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We consider the passage of initially unpolarized light through a medium possessing both birefringence

and differential attenuation with respect to the same pair of perpendicular axes. Circular polarization is

produced if the axes undergo rotation as the light path progresses. The twisting rate that maximizes

N& (the circular Stokes parameter) is found to be an elliptic function with modulus depending on the

path length. Various limits are discussed, and the maximized N, is tabulated and graphed against path
length for several ratios of birefringence to difFerential attenuation. These results are pertinent to the
polarization of hard x rays by a slightly tilted crystal.

I. INTRODUCTION

The usual way of imparting circular polariza-
tion to initially unpolarized light makes use of
two media through which the light passes succes-
sively. The first medium possesses differential
absorption with respect to two perpendicular di-
rections of linear polarization. The second medi-
um possesses differential refraction with respect
to axes oriented at 45' to those of the first medi-
um. The first medium (polarizer) transforms
unpolarized into linearly polarized light. The
second medium (A/4 plate) transforms linearly
into circularly polarized light.

In this paper we shall assume that only one
medium is available, yossessing differential ab-
sorption and birefringence with respect to the
same pair of perpendicular directions. Mathe-
matically, this means that the complex index of
refraction is a 2X2 matrix whose eigenvectors
are real and perpendicular, but whose eigenvalues
are complex. Our interest in this situation arises
from recent work' ' on the polarization of high-
energy photons by crystals.

With such a medium we can create circular
polarization by placing two samples of the medium
one after the other, with the second rotated 45
relative to the first. The first acts as a linear
polarizer; its birefringence is no embarrassment
because the transmitted polarization is also on a
principal axis for refraction. The second acts as
a quarter-wave plate, but at the same time its
absorptive properties reduce the final intensity.

As a result, the intensity of circularly polarized
light (to be precise, the Stokes parameter N,}
obtainable in this way is not as great as the inten-
sity of linear polarized light (N, ) obtained from
a single untwisted sample of the same total length.
We shall call the ratio of the former quantity to
the latter the "circular conversion efficiency" or
just "efficiency. "

We may now vary our strategy by using any
number of samples of whatever length and orienta-
tion we choose. To be utterly general, we may let
the oiientation of the principal axes change con-
tinuously as a function of distance measured along
the path of the light. Our purpose is to choose
this function so as to maximize the circular Stokes
parameter N, . For a given total path length, this
is the same as maximizing the circular conversion
efficiency.

In Secs. II-IV we shall set up a formalism to
deal with this problem. It has two noteworthy
features. First, the density matrix of the light
is regarded as a four-dimensional vector ~m).
Second, a dual vector (P~ is introduced, which

changes in such a way that its inner product with

~m) is constant along the path of the light. The
development of

~
I) along the path is then con-

veniently described in terms of various bilinear
forms on (P( and (m).

In Sec. V the variational problem is solved. The
ordinary Euler-Lagrange method seems inapplica-
ble because the quantity N, is not given as an in-
tegral and therefore the variational derivatives
are not easily found. However, the formalism
of the preceding sections makes it possible to
show that the final N, is stationary with respect
to changes in the twisting function, if and only if
a certain bilinear form on (p[ and ~m) vanishes
everywhere along the path.

In Secs. VI and VII we use the vanishing of this
form to derive a differential equation which enables
us to express the optimal twisting function in
terms of an elliptic function whose modulus is
related indirectly to the length of the crystal.
[See Eq. (73}.] We do not obtain a closed expres-
sion for the density matrix at any point. How-
ever, in Secs. VIII and IX we study the maximized
quantity N, by an indirect method and show that
it depends on a complete elliptic integral of the
third kind. [See Eg. (101).]
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The remaining sections are devoted to subsidiary
results. In Sec. X we obtain inequalities which
show that the solution defined by (73) is really
optimal, although an infinite set of other solutions
exists which renders N2 stationary. The limit of
short path is discussed in Sec. XI, and that of long
path in Sec. XII. Section XIII deals with the choice
of "best" path length for a given over-all attenua-
tion rate. In Sec. XIV we develop some numerical
tables, and in Sec. XV we summarize our findings.

II. DEFINITIONS AND NOTATION

Let x be the distance from the entrance face
to an arbitrary point on the light path.

Let I. be the distance from the entrance face
to the exit face.

Let the column vectors (0), (', ) represent light
of unit amplitude polarized along either of the
two principal axes. Ally combination of polarized
and unpolarized light is represented, then, by a
density matrix

M =Movo+M, r, +M,g~+M~o„

or' ' so'
0 ' ~ 0

We shall have occasion to regard M„M„M„M,
also as components of a column four-vector,

[Z~, Z~] =2i ~„,Z~,

[gR gs] 2 i~ gB

[gs gs]

We write the product of the complex index of
refraction and the wave number as

g+gtg (9)

and the angle. by which the axes at x (and hence
our coordinate system) are rotated from their
direction at the entrance face as P(x}. The rate
of twisting is

lj(x) = y(x).
d

(10)

We may note here that in the application to high-
energy photons, the polarizing power of the crystal
is achieved' by tilting a principal axis at a very
small angle 8 from the direction of propagation
(the x direction in our treatment). The plane of
this tilt is fixed in relation to the crystal axes,
and it in turn determines the orientation of the
principal (transverse) axes for refraction. Thus,
our "twisting angle" p is just the azimuth of this
whole system about the direction of propagation.

III. EQUATION OF MOTION

As a result of (9) and (10), the propagation of
light in a pure polarization state can be described
by' (f(*)), where

= i(n+n') a —blfl,
dQ

db = i(n-n'}5+alIl

and we write the relation between M and
~
m) con-

tained in (1) and (3) as
or

Mm( m) . (4)
=iH

It will be useful also to define 4~4 matrices
Z~l, Z", whose effect on ~m) corresponds to that of
multiplying M either on the left or on the right
by any of the v, . Thus if

A~ (a),
then

a, A~Zf~a) (i =1,2, 3),

Ao, ~Zelda) (i =1,2, 3).

From (6) and the a commutation laws

[l7g, og] = 256ggp (Tg, ,

we obtain the Z commutation laws

H =noo+n'a, —ljlo, .
Therefore, the density matrix M develops ac-

cording to

=iHM - iMH

=-2(fmn)M+in'a, M —in' Ma, —ilIl[g2, M].

(14)

Elluation (14) is a direct conselluence of (11)when
M represents pure polarized light, M = (g~ '

~)~
If the light is not completeLy polarized, M cannot
be written in this form. But we can always write



10 CREATION OF CIRCULAR POLARIZATION BY A TWISTED. . . 23

d
dx lm) = (-&+ a —qp)lm&, (15)

where

M =M, +M„where M, and M, represent two pure
polarized components of random relative phase.
Then the dependence of M on x is found by letting
M, and M, each satisfy (14}and equating M to
their sum at each x. Since (14) is linear in M,
this means that M also satisfies (14) whether the
light is completely polarized or not.

Using (6), we can write (14) as

IV. COMMUTATORS

To make the use of (25) easy, we define

y= in'ZL —in'*~'
1 ly

e' =n'ZL+n'*a~
3 3 y

pf gL+gB

y' =n' ZL+n'+ Z,".
Using (8) with (17), (18), and (26)-(29), we

obtain

(26}

(27)

(28)

(29)

~ = 2Imn,

n = Zn'ZL - gn'*Z',
3 3 y

p ~gL ~QB

As the initial condition for unpolarized light
with unit intensity, we set

M(0) = ~co

(16)

(17)

(18)

(19)

[a, pl=-[p, a) =2r,

[y a ] 2 (i n i 2 gL in i 42 gR )

= 2[pRe(n") —p' Im(n")],

[r, p) = 2a, -
[p', a) = 2r', -

(30)

(31)

(32)

(33)

(34)

so that M and hence lm& are determined for all x
by (14) or (15).

It will be convenient to introduce a vector &pl in
the dual four-dimensional space which develops
with x according to

d
„, &pl=&pl(~- cp),

with the final condition (at x =L)

&p(L)la) = Tra2A

(20)

(21)

for arbitrary la& and A. satisfying (5).
The circular Stokes parameter of the emergent

light is given by

N, = Tra~M(L)

= (p(L)lm(L)& (22)

on account of (21). But from (15) and (20) we see
that (p(x)lm(x)&, or (plm&, is independent of x.
Therefore we have

N, = &plm&

[y', a] = 2 (n" I: + n'*' I:")
= 2[P Im(n") + P' Re(n")],

[r', p) =-2a',

[a', a] =0,

[a', pl =2r'.

(35)

(36)

(37)

(38}

V. STATIONARY CONDITION

We wish to choose the function g(x) so that the
functional N, will be stationary against small
changes in tt). Suppose that g were to be altered
only in the interval x, x xp+c, where c is small.
Using (15), we have

From these equations we can determine
[&o, a —gp], where ~ is any combination of a, p,
y, &', P', y'. We note that although there are 16
independent 4&4 matrices, these six span a closed
Lie subalgebra, which is the direct sum of two
three-dimensional Lie algebras as shown by (8).

In (23) and henceforth, we use the notation

&~& = (pl &elm)

(23)

(24)

lm(x, + e)& = lm(x, ))+c(-X+ a —(P)lm(x, )&+O(e'),

(39)

and since &plm& is x independent, we may sub-
stitute x =x, +e in the right side of (23}, obtaining

~ ( &=([, -apl& (25}

for any &&o&. If ~ is the unit matrix I, the com-
mutator vanishes, showing that &I& is constant as
asserted above.

for any 4X4 matrix ~. In general, &~& may depend
on x through the changing vectors lm& and (pl.
In fact, from (15) and (20}we obtain

N, = &p(x. + ~}lm(x.+ c)&

= &p(x, +e)ll +e(-x+ a —gp)lm(x, )&+O(e').

(40)

Now, if g is replaced by /+5', where 6$(x)
vanishes for x &xp and for x&xp+E' the vectors
lm(x, )) and &p(x, +e)l will be unaltered since the
boundary conditions (19}and (21) fix lm(0)& and
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(P(I,}l. Therefore N, will be replaced by N, -5N„
where

where

q = -(a'& —CRe(n"). (51)
xo+ 6

6~, =&P(x, +~)lPlm(x, )& 5y(x)d +O(~2)

+ f.

=9(*.)ip~lm(*, ))J
' &t(*)a+a(~').

xo

(41)

Since ~ can be arbitrarily small and x, can be
anything between 0 and I, we find that N, is sta-
tionary with respect to P if and only if

We now differentiate (51), using (25) with {3p)
and (38}. The result is

q = -c(k4'+g),

where g is an undetermined constant.
Puttlllg {53)into (50), we obtain

(53)

~ =2(r'&0= cy-

on account of (48). This equation can be integrated
at once, yielding

for all x, in the notation of (24).

VI. DIFFERENTIAL EQUATION

d'g, +2/'+4+=0, (54)

From (42) ani 5) we shall derive a differential
equation for g(x). We begin by observing that
a —gp commutes with itself, and therefore

which is our equation for g(x}.

VII. ELLIPTIC FUNCTIONS

Multiplying (54}by 2dg/dx and integrating, we
find

(P&Re(n") —(P'&Im(n") + g(a& =0 (45)

The second term on the left vanishes on account
of (42). Therefore the first term is also zero and
(a& is a quantity independent of x.

Differentiating (42) with respect to x, and using
(25) with (30), we have

(44)

for all x. Differentiating again and using (25) with
(31) and (32), we find

4 4 2+g (55)

where h is another undetermined constant. Real
solutions to this equation are of the form

g = +kp cnp(x + I)

if h&0, or

g = ~ dnp(x+ l)

if @&0. Here cnu and dnu are elliptic functions of
modulus k, defined by

or, in view of (42),

&p') =cy,

where C is given by

C =+( a&/Im(n")

(46)

(47)

cnu = {1—sn'u)' ~',

dnu=(1 -k'sn'u)'~',

(58)

and is x independent because of (43).
Differentiating a third time, with the help of (33)

and (34), we have

(48)

A fourth differentiation, with (35) and (36), yields

C, =4[-(p&lm(n") - (p'&Re(n") -(a'&q],

cn0 =dn0 =1.

The quantities k and p depend on g and k, and l
is a new undetermined constant.

We shall determine 0, p, l and choose between
(56) and (57) by examining the boundary conditions
on Q. From (6) and (19) we infer

Zf l m(0)& = &",
l m(0)& (59)

for i =1,2, 3. Therefore, comparing (IV) with (2'I)
and (26) with (29), we have, for x=0,

(49)

into which we substitute from (42) and (46) to ob-
taxQ

( a'& = -(Ren'/Imn')(a&,

(y'& = -(Ren'/Imn')(y&.

(60)

(61)

d'g
C ~2 =4q|t}, (50)

On the other hand, (6) and (21) give

&p(I )II", =-&p(I )II:", (62)
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for i =1 or 3. A similar comparison yields, for
x-J

which together with (68) determines k.
From (58) we obtain

(a') = (Imn'/Ren')(a),

(y') = (Imn'/Ren')(y) .
(63)

(64)

[ 8 snQ
dnudu = ) =sin '(snu)+const.

CQQ

Substituting (44) and (48) into (61) and (64), we
have

Thus, comparing (10) with (5'l), we find

cosP = snp(x+L), (75}

for x =0 or J.
Substituting (4V) and (60) into (51), we find

q(0) =+ {Ren'/imn')(a& —CRe(n")

= C[(Ren'/Imn') Im(n") —Re(n")]
= C[2 (Ren'}' —(Ren')'+ (Imn')']

= C[n'['.

Replacing (60) by (63), we have

q(L) = -(Imn'/Ren') (~) —C Re{n")
= -C[(Imn'/Ren') Im(n") + Re(n")]

= -C[2 (Imn')*+ (Ren')' —(Imn')']

(65)

(67)

which is a useful way to express the dependence
of

bronx.

The sign of g is still undetermined. We shall
show at the end of Sec. VIII how to choose it so
as to make N, positive. Two rather surprising
observations may be made. The first is that in
view of (5V) and (73) the whole form of P(x) is
independent of the argument of n', depending only
on its absolute magnitude. The second is that
regardless of the value of k we have

y(L) = ~v/2

on account of ('l5).

(VV)

where we use the cosine instead of the sine in
order to make P(0) =0. By combining (V5) with (5V)
and using (58) again, we find

dred 2in'i
(1 g2

cosmic)l

/2
Ch 4'

Now, the derivative of cnu vanishes for real sc

only when u is a multiple of 2K, where 4K is the
full period of the elliptic functions on the real line:

4g
(I x2)(1 I m+2)1/2 (68}

The second derivative of cnu is equal to -cnu at
all multiples of 2K. It follows that if we use (56),
then on account of (50}and (65) we must have

n(0) = n(L), (69)

kp =2(n'[,

/=J.
(71)

(72)

We shall confine our attention for the time being
to the principal solution obtained by setting s =1.
For this solution, the combination (70) and (71)
yields

uX =2[n'[L,

which contradicts (66) and (6V). Therefore (56)
is ruled out, and (5V) is correct.

The derivative of dnu vanishes at all multiples
of K. The second derivative of dnu has the value
-k'dnu at even multiples of K, and +k'dnu at odd
multiples. Applying these facts to (5V), and using
(65)-(67) with (50), we have

(70)

where s may be any positive integer, and

VIII. DEPENDENCE ON PATH LENGTH

' = Tro, =(P(L) ( ~m(x)), ~
x=L

= (p i
-A. + a —fpi m) = -AÃ2 + ( o/),

where we have made use of (15) and (42).
We shall now relate ( &) to N, by studying the

quantity

[Mi =MD —Mi —M2 —M~

as a function of x. From (1) we have

M'M=o, [M[,

(79}

In this section we shall write N, or N, (L) or
N, (k) for the circular Stokes parameter obtained
from the principal solution of (54); that is, N, is
given by (22) with (V6), where k is determined by
(73}and (68). In order to compute N, as a function
of L or k, me first study its derivative with respect
to J, for fixed n and n'.

If L, is replaced by L, +dI, N, may be, affected
in two ways. First, a path length dJ- is added at
the end. Second, g is slightly altered for 0 &x & L
since L enters into (5V} through 0, p, and /. But
the second of these changes has no effect on N,
to first order, since g has been chosen so as to
make N, stationary. Hence, referring to (22},
me have
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where

M'=o TrM-M=M o -M, o, -M o -M,o .

Let us define

A. '=o, TrA -A.

that dn2K = i.
Comparing (8V) with (85) for x =I,, we have

q((r&2 ~2+ e-2~I (89)

Sut u we wr~te

(90)

for arbitrary 2x 2 matrices A. Then it is easily
seen, by writing A. as oooo+A o, tha

for any A, B.
Now we combine (80}with (14) to obtain

and substitute in both (89) and (V8), we find

( o(& e)eE [q-1(I + cpm)]1/2
dI

and hence

F = sinhy,

where

(91)

(92)

o, „ iMi= (M'M)

IM0ITr(a-Ht)

=-2~o,[M[

and therefore, using (19},

(84)

= i[M 'HM -M'Ma'+ (HM)'M —(Mff')'M]

= 1[M '{++a')M -M'Ma' (lf')'M—'M]

= i[M'(Tra) M —M'Ma' —(If')'M'M]

dg
dL Q

~' (93)

IX. ELLIPTIC INTEGRAL

The sign of y is that of Q' ', which by (91) is that
of (a&. Thus, y, F, N, will be positive if (a& is.
That means, by (46) and (4V}, that we should give
P the same sign as (P'&Im(N"). The sign of |I) is
the same for all x, and (P'& must be positive at
x =I, by (86). Therefore the sign in (57) should
be taken as that of Im(n") or of Iten'Imn', if N,
is to be positive. The physical sense of this may
be inferred from (11}and (22) with (2).

4[M] = e-'".
At x =I we can apply (21) to obtain

2M, = (I.", &
= (Zs& =-,'(P'&,

2M, =-1(Z,'&=i(I:",&=- „,(a&,z

2M, =(1&=Z„

(85}

(86)

Let us now write

n' = [n'( e'"

q = (1 —k' sin'X)'/'.

Then (88) becomes

q =q'/k'(n"
~
sin'2&(,

(94)

(95)

(96)

2M, =t(Z,'&=-i(Zs&=, (y&.
1

which with (93) and (V3) gives, taking g positive,

Substituting from (44), (46), and (4V), we find dy sin 2X k d
( )dk 2 q

(97)

1 y(L, )*
e )m(e")' (Ree')')

„,[-.'y(L, )* —(I n'm)']

( „),[-,'p'- ( elm')']

It will now be prudent to replace (68) by a con-
tour integral:

K=-
(I -z')(I -k'z')'/' '

where the contour runs counterclockwise around
the cut from -1 to 1, and the square roots are
both positive when z is negative imaginary. We
then have

Here we have used (57) and (V1), remembering

sin2X d8
y 8 (I 2)j/2 f( )x)e (99}
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k d k

q dk (1-k")

t(1 kmz»}»/2

and (105). Then instead of (9V) we have

y, = —,
' sin2y (2s —1) Y(k, ),

where F is the function satisfying

(106)

1
Sin X

1
81Q X

1
sin g

r (1 —k z»)-s/2

Sin g 81Q X

sin g

dY(k) k d
dk q dk

(10V)

and Y(0) =0, and k, is the value of k satisfying

(2s —1)Z(k, ) =2in'iL, (108)

with the function Z given by

Z(k) =kK.
2 q2 2 - I /2

XQ 1 — . 2 +sin'X sin'X

1-k'sin'X '~'
z' —sin'g 1 —k'z'

and so

N, =e ~ sinhy

(109)

Since Z is an increasing function of k, we have
from (108) the inequality

It is always understood that K and q depend on k
through (68) and (95).

Combining (106) with (108), we have

y, =[Y(k,)/Z(k, )] in'iL, sin2X.

= e i sinh (1 —k' sin'y)'/'sin2X
8

k, )k, &k,) ~ ~ ~ .
From (109), therefore, we obtain

0'y Py 0'» '~ ~

(11o)

To show that we have not lost a constant of inte-
gration, we remark that when L -0 we have k -0,
so that the branch points at al/k recede to ~. Then
the contour can be expanded and we get y-0, hence
N, -O as desired.

k cosx
dy, (1 —k' sin'g)'" (104)

so that y &yo and E&1, as expected.
%e shall now show that the principal solution

gives the highest efficiency for a given L. First,
we note that if we vary the integer s in (VO), the
equations of Sec. VIII are completely unaffected.
However, instead of (V3) we have

(2s —1)kK = 2[s'[L, (105)

and this will affect the equations of Sec. IX.
Let us define y, as the solution of (93) with (88)

X. INEQUALITIES

By comparison with (101), the linear polarization
intensity obtained from a constant-8 sample of
length I. is

X, = e i sinhy» = e ~ sinh(2)n'iL sing) (102)

and the circular conversion efficiency is therefore

F, = sinhy/sinhy, . (lo3)

From (102) and (9V) and (V3), we find

provided that Y/Z is also an increasing function
of k.

To prove the latter assertion, we write (10V) as

(112)

(114)

which leads easily to the desired inequality,

dk Z
0 (115)

for 0&k&1. This shows that Y/Z is an increasing
function and completes the proof of (111).

Applying (111)to (90) and (92), we see that the
efficiency at a given L is highest for the principal
solution (s =1) and decreases with increasing &.

XI. SHORT-PATH LIMIT

When is'iI. «1, we have k«1 and K= v/2, and
{5V) reduces to (taking the positive sign)

(116)

and considering Z as the independent variable, we
apply the "law of the mean" to the interval from
0 to Z. The result is

Y/Z = k'/q',

where k' lies between 0 and k. Since k/q is ob-
viously an increasing function of k, we may com-
pare (113)with (112) to obtain
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for the principal solution, or

4 (x) =-,' vx/L. (117)

I I
f, = dr, dr, F r„r, +F' r„r, +c.c.,

0 7'I

The leading term of the integral in (101) is then (128)

dz
(z' —sin'y)(1 -z')' '

k2 2

2

where

F(r„r,) =-,' Tr(v, U(1, r, )ie'"v, U(r„x, )i,e'"v,

= gk2

k' dz slD g dg
2 (I —e')' ' (e' —eie'p)(1 —e')' ')

(118)

xU(r„0) v, U '(1, 0)}
= --,'e""Tr[v, v, U(r„r, ) o, U '(r„r,)}

and therefore

N, = e ~y = 8 mk2 sin2g e

= --,'e""Tr [v, U '(r„r, )}
ie2-(" sin2[P(r, ) —P(r, )] (129)

vIn'I'L' sin2y
2(v/2)'

= (2/v) In'I'L' sin2y e "i

= (4/w) L' Ren' Imn' e (119)

As a check, we shall derive (117) and (119)di-
rectly from (14) in the limit

=-,' Tr [v,v, U(r„r, ) v, U '(r„r,)}
= i sin2[(t)(r, ) —y(r, )]. (130)

Substituting (129) and (130) into (128), we have

E'(r„r,) =-,' Tr[v, U(1, r, )ie'"v, U(r„0) ooU '(r„0)
x(-ie '")v, U '(1, r, )}

g=- In'IL «1.
Setting

r =x/L

(120)

(121)

I I
5, =2sin2y dr, drsin2 r, — r,

0 rl

(131)

and

d

we write (14) as

(122)

Our task now is to choose the function p(r) so
as to maximize the integral in (131). For reasons
shortly to appear, we define a function f on the
interval (0, 2v) by

=-i $[v„M] —ALM+ ig(e'"v, M —e '"Mv, ),

(123}

and using (19) and (22) we obtain (90), where 8'

can be expanded in powers of g,

f(i|)=~2 t ~(Isin[~p —2$(r)l I}«=!g
0 dr

where the sum goes over those r satisfying

(t)(r) -=-,'g, mode/2.

(132)

(1.33)
%=V +gF +g F +' (124) Thus f (g} is determined by (t)(r), and satisfies

A straightforwa. rd iterative solution of (123),
with the notation p. dp. =1 (134)

r2
U(r„r, )=exp

(
—'e, (dr =e

(125}
yields

6U= 2 Tr[v, U(1, 0) vUU '(1, 0)}=~ Tro2=0,

(126)
I

6:, =-,' Tr v, dr, U(1, r, )ie'"v,
0

«U(r„a)e, U '(l, a)I ~ e.

I
=Reie'" dr, Tr(v, U(l, r, )v, U '(1, r, )}

0

as seen from the first line of (132). Moreover,
we have

I I
52-2sin2y dr, dr, sin2 r, — r,

0 rI
27r 27t'

=sin21 f(p, )dp, f(p2)dp2Isin2(p, 2
—i),,)I.

0 0

(135)

On the other hand, given f satisfying (134), we
can choose 4) satisfying (132}so that equality is
achieved in (135). This is done by defining P(r)
through the equation

=Re i e' "Tr (o,v, ) = 0, (127) =1/4f (4P), (136)
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sin2y ' +2 g 'A. (138)

with P(0) =0, so that (t) increases monotonically
but never exceeds w/2, and sin2[P(r, ) —Q(r, )] is
never negative.

To maximize (131) therefore we must choose
f so as to maximize the second line of (135) with
the restriction (134). Since 2~sin-,'(p, , —l(, , )~ is
just the length of the chord joining the points p.,
and p, , on the unit circle, we may regard f as
the density of matter distributed on the unit circle,
and repelling itself with a force whose magnitude
between two given point masses is independent of
their separation. Then the total mass is 1 by
(134), and the total potential energy is proportional
to minus the second line of (135). This energy is
minimized in the position of stable equilibrium,
which intuition may identify as the uniform dis-
tribution of matter around the circle.

To confirm this intuition, we write

f(p)=
2 +g (a e' "+a'e ' ")1 (13'f)

and note that the second line of (135) becomes

1 1
A = sin —2'p, cosmic, dp, =

m+2 m —2

(139)

6:, = (A,/2w) sin2y = (2/w) sin2l(, (141)

and when this is put into (124) and the result com-
bined with {90)and (120), we recover (119)for the
leading order in g.

XII. LONG-PATH LIMIT

Wh« ln'lL & 1, we have 0-1 and K jn'I«»
the principal solution. In this limit the integral
in (101}blows up, as the contour is pinched be-
tween two branch points. But this is expected, as
y should behave like y, as defined by (102). Com-
bining (101) with (98}, and using (73), we have

which is negative for m&0. Therefore (138) is
maximized by settlllg all a = 0. Now, uslllg (137)
and (136), we get

(t)(r) = (w/2) r,
which in view of (121) is the same as (11V).

The maximum P, is obtained from (138) and
(139):

(1 -0' sin'X)'~' dz d8

o»»
' " " (( —»')' '(» —»*»')' '(» —»(»'») (( —»')' *(( —»' ')' ').

dw (1 —k'z')'~'
=4 sing () ~2 sin2~ (1 gm)l/2 (142)

in which both sides approach a finite limit as k-1.
The quantities y and y, grow only logarithmically

in 1 —k; therefore O(y(1 —k), y, (1 —k)) can be ne-
glected and the left side of (142) replaced by y -yo.

On the right side, the factor (1 —Pz')'~2/(1 -z')'@
becomes +1 on the negative imaginary side of the
cut, and -1 on the positive imaginary side. The
limiting form of (142) is therefore

~ 1 dz
p -po ——4 Slnx 2I

~ g —81QQ

~ 8 —sinx ~ 8+sinx

1 —Sinx 1 + sing
ln — . - ln1+ sing 1 —sing

This efficiency is achieved by the limiting form
of (5V),

(I) =2[n'[sech2 (n') {L—x),

or of (75),

cosP =tanh2~n'~ (L -x).

(145)

{146)

Let us compare (144) with the result of a cruder
strategy, in which we put

(t)(x) =0, x&L -xo

x&L -x~.

It is easily found, for fixed xo and I.-~, that

E 28 *0~" ~ "sill(t)oeos(Ie)0slI1(2xJn ~eosg),

1 —Sing
=2 ln

1 + Slnx

and so, from (103), the limiting efficiency is
given by

(
1 —81QX cos)(
1 + sing 1 +sing

(143)

(144)

which is maximized by setting (t), = w/4,
2xoin'(cosy = w/2 —y. We then have

E~ co8$8

Comparing the crude efficiency E„, from (149),
with the ideal efficiency E, , from (144), we have
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E„/Ez-—(I+sing)e "~ "' '~"

-1 —(w/2 —1)y, )(« I (Imn'«Ren'}

=(I+-,'W2) e '~~-0 77. 8, y=w/4 (Imn'=Ren')

-2/e-0. '?I, y- w/2 (Imn'»Ren').

TABLE I. For eight values of k me tabulate K, and
the three quantities yp, y, E for each of two values of y
{tang =&1 3) The tabulated values of yp and E are re
lated to the two outer curves in Fig. 1.

m~' =-' g.e2

(150)

XIII. OPTIMUM LENGTH

de ),~ . 1
= -Xe sinhy+, &, e coshy, (151}

To maximize N, with respect to L, we differ-
entiate (90) with the help of (92) and (98), ob-
taining

0.1
0.5
0.8
0.9
0.94
0.98
0.995
1

K yp

1.57 0.070 0.003 0.045
1.69 0.377 0.088 0.229
2.00 0,714 0.299 0.390
2.28 0.918 0.468 0.460
2.51 1.054 0.591 0.496
3.02 1.324 0.849 0.546
3 ~ 70 1.645 1.165 0.580

oo ce oo 0 618

yp

0.149
0.800
1.514
1.947
2.236
2.809
3.490

0.002
0.070
0.269
0.471
0 644
1.078
1.694

0.016
0.063
0.126
0,142
0.149
0.157
0.160
0.162

which vanishes when

Q'i' tanhy =I/& (152)
tanhy = (k/q) cosy, (155)

1 qy n'k' L
sin'Isin2x 8ln'l 2 ' (158)

If A. » ln'l, we may simplify (152) by using the
short-path limit —see (119)—which gives

which is satisfied when k-1, y-~. Thus the best
result is now obtained with I -~. Since the un-
twisted crystal in this ease will give N, =-„we
have from (144)

N, - cosy/2(1+ sing} (156)

8 ln'l ' . 2
4 Ren'Imn'

&e we' (Imn)' (154)
for the maximum circular intensity in this case.

for the maximum circular intensity attainable
when the over-all attenuation is much stronger
than the polarizing effects.

The opposite limit occurs when one component
is not attenuated at all; Im(n n'} =0, or-
X=2ln'ising. Combining (152}with (96), we then

XIV. NUMERICAL EVALUATION

E = sinhy/sinhy„

where, from (102),

(108)

%e seek numerical values of the circular con-
version efficiency (see Secs. I and X) given by

tan X ~ Imn'/Ren' 0.5

" 0.5

0.2

O. l

an X * Imn'/Ren' n l.0

an Xn Imn'/Ren *l.5

anX n Imn'/Ren' n2.0

an X * Im n'/ Re n' n 5.0

Flo. 1. Maximum possi-
ble circular conversion ef-
ficiency E (see Sec. X) is
graphed against the crystal
thickness, measured by the
parameter yp, for five
values of tang= Im~'/Hen'.
The top curve represents
strong birefringence; the
bottom curve represents
strong polarization. The
fractional linear polariza-
tion obtained from an un-
tsoisted sample is tanhyp
=0.76 (yp=l), =0.96 {yp
=2).

0.5 S.o 2.0 2.5
yo n 2?mn L

5.0 4.0 4.5
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K=
2y'

r„= limr, r „=,'(r-+s ),

This yields yo immediately for given k and X.
The tabulation of y is most easily accomplished

by integrating (QV) by parts:

y~k cosg yf, cosX
(I k2 sjn2X)~~2 (I —k2 sjn2$) ~

(159)

The right side is easily calculated for given
k and g, and hence it is a suitable integrand for
numerical integration. The integrand diverges
only logarithmically at k-1, so that the integral
is convergent there. (It should be understood that
X is fixed during the integration which is begun at
y =y, =k =0.)

Values of k, y„y, and E are tabulated for various
y in Table I. The relation between 8 and y„ for
fixed y, is displayed in Fig. 1.

XV. SUMMARY OF RESULTS

VFe have found that the circular Stokes param-
eter N, is maximized for a given medium and path
length when the twisting rate g =dP/dx is given
by

y(x) = ~ dn (x+1}, (160)

where dn is a standard elliptic function of modulus

k, and k is determined by

kZ =3[a'fL, , (V3)

where K is the quarter-period associated with k,

dg

(I z2)1l2(I k2z2)1/2 t

I. is the path length, and 2n' is the difference in
complex wave numbers between the two perpen-
dicular principal axes.

An equivalent form of the solution is the differ-

yo =2Imn'I =kKsinX

and y is given by (9V) or (101).
It is easy to find K for a given k by the formulas

ential equation

de 2in'[
(1 —k' cos2 P)' ~2.

dx k

The sign of N2 is the same as that of &Re22' Imn'
The relation between signs can best be understood
by considering the circular polarization produced
by the standard 45' configuration, g =+-,' v6(x -x,}.

The solution (160}and (V3) gives the biggest
possible N~, although the variation of N, is also
zero if the left side of (V3) is multiplied by any
odd integer.

The optimum value of N, is given by

N, = e ~ sinhy, (161}

where ~ 2Imn is the common attenuation rate
(average of two axes) and y is a somewhat com-
plicated function of k and g = argn', given by (9V)
or (101).

We compare this with the linear Stokes param-
eter N, produced by an untwisted sample of the
same medium with the same length,

N, = e sinhyo, (162)

where

y, = 2 Imn'L. (163)

E = sinhy/sinhy„ (103)

which is a function of k and y, or of yo and y. It is
plotted in Fig. 1 against y, for several values of X.

When y, «1, N, is maximized by a uniform
twisting rate, and is 0[y20] so that E is O[y,].When

yo»1, the optimum strategy puts nearly all the
twisting near the exit face, with a hyperbolic
secant form for g. In this limit, E approaches
the constant value cosy/(1 + sing}.

Inallcasesthetotaltwistis 90'(Q(1.) =am/3) and
for a specified ~22'~I. the twisting function is in-
dependent of y, though E is not.
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