of (), in order to
made use of Eq. (2). For the special case of a
force function which is linear in x, however,

F(x)=a+bx, (3)

the average value of the force is given by
(F()= [ WFpdx=a+d(n); @)

therefore the average force quantum mechanically
is simply the classical force evaluated at (x):

(F(x)) =F((x)). (5)

The Ehrenfest relation, Eq. (2), therefore shows
that {x), the quantum-mechanical average value of
x, obeys exactly the classical equations of mo-
tion.'® This is the basis for the oscillating-wave-
packet description of a simple harmonic oscillator.
It can be shown that a minimum wave packet which
is described by Gaussian distributions in position
and momentum initially, when subjected to the
harmonic oscillator Hamiltonian, does not spread
with time and remains centered exactly at the same
value of the coordinate obtained by solving the cor-
responding classical equation.!® If the classical
vibrational energy § is zero, the wave packet de-
scribes the (stationary) ground state of the har-
monic oscillator, with energy 3%Zw. For any non-
zero classical energy, the wave packet oscillates
sinusoidally with the classical motion. An expan-
sion of the nonstationary wave packet in terms of
the stationary states of the harmonic-oscillator
Hamiltonian gives a Poisson distribution for the
probability of finding the system in a particular
vibrational state n:

P,=c"e"¢/n!, (6)
in which
€=8/hw (7)

is the classical energy in units of the vibrational
quantum. The quantum-mechanical average energy
is & +3hw.

Now consider the motion of a particle subject not

only to the harmonic-oscillator potential $kx2, but
also to an arbitrary time-dependent potential

U(x, t), which may be regarded as externally ap-
plied. In a collision, U(x,?) is the potential which
couples the vibrational motion to motion in the re-
maining coordinates. It can be calculated only by
simultaneous solution of the equations of motion in
all degrees of freedom. To solve the classical
equations of motion for the perturbed oscillator,
the external force —8U/dx must be known (at any
instant) at only one value of x, x, while quantum
mechanically the force must be known for all val -
ues of x, since the wave function extends indefi-
nitely. If U(x, ¢) is expanded in a Maclaurin series,
and the series truncated at the term linear in x,
however, the classical and quantal problems are
perfectly equivalent, since the external force is
independent of x. The resulting potential

V(x, 1) =3kx2+ U(0, t) — xF (¢) (8)

differs from the unperturbed potential only in hav-
ing the position of its minimum shifted with an ar-
bitrary time dependence determined by F(¢). The
term U(0, ¢), having no x dependence, cannot con-
tribute to vibrational excitation and may be
dropped.® Classically, the motion of the particle
may be obtained by solving the equation

d%x

MW+kx=F(t). o)

The energy gained by an initially stationary classi-
cal oscillator is identical to the energy transferred
to a nonstationary oscillator averaged over the ini-
tial vibrational phase,* and can be expressed in
terms of the Fourier transform of the force at the
harmonic oscillator frequency,!”

2

8= f " P(t)eiot ar (10)

1
2M
The quantum-mechanical problem for the poten-
tial of Eq. (8) has been solved many times in vari-
ous formulations.'®!° For our purposes here, we
need only the transition probabilities to all excited
states from the initial state #=0. The result may
be deduced immediately from the discussion given
above. It is necessary only to note that the poten-
tial of Eq. (8) satisfies the required condition that

{x) obey the classical equations of motion. The
quantum-mechanical wave packet representing the
ground state of the oscillator initially (with {x) =0,
(p)=0), when subjected to the external potential
xF(t), responds exactly as a classical oscillator
driven by the force F(¢) would respond. The wave
packet does not distort and remains centered ex-
actly on the value of x, obtained by solving Eq. (9)
with the initial boundary conditions appropriate for
the quantum ground state, namely, x.=0, (dx./dt)
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=0. After the external force has decayed to zero
the wave packet continues to oscillate with the
classical motion on the original harmonic-oscilla-
tor potential; therefore the probability distribution
for final vibrational states » is just that already
given in Eq. (6)—a Poisson distribution with the
average value € = § /fiw.

By direct solution of the time-dependent Schrdd-
inger equation with the potential of Eq. (8), Ker-
ner*® showed that the transition probabilities be-
tween any pair of initial and final states can in fact
be specified in terms of the classical energy trans-
fer to an initially stationary oscillator.?® The es-
sence of the DECENT model is that the semiclassi-
cal quantum transition probabilities, for the spe-
cial case of a harmonic oscillator subject to an in-
teraction potential which is of first order in the vi-
brational coordinate, can be calculated exactly us-
ing only classical mechanics for all degrees of
freedom; i.e., by calculating the classical trajec-
tory.

It is common in classical-trajectory treatments
of reactive and inelastic scattering to give each
ground-state molecule initially a classical vibra-
tional energy equal to the quantum-mechanical
zero-point energy, with a random initial phase. In
the spirit of the semiclassical DECENT model,
however, in which the classical value of the oscil-
lator coordinate is to be interpreted as the center
of the quantal wave packet, the classical trajectory
should always be calculated with zero initial vibra-
tional energy in the molecule, since a wave packet
which is oscillating in time represents not a single
eigenstate, but a superposition of many vibrational
states. This observation is highly serendipitous,
since a great deal of computer time is saved by
eliminating the necessity for averaging over initial
vibrational phase.

The DECENT model may easily be applied to vi-
brational excitation of polyatomic molecules by
partitioning the final classical vibrational energy
among all the normal modes (§ =) #w;€;) and cal-
culating the transition probabilities for each nor-
mal mode from Eq. (6), using the appropriate val-
ues of w; and €;.*

There are two approximations involved in the
DECENT model: (i) the use of classical mechanics
for the translational and rotational motion, and
(ii) the use of vibrational transition probabilities
appropriate for a harmonic oscillator driven by a
perturbation potential linear in the vibrational co-
ordinate. Since the translational energy required
for vibrational excitation is at least as large as a
vibrational quantum, the first approximation
should generally be a good one. Quantum details
of the angular distribution, such as the shape of
the rainbow maximum and the small-angle inter-

ference structure, will, of course, not be pre-
dicted correctly; however, the agreement between
the classical and quantal differential cross sec-
tions should be somewhat better than in the case
of scattering from a spherical potential, since av-
eraging over orientation of an anisotropic potential
will tend to remove the classical rainbow infinity
and decrease the amplitude of the quantum inter-
ferences.?? The second approximation has been
considered by Treanor,? who used the time-de-
pendent eigenfunctions which result from the linear
forcing potential as the basis for a perturbation
calculation, to show the effect of higher-order
terms in the potential. Without solving either the
classical or quantal problems explicitly Treanor
demonstrated that the difference between the two
results is small, even for very nonlinear poten-
tials. The classical vibrational energy used in

the DECENT model is therefore the exact value
obtained using the real potential-energy surface,
rather than a harmonic-oscillator approximation
to the molecular potential.

The DECENT approximation will not be valid for
cases in which the average vibrational -energy
transfer is not the same classically and quantally.
Since the average energy transfer to an oscillator
from a time-dependent force is always positive,
this model cannot be applied to deexcitation of vi-
brationally excited molecules in slow collisions.**

Another limitation of the DECENT model is that
energy is conserved only on the average. A single
classical trajectory, with particular initial and
final translational energies, is used to calculate
probabilities for all final vibrational states. Al-
though there is no problem if the vibrational-ener-
gy transfer is much smaller than the initial trans-
lational energy, for collisions in which a large
fraction of the total available energy is transferred
into vibration, the distribution of Eq. (6) will give
significant probability for transition to energetical-
ly inaccessible states. A suitable ad hoc modifica-
tion for treating such cases might be to replace
Eq. (6) with the “binominal” probability distribu-
tion

N!

Pus vt ?

"1-p)h, (11)
where N is the total number of vibrational states
energetically accessible and p is defined by

€=Np. (12)

For large N, Eq. (11) goes over smoothly to the
Poisson distribution. Equation (11) allows no ex-
citation to inaccessible states while preserving a
quantum state distribution with an average vibra-
tional energy equal to the classical value. For

€ <N, Egs. (6) and (11) give essentially the same
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probabilities. In all the calculations reported here,
the simpler formula, Eq. (6), was used.

Previous theories of vibrational excitation which
make use of the correspondence between the clas-
sical and quantal forced-oscillator results include
the oriented-nonlinear-encounter model of Shin,2°
and two collinear treatments—the CEFQO (classi-
cal-energy forced quantum oscillator) model of
Holdy, Klotz, and Wilson,?® and the ITFITS (im-
provement to forced oscillator —impulsive transfer
semiclassical) approximation of Heidrich, Wilson,
and Rapp.?” The ITFITS scheme was generalized
by Morse®® to three-dimensional collisions on a
spherically symmetric potential. Because of either
a dynamical approximation® or an assumed func-
tional form for the potential which is not suitable
in this case, none of these models appeared to
provide a reasonable basis for comparison with ex-
periment in the H* +H, system.

METHOD

The calculations reported here were done in
three parts: The choice of an analytic representa-
tion of the Hj potential-energy hypersurface, the
calculation of classical trajectories on this surface
for a grid of initial collision parameters, and the
averaging over initial conditions by a Monte Carlo
interpolation method.

Interaction potential

We performed early tests of the classical-trajec-
tory program using a potential calculated by the
semiempirical diatomics-in-molecules method.3°
However, we found that the results were so sensi-
tive to the shape of the potential surface that the
most accurate possible determination of that shape
was essential for a meaningful comparison with
experiment. Three sets of ab initio calculations
for the ground-state H; potential were available:
(i) 249 points, over a comprehensive set of coordi-
nates, by Csizmadia ef al.®! (ii) 85 points, all for
the isosceles configuration, by Bauschlicher
et al.,* and (iii) 69 points by Carney and Porter.%

The H; ground-state surface, for »~2.5 bohr,
has an avoided crossing with a surface which as-
ymptotically corresponds to H, +H.3*3 For large
R, this change in character is sharp, and to rep-
resent the ground-state surface one would need to
use functions for the analytic representation capa-

ble of providing an abrupt change in slope at »~2.5.

However, for large R the electronic transition
probability is high and diabatic behavior is ex-
pected, meaning that the appropriate potential is
one which continues smoothly through the crossing.
As R becomes small, the transition probability
decreases, leading to adiabatic behavior, but also

the change in slope becomes much less abrupt.
Accordingly, we have used an analytic representa-
tion for the potential which does not produce any
seam at ¥~2.5. In fitting our function to the calcu-
lated potential values, we used points only for 7
values 2.5 bohr, because very few collisions in
this study explore regions beyond 7~2.5 bohr. For
those collisions which do, the extrapolation of our
potential to 7> 2.5 bohr will provide a reasonable
approximation to the true potential.

We found it possible to fit analytic representa-
tions of the potential to the values from all three
sets of ab initio calculations simultaneously, using
an iterative least-squares fitting program. How-
ever, calculation (iii) was done mainly for a set of
minute distortions of the equilateral configuration
and a set of large distortions, with a few points in
between. Calculation (ii) displayed systematic dif-
ferences from a smooth surface fitted to calcula-
tion (i). These differences were not very large
(<0.0056 hartree for > 1.2 bohr), but could not be
removed without considerably worsening the fit to
the points of calculation (i). It was our judgment
that an analytic fit to a restricted set of results
from calculation (i) alone, suitably adjusted, was
the best representation of the H; potential surface
for the purposes of this calculation.

Adjustments of the ab initio calculations

Comparisons of the H; potential calculations from
(i) with the best estimates® of these authors for
the equilateral minimum, the collinear minimum,
and the potential for large R reveal the calculated
potential to be high by 0.0047, 0.0069, and 0.0077

hartree, respectively. We therefore adjusted the

calculated points using the following correction
formula, which forces the surface to agree with
the best estimates of the real potential at these
three configurations and varies smoothly over the
whole surface:

Vo = Veate =0.0057 — 0,00134 P, (1 ~ F,)) — 0.00223 F, ,
(13)

where F,=R*/(100 + R*) and P,=0.5[3 cos®*(a) - 1].
R is the vector from the H, center of mass to the
proton and « is the angle between this vector and
the H, internuclear axis. All numerical values are
given in atomic units.

Since for large R we felt that the interaction po-
tential was more accurately represented by the
charge-induced dipole and charge-quadrupole con-
tributions, 3" we discarded the potential points
calculated for B> 6 bohr, along with those for
7>2.5 bohr. This left 138 points on the surface to
be fitted to our analytic form.



Analytic potential

After considerable experimentation, the following
ten-parameter analytic function evolved. All ten
parameters (underlined) were optimized by an
iterative least-squares fit of this function to the
138 calculated points.®®

Let us call the three interatomic distances
R,(k=1,2,3), with R, the distance between the two
nuclei of H, (thus R,=7). Then the potential V in
atomic units is given by

3
V=1 H(R,)+PF, +QF,+0.073225F ;+0.17449 .
k=1

(14)

H(R,) is a minor variant of a Hulburt-Hirschfelder
potential function®”:

H(R,)=A[-2E +E? - 0.1145Z°E?(1 - Z)], (15)
where

E=e¢™%

Z=B(R,/R,-1),

B=1.4426 - 0.12871F,,

R, =1.40083 +0.27923F

A=0.17449 - (0.014665 + 0.022721R,)F ,,

and P is the charge-induced dipole contribution
=~(A,+A,P,)R™.

A, and A, are determined from cubic fits to the

spherical and angle-dependent polarizabilities ver-

sus R, as calculated by Kolos and Wolniewicz.**
The numerical values are

A,=2.6091+(2.246 +(0.3181 — 0.1194p)plp,
A,=0.60735+[1.3586 +(0.5573 - 0.3170p)p]p,

where p =R, - 1.40083. The charge-quadrupole
contribution @ is given by @ =Q,P,R™3, where @,
is determined from a cubic fit to the quadrupole
moment versus R,,%

Q,=0.45886 +[0.53223 + (0.03234 — 0.091474p)p]p .

Finally, F,, F,, F, F, are roll-off and roll-on
functions:

F,=R5/(133.6729 + R°),
F,=R%/(29.6088 + R),

Fy=1/{1 +exp[2.1135(R - 2.4421)]},
F,=1/(1+0.000164189R"),

The heart of this analytic representation is the
sum over diatomic potential functions H(R,), in
which the width, depth, and position of minimum
are allowed to vary from the values for H,, as the
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proton approaches. This form was suggested by
the success of the diatomics-in-molecules calcu-
lation in representing the general shape of the sur-
face. It has the advantages of ensuring the con-
tinuity of the potential surface and its derivatives
and of passing correctly to an accurate H, potential
function at large proton distances.

Comparison with ab initio calculations

The potential function [Eq. (14)], compared with
the set of 138 points which were fitted, has a stan-
dard error of 0.00062 hartree, with a maximum
difference of 0.0030 hartree.

The standard error for the comparison with the
calculations of Carney and Porter® is minimized
when their points are lowered by 0.0069 hartree.
When this is done, some large differences persist,
by far the worst being for a =90°, »=0.33 bohr,
R=2.58 bohr, at which the Carney-Porter calcula-
tion is 0.704 hartree higher than our function.
However, when 7 and R are restricted to values
greater than 0.9 bohr, eliminating 11 points, the
standard error is 0.0039 hartree, with a maximum
difference of 0.015 hartree.

Comparison of our potential function with the 32
points calculated by Bauschlicher et al.,* for con-
figurations with R < 8.0 bohr, 7 < 2.4 bohr, reveals
our surface to be lower than their calculation by ‘an
average of 0.0025 hartree, with a standard error
of 0.0033 hartree. The largest deviation is at
7=1.00 bohr, R=2.06 bohr, where their calculation
is higher by 0.013 hartree.

Some salient features of the potential and its derivatives

Figure 1 displays contour maps of the potential
V(R, 7, ) and the stretching force -8 V/87 versus
R and «, for 7 fixed at 1.40083 bohr. The potential
contours are very nearly spherical for R>2.5 bohr,
indicating that the long-range torque on the mole-
cule is small.

The stretching force is positive everywhere for
R>2 bohr and reaches its maximum value at a =0°,
not 90° where the potential is deepest. This force
is effective at much longer range than the potential
itself. Notice that at R~5 bohr the potential is less
than one-tenth of its value at the minimum, while
the force is about one-half its maximum value.

Figure 2 shows for isosceles and collinear con-
figurations how the equilibrium H, separation and
the force constant vary with B. The effects of
“bond dilution” in this system are striking. As the
proton approaches to ~3 bohr, the equilibrium dis-
tance increases by ~20% and the force constant de-
creases by a factor of ~2, compared to an isolated
H, molecule. The enhancement of the vibrational
excitation process by the large changes in 7, and &



2162 CLAYTON F. GIESE AND W. RONALD GENTRY 10

for this system was anticipated by Korobkin and
Slawsky.?® Similar features of the potential surface
could be related to the “ ballistic” mechanism for
inelastic scattering suggested by Loesch and
Herschbach.?®

Trajectory calculations on a (b,0,¢) grid

The collision trajectories are calculated in a
Cartesian-coordinate system, with the proton ini-
tially traveling parallel to the z axis at x=b,y =0
and the initial molecular orientation specified by
the polar angle 8 relative to the z axis and the
azimuthal angle ¢ relative to the xz plane. The
initial vibrational energy is required by the ratio-
nale of the DECENT model to be taken as zero.
Since the duration of a collision in this energy re-
gime is much smaller than a molecular rotational
period, the initial rotational angular momentum
was also assumed to be zero, making the trajectory
at a given kinetic energy a function only of the three
parameters b, 6, and ¢. The collision results of
interest (the total molecular internal energy and

-5 a. Vr (B)

2 3
R (bohr)

FIG. 1. Contour maps showing features of the Hj po-
tential-energy surface. (a) Potential energy as a function
of R and « for a fixed H, internuclear separation »=1.40
bohr. The contours are labeled in units of 1073 hartree.
(b) Component of force along the H, internuclear axis as
a function of R and a for a fixed H, internuclear separa-
tion =1.40 bohr. The contours are labeled in units of
107 hartree/bohr.

rotational angular momentum, and the polar scat-
tering angle y) can therefore each be considered as
a hypersurface in (b, 6, ¢) space. Although very
complicated in form, these surfaces were found to
be sufficiently smooth to be accurately represented
by a practicable grid in initial parameters.

In all cases, ¢ was gridded from 0° to 180° with
a spacing of 15° (13 values), and cosf was gridded
from O to 1.0 with a spacing of 0.1, but with the ad-
ditional value cos[(0.5cos~1(0.9)] (12 values). The
impact parameter b was gridded for the most part
at a spacing of 0.2 bohr, although we used a spac-
ing of 0.1 bohr at small impact parameters in sev-
eral cases, resulting in a total of from 25 to 31
values of b at each energy. The range of b was
from 0.4 or 0.5 bohr to large enough values to en-
sure that all scattering through angles larger than
2.5° was included. The calculations for HD were
done as two separate cases, with H and D inter-
changed.

The trajectories were calculated by numerical
integration of Hamilton’s equations expressed in
terms of the three Cartesian components of T and
R. The program used a fourth-order Adams-
Moulton routine, with a Runge-Kutta-Gill starter.*
The step size Af, chosen to begin the integration
was switched to Af,/4 for R, or R, less than 3 bohr
and then switched again to Af,/2 when R, and R,

0.3

02}

k (au.)

FIG. 2. H, equilibrium internuclear distance 7, and
vibrational force constant 2 as functions of proton dis-
tance R for the collinear (a =0°) and isosceles (@ =90°)
configurations.
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became greater than 4 bohr. The accuracy of the
integration was tested by backward integrating the
calculated trajectories to check for a return to the
original starting conditions. This gives a rigorous
check on the step size required for accurate inte-
gration. We found, however, for a wide variety of
initial conditions, that if the calculation conserved
energy to sufficient accuracy, it also satisfied the
test of backward integration. We therefore simply
tested each trajectory for energy conservation,
requiring conservation to within 0.002 eV for the
6-eV collisions, and to within 0.005 eV for all the
others. This procedure resulted in a numerical
value for the vibrational -energy transfer almost
always accurate to 0.001 eV. The potential func-
tion used is not highly accurate for > 2.5 bohr,
and collisions which cause excursions of ¥ beyond
this value will therefore not be accurately de-
scribed by the calculations. However, these cases
occur very rarely in the experimental scattering
angle regime, and only for small-impact-parame-
ter collisions, which have low probability. Really
large increases in 7, however, lead to totally er-
roneous results because the quadrupole moment
and polarizability are fitted to cubic functions of
7, accurate only for small displacements from
equilibrium. We therefore aborted all cases in
which 7 exceeded 10 bohr. The Fortran trajecto-
ry-calculation program used an average of about
0.6 sec per trajectory on a CDC 6600 computer.

From each trajectory calculation, we obtain the
total molecular internal energy E,, and the mo-
lecular angular momentum L, after the collision.
Since the vibrational and rotational motions are
coupled, it is necessary to partition the total in-
ternal energy into vibrational and rotational de-
grees of freedom consistently. There is no
unique way to do this. We chose to define the ro-
tational and vibrational energies as

E,=L?/2M7?,, (16)
E,=E;-E,, 1)

where 7, is the separation at the minimum in the
effective potential for the centrifugally stretched
molecule, and M is the molecular reduced mass.

Monte Carlo averaging

The orientation-averaged differential cross sec-
tions in this paper were calculated by interpolation
on the grid of values previously obtained, for a
large random selection of b, 6, and ¢. Standard
algorithms were used to select properly weighted
random values of & and 6.%°

In a separate calculation, the average transition
probabilities as functions of impact parameter
were calculated by a Monte Carlo averaging over 6

and ¢ at fixed values u. b,

The interpolations for E,, E,, and x at each set
of random initial conditions (4’, 6, ¢’) were done
in two steps, using the nine grid values of
(cosb, ¢) closest to (cos6’,¢’) and the four grid
values of b bracketing b’. First a two-dimen-
sional quadratic interpolation in (6, ¢) was done
for each grid value of b, then a one-dimensional
cubic interpolation in b was performed using those
four values.

If any of these 36 grid values corresponded to a
trajectory calculation which had been aborted be-
cause R, became too large, a search was made by
looping back and decentering the set of grid values
used, to attempt to find a complete set of good grid
points which would allow an interpolation. If no
complete set of good grid values could be found or
if the interpolated internal energy exceeded 4.75
eV, the vibrational transition probabilities for that
collision were set equal to zero. Otherwise, the
probabilities were determined from Eq. (6), in
which the quantum-level spacing was taken to be
the energy of the (0—1) transition: 0.516 eV for
H,, 0.450 eV for HD, and 0.371 eV for D,.

The speed with which the interpolations could be
performed (about 500 times as fast as a complete
trajectory calculation) enabled us to use a random
set of 400000 initial conditions for each of the four
H'+H, calculations, the H' +D, calculation, and
each of the two cases in the H" + HD calculation.
Consequently, the statistical uncertainty in the
averaged results is very small—usually less than
the linewidth in the plots.

RESULTS AND DISCUSSION
Trajectories

The 31980 trajectories calculated in this study
contain an overwhelming amount of detailed infor-
mation on the variation of vibrational and rotation-
al excitation energy with initial conditions, which
we cannot fully convey here. An examination of
some individual trajectories is nevertheless highly
valuable in understanding the mechanism of inelas-
tic scattering and in interpreting the features of the
averaged quantities. In order to impart some of
the flavor of the individual trajectory results, we
show in Figs. 3-5 the variation with impact pa-
rameter of the polar scattering angle and the vi-
brational and rotational excitation energies for
10-eV H' +H, collisions and six representative ini-
tial molecular orientations, specified as (6, ¢) in
degrees.

In Fig. 3(a), the polar-angle deflection functions
are plotted. The deflection functions each show the
expected rainbow maximum in the angle range
22°-29° for impact parameters of 2.6-3.3 bohr.
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As the impact parameters are decreased the de-
flections pass through minima and then rise sharp-
ly as the trajectories begin to explore the hard re-
pulsive core of the potential. For the orientation
(90, 90), or for any initial molecular orientation in
the xz plane, e.g., (0,0) and (90, 0), the azimuthal
scattering angle is required by symmetry to be
zero, the deflection function goes to x =0, and x(b)
has a cusp at this point. For nonsymmetric orien-
tations, the x and y components of the deflection
are not in general zero simultaneously. Therefore
X passes smoothly through a finite minimum, giv-
ing rise to a second classical rainbow, in this case
at about half the first rainbow angle. This classi-
cal phenomenon will exist for scattering from any
anisotropic potential,?® and is not related to the
quantum interference maxima sometimes called
“supernumerary rainbows” which appear on the
small-angle side of the classical rainbow angle for
spherical -potential scattering.

In this range of impact parameter, the scattering
is dominated by the valence interaction, not by the
long-range terms in the potential. The strongly at-
tractive branch of the valence potential has its
longest range in R for the collinear configuration

FIG. 3. Polar-angle deflection functions for 10-eV
H* + H, collisions and several initial molecular orienta-
tion angles (6, ¢) in degrees. (b) Contour maps of the
polar-scattering-angle probability distribution at fixed
impact parameter for 10-eV H* + H, collisions. The
numerical values give the percent probability for scat-
tering into a 1° increment in .

(@=0). At large values of b in the range shown,
the largest scattering angles are found for the
orientation (90, 0), since in this case the nuclear
configuration is approximately linear at the point
of closest approaeh in the trajectory. Similarly,
the orientations (0, 0) and (90, 0) give the smallest
deflections for a fixed, large value of 4. The rain-
bow scattering angles, on the other hand, are larg-
est for orientations near (0, 0) and (90, 90), because
the trajectories for these orientations pass through
the isosceles configuration (@ =90°), where the po-
tential well is deepest.

The effect of orientation averaging on the angular
distribution can be seen in Fig. 3(b), which shows
a contour map of the deflection probability distri-
bution function P, (x, b). The basic features of this
probability distribution became clear upon com-
parison with the individual deflection functions in
Fig. 3(a). The region of highest rainbow-angle
probability is indicated by the ridge at y ~27.5°
b~2.6 bohr. Local islands of maximum probability
are seen at 12.5°, 1.75 bohr, the region in which
many of the second rainbow extrema for specific
orientations are found, and at 23°, 3.3 bohr, where
there is an accidental confluence of the deflection
functions for a large number of orientations. The
(full width at half-maximum) range of impact pa-
rameters which contribute to scattering at fixed
X is typically 0.5 bohr, which is the equivalent of
15 quanta of orbital angular momentum (partial
waves). The quantum interference effects should
therefore be highly quenched by orientation aver-
aging of the anisotropic potential. The interfer-

0.8

0.4

E, (eV)

0.2

b (bohr)

FIG. 4. Classical vibrational-energy transfer as a
function of impact parameter for 10-eV H* + H, colli-
sions and several initial molecular orientation angles
(0, ¢) in degrees.
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ence structure in the elastic differential cross
section is in fact observed experimentally to have
an amplitude approximately an order of magnitude
smaller for H* +H, than for H® + Ar under similar
conditions.*

Figures 4 and 5 show the dependence on impact
parameter of the vibrational and rotational excita-
tion energies for the same set of representative
initial orientations. At impact parameters suffi-
ciently small that the trajectory encounters the
hard repulsive potential core, both the vibrational
and rotational excitations become very large. In
fact, such collisions lead to dissociation of the
molecule at impact parameters only slightly
smaller than those shown. These small-b en-
counters also usually result in large scattering
angles and are therefore not weighted highly in
the experiments. The impact-parameter range
most important for scattering in the experimental
angle regime runs from about 2 to 5 bohr. It
might have been expected that the excitation ener-
gy would monotonically increase with decreasing
impact parameter, but instead, both the vibra-
tional and rotational energies are generally peaked
in this range, with the average vibrational energy
about an order of magnitude greater than the av-
erage rotational energy. Those initial orientations
for which the vibrational energy is strongly peaked
show a remarkable correlation between the value of
the impact parameter at the maximum vibrational
energy and the value of the impact parameter at the
rainbow maximum in the angular distribution. Fur-
thermore, at large impact parameters, the vibra-
tional excitation energies for the various initial
orientations scale in the same order as the scat-
tering angles for the same orientations. This im-
plies that the radial component of force (along R)
is highly correlated under these conditions with the
component of force in the vibrational coordinate
(along T)—a consequence of the fact that the same
valence interaction is responsible for both forces.
This correlation can easily be seen in Fig. 1. The
molecular stretching force is generally a maximum
for R values of 2.5~3 bohr, where the potential
gradient along R is also a maximum. This corre-
lation does not, however, hold at small separations
for isosceles configurations, and neither the
(90, 90) nor the (0, 0) orientations, both of which
have approximately isosceles configurations at the
distance of closest approach, possess a maximum
in the vibrational excitation energy at the rainbow
angle.

In order to understand in detail the shapes of the
deflection and excitation functions, it is necessary
to examine the motion of the nuclei as a function
of time for individual trajectories. Since we cannot
possibly describe in detail a number of trajectories
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large enough to represent the scattering in this
system, we instead present information for three
special cases in Fig. 6, which illustrate the gen-
eral nature of the dynamical events taking place.
The initial orientation (90, 0) and impact parame-
ters of 2.2, 3.4, and 4.6 bohr were chosen because
of the dramatic change in both the vibrational and
rotational excitation energies with a change in the
impact parameter in this range.

At the impact parameter 4.6 bohr [Fig. 6(c)], the
relationship between the vibrational motion 7(¢) and
the force function F(f) can be easily seen. As the
force builds up, the H, molecule begins to stretch,
reaching a maximum extension of 1.62 bohr at time
A, after the force has peaked. The decrease in the
vibrational force constant during the interaction is
responsible for the relatively small curvature in
7(¢) at small values of R, compared to the vibra-
tional motion of the isolated molecule seen at large
R. The maximum excursion in 7 occurs before the
driving force has decayed to zero, therefore be-
tween times A and B the force opposes the vibra-
tional motion, leaving the molecule somewhat less
excited than it would have been if the force had
terminated abruptly at time A.

At an impact parameter of 3.4 bohr [Fig. 6(b)],
the driving force acts over essentially the same
time period, but has a magnitude about twice that
in the collision at 4.6-bohr impact parameter. A
fixed-frequency harmonic oscillator, according
to Eq. (10), would therefore gain about 4 times the
vibrational energy in this case. The actual vibra-
tional excitation energy, however, is a factor of
7 higher for the collision at 3.4-bohr impact pa-

1.0
37:30)

08
(66,30)
1o

(66.60) o8
1.0

o 2

4 6
b (bohr)

FIG. 5. Classical rotational-energy transfer as a
function of impact parameter for 10-eV H* + H, colli-
sions and several initial molecular orientation angles
(6, ¢) in degrees.



2166 CLAYTON F. GIESE AND W. RONALD GENTRY 10

rameter. The difference is due largely to the po-
tential anharmonicity. Because the value of 7
reaches a larger maximum value in the 3.4-bohr
collision, the period of the oscillation is larger
and the maximum excursion occurs later in time.
A greater fraction of the stretching force is there-
fore synchronized with the outgoing branch of the
oscillator motion—adding to, rather than sub-
tracting from, the vibrational excitation.

The collision at 2.2-bohr impact parameter re-
sults in very little vibrational excitation despite
the strong driving force. Initially the stretching
force and the consequent positive acceleration of
7 are greater than for the larger impact parame-
ters, but in this case the proton passes close
enough to the nearest nucleus of the molecule to
encounter the repulsive wall of the potential.
There are two results. The driving force becomes
negative for a brief period, and the vibrational
force constant is suddenly increased (see Fig. 2).
These effects combine to stop the motion of 7
abruptly. The second positive branch of the forcing
function then acts to remove almost exactly the vi-
brational energy deposited in the molecule by the
first branch. Although this collision is a special
case, it serves to illustrate a feature common to
many trajectories for this system—the production
of small excitation energy in the collision products
because of the partial cancellation of strong,
counteracting forces, in the same way that a small
scattering angle can result from an intimate small-
impact-parameter collision if the contributions to
the deflection from the attractive and repulsive
branches of the potential just cancel. Effects of
this type are largely responsible for the structure
observed in Figs. 4 and 5, in the variation of vibra-
tional and rotational excitation energy with impact
parameter. As a result, the scattering calcula-
tions for this system are very sensitive to subtle
changes in the potential surface. One should be
highly cautious in comparing with experiment the
results of calculations performed using a model
potential for this system.

The rotational excitation energies also peak in
this impact-parameter range. At large separa-
tions, the potential-energy surface for H; favors
the isosceles configuration because of the charge-
quadrupole term. As R is decreased, however,
the polarization and valence contributions become
relatively more important, both of which favor the
collinear configuration (for Rz 2.5 bohr). Both the
polarizability and quadrupole moment of H, are
strong functions of the internuclear separation.
Figure 6 shows the rotational motion of the mole-
cule which results from these applied torques. In
each case 6 decreases initially because of the
charge-quadrupole torque; then as the separation

passes through R~ 6-8 bohr, the torque changes
sign. Little change in € occurs until R passes
through its minimum value. At b=3.4 bohr, the
molecule is caught in a highly extended position as
the proton passes, with the result that a large
torque in the negative-Y direction acts during the
outgoing leg of the trajectory. In the collision at
4.6-bohr impact parameter the larger values of

R and the smaller excursion in the H, vibrational
coordinate combine to reduce the magnitude of the
torque at all times and the rotational excitation
energy is small. At b=2.2 bohr, the molecule re-
ceives a sharp angular momentum impulse in the
positive-y direction as R passes through a mini-
mum, which is canceled by the integral of the
torque acting as the products separate.

Orientation averaging

A convenient overview of the trajectory results
is obtained by examination of the calculated differ-
ential cross sections and the vibrational and rota-

e {a) b=2:2 bohr
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FIG. 6. Salient features of the classical trajectories
for 10-eV H* + H, collisions at 6=90°, ¢ =0° and three
different impact parameters: F is the component of
force along I in hartree/bohr, 7 is the H, internuclear
distance in bohr, R is the distance from the proton to
the H, center of mass in bohr, and 6 is the H, polar
orientation angle in degrees.
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tional excitation energies averaged over impact
parameter and initial molecular orientation at
fixed scattering angle. Figure 7 shows I(x), E,,
and E, as functions of y for the six cases treated
here. Many similarities are apparent. Each of
the differential cross sections has a distinct ori-
entation-averaged rainbow maximum, and the sec-
ond rainbow maximum can be seen except in the
two highest-energy calculations. The average vi-
brational energy peaks sharply in each case near
the rainbow angle, coinciding with our previous
observation of a correlation between the rainbow
angle and the vibration excitation maximum for
specific initial orientations. Both the vibrational
and rotational energies rise abruptly beyond the
rainbow angle, where only the short-range repul-
sive branch of the deflection function contributes
to the scattering.

The average rotational energy seems at first
surprisingly large considering the fact that no
evidence whatever of rotational excitation was dis-
cernible in the experimental data. The measured
energy-loss spectra showed peaks for the resolved
vibrational states at the energies calculated for
pure vibrational transitions. As a comparison of
the rotational energies in Figs. 5 and 7(a) indi-
cates, however, most of the contribution to the
average rotational energy in the experimental an-
gle range comes not from the large-impact-pa-
rameter collisions which dominate the vibrational

CLASSICAL-TRAJECTORY TREATMENT OF INELASTIC...
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excitation, but from the collisions at small impact
parameters which excite a large number of high-
energy rotational states but with very small prob-
ability. In the experiments, such rotational exci-
tation will appear as simply a broad background
underlying the vibrational structure. Because the
small-impact-parameter scattering is relatively
isotropic, the average rotational energy does not
vary strongly with y between the two rainbow an-
gles. It does, however, drop off rapidly at angles
smaller than the second rainbow angle, since there
are no contributions from the repulsive branch of
the deflection function, for any given initial orien-
tation, at an angle smaller than the second rainbow
angle for that orientation. Postponing for the mo-
ment the problem of separating the vibrational and
rotational contributions to the experimental ener-
gy-loss spectra, a direct comparison of the theo-
retical and experimental average excitation ener-
gies at constant scattering angle can be made. The
experimental and theoretical values are given in
Table I for all cases in which both the calculations
and experiments were performed. Unfortunately,
in some cases the experimental energy scans did
not cover a sufficient energy range to include all
the inelastic scattering. Except for these cases,
which are footnoted in Table I, the agreement be-
tween theory and experiment is excellent.

There does not appear to be a simple interpreta-
tion of the isotope effect on the average vibrational
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excitation energy. In this energy range, where the
forcing function F () acts over a time period com-
parable to a vibrational period, one cannot easily
predict the effect of a change in the reduced mass
or the vibrational frequency. The smaller rota-
tional excitation of D, compared to H,, however, is
simply explained. If the translational and vibra-
tional motion is similar in the two cases, approxi-
mately the same torque will be applied to the two
molecules. Since the collisions are essentially
impulsive as far as the rotational motion is con-
cerned, this will result in a rotational excitation
energy which is inversely proportional to the mo-
lecular moment of inertia and proportional to the
square root of the reduced mass of the colliding
species. The rotational excitation of D, is there-
fore approximately 0.55 that of H, at the same rel-
ative kinetic energy. In HD the moment of inertia
is also larger than that of H,, but the potential is
also more anisotropic, because of the displacement
of the molecular center of mass from the center of
charge. The decrease in rotational excitation with
increasing kinetic energy, for peripheral collisions
such as these, is due to the decrease in the width
of the torque impulse, and has been observed ex-
perimentally for highly rotationally inelastic

H* +HF collisions in this same energy range.*?

Quantum vibrational transition probabilities

The real test of the DECENT model is its ability
to predict the quantum transition probabilities for
vibrational excitation. The test is particularly
stringent in this case since the direct experimental
evidence is to be compared with the results of a
completely ab initio calculation with no adjustable
parameters and no (deliberate) approximations
other than the dynamical assumptions of the DE-
CENT model. There is, however, a problem with
the interpretation of the experimental data which
was not anticipated until the trajectory calculations
were performed. The vibrational peaks in the ex-
perimental energy-loss spectra were found to be
located within experimental error (~0.030 eV) at
precisely the energies expected for pure vibration-
al excitation, placing a fairly small upper limit on
the probability of rotational transitions to low-lying
excited states. The calculations reveal that, in-
deed, the probability of excitation to a specific ro-
tational state is usually very small, but that in the
“hard” collisions, i.e., those which scatter from
the repulsive core of the potential, all final rota-
tional states within a very broad energy band are
populated with a high enough probability to make
the average rotational energy comparable to the
average vibrational energy. The experimental
transition probabilities reported in our previous

paper were obtained by fitting the peaks in the ob-
served energy-loss spectra to a superposition’of
Gaussian functions, the areas of which were taken
to be proportional to the respective vibrational
transition probabilities. In the light of the trajec-
tory calculations, it now appears that associated
with each vibrational peak there is a high-excita-
tion-energy tail due to rotational transitions. The
tail of each vibrational peak underlies all the high-
er-energy vibrational peaks and contributes to the
measured intensity, but does not result in a shift
of the peak energies because the tail is nearly flat.
The resulting error is usually small for the lower-
energy, high-probability transitions, but is very
significant for the higher states, where there are
contributions to a small observed intensity from
the rotational tails of several lower vibrational
states.

Figure 8 shows the calculated probability distri-
bution in classical angular momentum for 10-eV
H' +H, scattering at several fixed values of x. In
each case the probability is high for small values
of J, and then, at some critical value, plummets .
several orders of magnitude and remains small
and relatively smooth up to high J values. One
cannot expect the classical calculation to be valid
for small J, but for final rotational quantum num-
bers large enough for the rotational excitation to
‘be confused with vibrational excitation, the classi-
cal calculation should be a reasonable approxima-

TABLE I. Average excitation energies (eV); compar-
ison of theory and experiment.

E, (eV) X (deg) (AE)expt (AE)m
H,
6 11 0.079 0.082
6 28 0.1172 0.173
6 36 0.1642 0.251
10 6 0.058 0.082
10 8 0.105 0.138
10 10 0.206 0.199
10 11 0.222 0.228
10 11 0.255 0.228
10 14 0.277 0.269
10 16 0.354 0.309
10 22 0.378 0.470
16 11 0.378 0.374
HD
10 11 0.1822 0.306
10 22 0.390? 0.584
D2
10 11 0.264 0.262
10 22 0.529 0.513

2Experimental energy range probably not sufficient to
include all excitation.
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FIG. 8. Probability distribution functions for classical
angular momentum transfer in 10-eV H* + H, collisions
at fixed scattering angle. The curves are labeled with
the scattering angles in degrees.

tion to the quantum rotational transition probabil -
ity.** We have therefore used the rotational-ener-
gy distributions at fixed scattering angle from the
trajectory calculations to correct the previously
fitted experimental transition probabilities for the
rotational contributions. First, a Monte Carlo
calculation was performed to evaluate the proba-
bility of obtaining a final rotational energy within
half a vibrational quantum of the energy of each
final vibrational level. This calculated rotational

distribution was further assumed to be independent
of vibrational state. If R; is the probability of a
rotational energy close to the energy of the ith vi-
brational state and P, is the (true) probability of
the 0-n vibrational transition, then the measured
probability @, of a transition to the nth vibration-
al-energy bin is

n w
®,=) PR, ;-3 P,R._,. (18)
i =0 i=nt1

From the experimental values of ¢, and the cal-
culated R;, Eq. (18) can be algebraically inverted
to yield the desired values of P,. The corrected
experimental transition probabilities are given in
Table II and compared with the DECENT -model
calculations in Fig. 9. In each case, the agree-
ment is good to within a reasonable estimate of the
experimental uncertainty.

Differential cross sections

The entire set of vibrational-state-resolved dif-
ferential cross sections calculated in the DECENT
approximation is displayed in Fig. 10. The effects
of translational energy and of isotopic composition
of the target molecule are clear. In each case the
rainbow infinity which would result from a spher-
ical scattering potential is smoothed into a broad
maximum by the orientation averaging. The small
shift of the rainbow maximum to larger scattering
angles with increasing final vibrational quantum
number, which is observed experimentally, is not

TABLE II. Experimental vibrational transition probabilities corrected for rotational con-
tributions, and comparison with the DECENT-model calculations. (The calculated values are

underlined.)

E (eV) X (deg) P, p, P,

6 28 0.869  0.873 0.172  0.101 0.008 0.018 ce 0.005

6 36 0.750  0.713 0.231 0.212 0.041 0.058 o 0.013
10 6 0.960  0.917 0.027 0.074 0.009  0.007 0.005 0.001
10 8 0.923 0.875 0.051  0.109 0.020 0.013 0.008  0.002
10 10 0.794  0.829 0.157 0.144 0.035 0.021 0.012 0.004
10 11 0.766  0.809 0.170  0.160 0.038  0.024 0.018 0.005
10 11 0.788  0.809 0.166  0.160 0.031  0.024 0.010  0.005
10 14 0.683  0.752 0.245 0.200 0.046  0.037 0.017 0.008
10 16 0.577  0.704 0.297  0.227 0.087  0.050 0.025 0.012
10 22 0.507  0.548 0.351  0.291 0.115 0.110 0.024 0.035
16 11 0.517  0.544 0.333  0.318 0.115 0.105 0.029 0.026
10 11 0.816  0.667 0.139  0.238 0.036  0.064 0.012  0.019
10 22 0.431  0.407 0.357 0.307 0.189 0.152 0.042  0.069
10 11 0.642 0.606 0.228 0.278 0.084 0.082 0.036  0.023
10 22 0.293  0.313 0.334 0.334 0.231  0.203 0.111  0.093

..
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reproduced by the calculations. The rainbow max-
ima for vibrationally inelastic scattering tend to be
peaked more sharply than those for elastic scatter-
ing—a consequence of the fact that the vibrational-
energy transfer peaks in this region. The second
maximum in the experimental differential cross
sections for 10-eV H* +H, scattering is also ob-
served in the calculated differential cross sec-
tions. The calculation permits this feature to be
identified as the second classical rainbow caused
by the potential anisotropy [see Fig. 3(a)].

As in the experiment, the second rainbow is
more prominent in the differential cross sections
for inelastic scattering, which do not vary as rap-
idly with angle in this range as does the elastic
differential cross section. In the experimental
elastic differential cross section, the second clas-
sical rainbow is also obscured by the quantum in-
terference structure, which seems to be more ef-
fectively averaged out in the inelastic channels.
The second rainbow is also visible in the HD and
D, calculations at 10 eV and in the H, calculations
at 6 eV.

The experimental and theoretical total differen-
tial cross sections [ (Y, #) summed over all # at
each x] are compared in Fig. 11 for 10-eV H* +H,
scattering. The classically calculated function
I(x) has relatively sharply defined features in the
region of the rainbow which one expects to be
smoothed over in a quantal calculation in the same
way that the classical rainbow infinity for spher-
ical-potential scattering is transformed into a

X (deg)

broad maximum. The dashed line in Fig. 11 shows
our attempt to estimate the quantum differential
cross section near the rainbow maximum semi-
classically without computing the semiclassical
phase shifts. For spherical-potential scattering,
the usual semiclassical expression®® for the contri-
bution to the differential cross section at the rain-
bow angle x, from the negative branch of the de-
flection function can be written in terms of the
Airy integral as
2ml,q7?

/3
AiN (g™ 3 (x - X,)), (19)

L0o= kZginy

in which % is the translational wave number, [ is
the orbital angular momentum, and ¢ is defined by

1/d?x

-3(%), 20
Semiclassically, ! may be replaced by the corre-
sponding classical orbital angular momentum (in
units of 7). We applied.Eq. (19) to the anisotropic
scattering in this case by evaluating 7,(x) from the
calculated polar-angle deflection function for a
given orientation, adding the {small) classical con-
tribution from the repulsive branch, then Monte
Carlo averaging the result over initial molecular
orientations to obtain 7,(X). The various contribu-
tions to I,(X) are therefore not combined coherent-
ly as would be required by a rigorous treatment,
but since the experiments show no interference
structure near the rainbow, this should not be a
bad approximation. The semiclassical estimate in

FIG. 9. Quantum vibra-
tional transition probabil-
ity as a function of scat-
tering angle for the first
three excited vibrational
states. The solid lines

show the results of the
DECENT-model calcula-
tions and the data points
are the experimental val-
ues for n =1 (O), » =2 (O),
andn =3 Q).




functions of scattering angle for state-resolved vibra-
tional transitions.

fact reproduces the shape of the experimental rain-
bow maximum almost perfectly, but places the
maximum at 5% too large an angle. We regard the
magnitude of this difference as reasonable, con-
sidering the dynamical approximations which are
involved, and not an adverse reflection on the ac-
curacy of our potential-energy surface.

Total cross sections

A separate Monte Carlo interpolation calculation
was performed to obtain the vibrational transition
probabilities averaged over orientation at fixed
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FIG. 11. Comparison of the theoretical and experimen-
tal total differential cross sections for 10-eV H +H,
scattering. The solid line shows the orientation-aver-
aged classical differential cross section, the dashed
line shows the orientation-averaged semiclassical esti-
mate of the rainbow structure, and the data points are
the experimental results, normalized to the classical
calculation at x=15°.

impact parameter for all six cases. A sample of
at least 1000 orientations was used at each impact
parameter. The results for the first three excited
states are given in Fig. 12. All the curves of P,
versus b have a double-lobed structure consisting
of a broad maximum at large 4 and a relatively

04
Hp HD D,
03k 10eV 10eV 10ev
Pa \ !
o2} | +
2
ol = 2
2 3 3 FIG. 12. Orientation-
. | — ) ) | L averaged probability for
transition to each of the
Ha Ha first three vibrationally
16eV 25eV

excited states as a func-
\ tion of impact parameter.
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narrow peak at small . Comparison of Figs. 12
and 4 shows that the large-impact-parameter peak
is due mostly to the long-range stretching force
while the small-b peak is caused primarily by hard
repulsive collisions. The vibrational transition
probabilities go to zero for very small b as col-
lisional dissociation becomes the dominant channel.
~ In this energy regime the range of impact param-
eters which contributes to a particular transition
is about the same at all energies, but both the up-
per and lower cutoffs occur at smaller values of

b for the higher-energy excitations.

It is interesting that the contribution to the vibra-
tional excitation cross sections from the large-im-
pact-parameter collisions becomes relatively more
important as the kinetic energy is increased. The
curves for H,, HD, and D, target molecules have
qualitatively similar shapes although they differ in
detail because of the different vibrational periods
of the three molecules and the greater anisotropy
of the H" + HD potential.

The total cross sections o, for excitation of the
first three vibrational states were calculated by
numerical integration of the probability functions:

on=2nf°°bp,,(b)db. 1)

The values obtained are listed in Table III. No ex-
perimental values of o, in this energy range are
available for comparison, although Herrero and
Doering have performed measurements of integral
cross sections for H' +H, and D" + H, vibrational
excitation at higher energies.** It would be possi-
ble to compare the calculations with the experi-
ments of Herrero and Doering if the angular trans-
mission function of their apparatus were accurately
known. A much better comparison, however, can
be made by direct calculations in the higher-energy
regime, which we will report in a later paper. The
calculated low-energy total cross sections increase
with increasing energy, while the high-energy ex-
perimental cross sections for H" + H, decrease
with increasing energy above 100 eV. This is con-

TABLE III. Total cross sections for vibrational excita-
tion (in the DECENT approximation).

Cross sections (bohr?)

System E (eV) oy 0y 03
H* +H, 6 8.21 2.37 1.13
10 14.72 3.77 1.20
16 20.22 6.84 2.35
25 22.19 8.26 2.94
H' + HD 10 17.99 5.99 2.27
H*+D, 10 22.27 9.52 3.99

sistent with the conclusion of Herrero and Doering
that the total cross sections for vibrational excita-
tion peak below 100 eV.

The total cross sections calculated for H® +H,
vibrational excitation at 10 eV by Collins, Preston,
and Cross'? are considerably higher than those ob-
tained here. It is not clear whether this is caused
by the difference in the dynamical models or by
the different potential surface which they used.

CONCLUSIONS

The DECENT model is capable of providing quan-
titatively useful predictions of the quantum transi-
tion probabilities for vibrational excitation in mo-
lecular collisions, using dynamical calculations
which are purely classical. In the case of small-
angle H' +H, scattering at ~10-eV energy, the cal-
culations clearly show that vibrational excitation
is caused principally by “bond dilution” —the weak-
ening and stretching of the H, bond as electron den-
sity is temporarily withdrawn by the passing pro-
ton. All initial molecular orientations contribute
comparably to the vibrational excitation. In the
H' +H, example treated here, it would be a poor
approximation, for any individual trajectory, to
calculate the classical vibrational-energy transfer
using Eq. (10), in which F(¢) is evaluated at a fixed
H, internuclear separation and the Fourier compo-
nent calculated at the original harmonic-oscillator
frequency. A partial cancellation of errors may,
however, result from averaging over initial condi-
tions.

The maximum which appears in the experimental
inelastic differential cross sections at about half
the rainbow angle is revealed by the trajectory cal-
culations to be associated with the orientation-av-
eraged second classical rainbow, caused by the
anisotropy of the potential.

Although the probability of rotational transitions
to any particular final excited state is small, the
sum of all such transitions results in an average
rotational excitation energy which is not negligible,
as had been previously assumed. It is therefore
necessary to correct the experimental vibrational
transition probabilities for contributions from
small -probability, high-energy rotational excita-
tions. Once the corrections are made, the agree-
ment between the DECENT model and the experi-
mental vibrational transition probabilities is very
satisfactory.
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