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A relationship between semiclassical radiation theory and the inverse method of solution for nonlinear

dispersive waves is developed through two physical examples. The Josephson transmission line is

modeled by Maxwell's equations coupled to a phenomenological quantum mechanics. It is shown that

this quantum mechanics contains the same linear problem used in the inverse method to solve the

sine-Gordon equation, the equation which governs the evolution of the electromagnetic wave. This

(nonlinear) wave equation and the linear quantum equations are of equal importance in the physical

description of this system. This same relationship exists among the self-induced transparency (SIT)
equations of nonlinear optics. This second example, due to Lamb, is discussed in a manner which again

displays the precise relationship of the linear problem of the inverse method to the quantum physics. In

addition, analogies between SIT and the Josephson transmission line are discussed.

I. INTRODUCTION

Characteristic features of a superconducting
Josephson transmission line' ' are modeled by the

"sine-Gordon" equation. Recently, this nonlinear

wave equation has been solved for a large class of

initial data by the "inverse method". ' ' In this
method the equation is solved via the introduction
of a linear equation. This equation is introduced
on an ad hoc basis as a computational aid. The

primary purpose of this paper is to show that, for
the sine-Gordon equation thought of as modeling a
Josephson transmission line, the linear equations
arise naturally from a phenomenological model of

weakly coupled superconductor s. Maxwell's equa-
tions together with the quantum equations specify
the physical system and are of equal importance in

the description.
From the point of view of this work the inverse

method is a calculational technique used to solve
a problem in semiclassical radiation theory. As

has been shown by Lamb, " " the same technique
can be used in another semiclassical radiation
theory problem; that of describing self-induced
transparency (SIT). In both these cases the quan-
tum mechanics of the medium in which the electro-
magnetic wave propagates provides the linear
problem for the inverse method. In the appendices
Lamb's work is recast into a form which clearly
displays the relationship of quantum mechanics to
the linear problem used in the inverse method of
solution of the SIT equations. " " Also, this ap-
pendix shows the precise relationship between the

SIT equations and those describing the Josephson
transmission line. The possible existence of such
an analogy is suggested in Josephson's review ar-
ticle. '

The inverse method solves many other nonlinear

equations, some without any physical interpretation
at this time. Thus, when investigating mathemati-
cal classes of partial differential equations, an ap-
proach based upon a physical model may not be
natural. Certainly to date' " the development of
the inverse method has not been motivated by phys-
ical reasoning.

Nevertheless, the two examples discussed here
display a close relationship between semiclassical
radiation theory and the inverse method. They sug-
gest that, when facing another problem in semi-
classical radiation theory, one should consider the
inverse formalism as a possible method of solution.
In such cases the physics should motivate the
choice of associated linear problem. Certainly this
type of interpretation makes the latest work of
Zakharov and Manakov" more meaningful.

II. MAXWELL'S EQUATIONS

In this section a review is given of the standard
application of Maxwell's equations to a Josephson
transmission line, A Josephson transmission line
consists of two superconducting metals separated
by a thin insulating layer of uniform thickness.
The geometry to be considered is depicted in Fig.
1. Attention is restricted to long, thin junctions.
The latter restriction, stated more precisely"
as 8'«A, ~, permits the electromagnetic wave to
be treated as uniform in y.

In this geometry the Josephson transmission
line (or wave guide) supports electromagnetic
waves traveling in the x direction. To analyze
these waves it is sufficient' to deal with the field in
the insulator, since the fields in the metal are
uniquely determined from those in the insulator by
a penetration law. In the insulator the fields are
governed by Maxwell's equations:

vxH=(1/c)a, D+(4vjc)j, (2.1a)

10



D. %'. Mc LAUGHLIN AND J. CORONES

~ x E = -(1/c) e,B,
and the constitutive relations

D= rE,
8= p.H,

(2.1b)

(2.1c)

(2.1d)

with e, p. Constant. Here j represents the current
that flows from one side of the insulator to the
other and is called the Josephson current. The
Josephson current arises from the quantum na, ture
of the superconducting state. It will be specified
below by a phenomenological quantum mechanics.
Fox the moment it is merely assumed to be in the
z direction only, i.e. , j = (0, 0, j).

If the boundary conditions D= (D» 0, D) and H

= (O, H, O) are imposed and solutions independent of

y are sought, Maxwell's equations reduce to

e~ = (4z/c) j + (1/c) e,D,

s,E=(d/cl)s, B, d=t+u.
(2.2a)

{2.2b)

To obtain (2.2a) consider an integrated form of
(2.1b)

QxE = dz -1 c8,8
1

where the points 1 and 2 have the same g and y
coordinates and lie on opposite sides of the insula-
tor, at least a distance A. into the superconductor.
By using the facts that (i) E is concentrated be-
tween --,'l ~z ~ —,'l and (ii) B penetrates the super-
conductor between -{-,'l+X) «zc(—,'l+x), (2.2b) rea. —

dily follows. Equation (2.2), together with the con-
stitutive relations (2.1c) and (2.1d), imply

(e, +ss, )(s, —se,)lE= -(4z/e) sg, (2.3a)

(e, + ss„)(e, —s e,)dB = -(4zc/e) s,j,
where s= c(i/deli) ' is the speed of light in the in-
sulator reduced by the penetration of the 8 field in-
to the superconductor.

The combination lE+(s/c)dB is useful in the se-
quel. It is easily seen to satisfy

(s, +ss„)(s,—ss, )[lE+(s/c)dB]= -(4v/e)(s, +ss, )j.
(2.4)

The electrodynamics is completely specified by
Eq. (2.3) if the Josephson current is known. An

expression for j is obtained from the knowledge of
the quantum mechanics of weakly coupled super-
conductors. A phenomenological quantum theory
of such systems is presented in the next section.

q(x, t) = [p(x, t)]~'e'~~ ", (3.2)

with a= a„which is normalized so that p=
~
g(' is

the density of Cooper pairs. The wave function g
is analogous to the Ginzburg-Landau order param-
ter '8 In what follows, g is interpreted as an "ef-

fective" wave function for a Cooper pair.
If two pieces of superconducting material are

separated by a, perfect barrier, they do not inter-

Suoerconduct or

Superconductor

field is either constant or slowly varying. ' This
is particularly true of phenomenological theories.

There are three essential results that a phenom-
enological theory of the Josephson junction must
yield: an expression for the Josephson current
as a function of 6, and the relationships connecting
the time and space derivatives of 4 to the electric
and magnetic fields (E and B), respectively. Here
~ denotes the phase difference of the supercon-
ducting states on opposite sides of the junction.
For constant external electric fields Silver' and
Feynman" have given a phenomenological theory
that yields these results. Here their theory is
generalized and adapted to the transmission-line
problem.

To see how this is done it is first necessary to
discuss some facts about superconductivity. First
recall that the existence of Cooper pairs is funda-
mental to the superconducting state. Each Cooper
pair has charge 2e and is described by a quantum-
mechanical wave function

y~=(p„)' 'e'~», 0=1,2, . . . , N (N large). {3.1)

Cooper pairs are bosons and, in a superconducting
material, essentially all are in the same state. In

particular, their wave functions all have a common
phase. This feature allows the replacement of the
X wave functions by a single macroscopic wave
function

III. QUANTUM EQUATIONS

The microscopic theory of a Josephson junction
in the presence of an external field is best, or at
least most easily, understood when the external

FIG. 1. Basic geometry of the junction. Note: I is the
barrier thickness; A, ~ the penetration depths into upper
and lower metals, «d =—l + A, ++ A. ; A,~ the Josephson pene-
tration depth into the barrier; 8' the width of the junc-
tion; an) Xz»W.
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act. The effective wave functions above and below
the barrier can be labeled tI)' and g, respectively.
If the barrier is assumed strong, but not perfect,
it is meaningful to retain this labeling.

Following Silver" and Peynman, "if a constant
external electric field is impressed across the
barrier, the time evolution of the system is gov-
erned by

(g') t'2e J, Ede T
ih8,

T* 2ef Ed@ @ )
(3.3)

Here the interaction across the barrier is mod-
eled through a coupling coefficient T. This cou-
pling coefficient is a function of the barrier. It
would be determined empirically. Observe that the
magnetic field has been neglected as well as all
kinetic-energy terms. The diagonal terms of the
Hamiltonian represent the difference in energy of
the Cooper pairs above and below the barrier. The
off-diagonal terms denote the coupling across the

barrier. Complex couplings are allowed, but the
Hamiltonian must be Hermitian since, for the mo-
ment, dissipation is not being modeled (see Ref.
19). Finally, the points 1 and 2 have the same
(x, y) coordinates and lie on opposite sides of the
ba, rrier. The quantum mechanics defined by (3.3)
is intuitively clear and yet is rich enough to re-
cover the three characteristic features of a Jos-
ephson junction. This will be done below.

To use this phenomenology to describe the inter-
action of electromagnetic waves with the Joseph-
son transmission line, it should first be observed
that the Josephson current is very weak. "" In

its absence the transmission line supports waves

moving with the characteristic velocity s. Select-
ing waves traveling to the right and treating the

Josephson current as a weak perturbation, the
waves are essentially a function of x —st only,
te(x —st). Thus, under the change of variables

to the (x', t') frame. Since s=0.05c for the Joseph-
son transmission line, "it is sufficient to keep
terms only through first order in s/c. Hence, de-
noting quantities in (x', t') coordinates by primes,
the following approximations are adequate:

El Q

E,' = y[E+ (s/c)8] = E+ (s/c)8 = E';

BI —
Q1

8,' = y[8+ (s/c)E] = [8+(s/c)E] = 8',
Q

(3.5a)

These are consistent with the coordinate transfor-
mations

x' = y(x —st) = x —st,

8„.= y[8„+(s/c') 8,] = 8, ,

Z

t ' = y(t —xs/c') ~t,

(3.5b)

By definition, the Josephson current is

j'=2e8, (g'tt' *), (3.7)

evaluated in the insulator. Kith this definition Eq.
(2.4) expressed in terms of (x', t') is

(8, —2s8„).E' = (Bve/e) -8, (q'q'*) . (3.6)

8, = y(8, + s8,) —8, +s 8x.

Here y= [1 —( s/)c']' 't. Similar expressions hold
for D' and H'. In addition, in Maxwell's equations
23=23 ~

In (x', t') coordinates the phenomenological quan-
tum mechanics takes the form

Ime
fE' de , 7'

)
(g')

x'=x-st, (3.4a)

(3.4b)

Equations (3.6) and (3.8) constitute the interacting
nonlinear system to be analyzed.

the waves are essentially a function of x' alone,
te(x'). Hence if the entire problem is done in the

(x', t') coordinates defined by (3.4), the above phe-
nomenological quantum theory can be used.

It will be shown that this approach yields a, phys-
ical interpretation of the associated linear problem
for the sine-Gordon equation. Of equal importance
it yields, in the (x, t) coordinates, the proper j and
the correct relationship between the derivatives of
b, and E and B. That is to say Joseyhson's original
relations.

To use this yhenomenological quantum mechan-
ics, it is necessary to transform the E and 8 fields

It is convenient to write Eq. (3.6) in terms of its
real and imaginary parts. Defining 4' and p' by

= (p ) e, Eq. (3.6) lInplles

8, .p'= — (t1'p )'~'sinter+ (p'p )~'cost1,

2TR 2TI
81 p = (P t1 ) slue — (p p ) coski
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2g
8t Q+ = —— E' dZ'

r/2 yI
cosk ——

p

Z/2

sing
y

'With these approximations the equations which
govern the physical system are

(& ~ »—& ) &'dc'= ————
&(p p )

4n' 48

1

(4.1c)

28
8tr g = —— E' dZ

+ 1/2

cos 6 ——— sin+
y

8 b, = —— E' dZ'
1

x(r a(na —(' coax)),
(4.5a)

(4.5b)

(4.1d)

je= ——(p'p )'~'(T~sina — T' cosa }.
h

(4.2a)

Since the Josephson current is very weak, ' ' "
it does not appreciably affect the magnitude of g'.
Hence, as is customary, when coupling j back to
the wave equation, (p'p )

' in (4.2) is replaced by
a constant representing an average or initial value
for (p'p }' '. This constant is denoted by
((p'p )), and the source of the Maxwell field is
written

j'= —(4e/h){(p'p )'~'}(Tssina — T'c ops). (4.2b)

The replacement of p'p by its initial or average
value {p'p ) just states that the Josephson current
does not appreciably effect the charge densities of
the bulk superconductor. This replacement can be
clearly understood through a conservative pertur-
bation argument. If the barrier is strong, the cou-
pling constant T is small, ~T)«I. Since j is al-
ready O(T), from (4.la) and (4.1b), it follows that
any time variation of {p'p ) is an O(T') deviation
and hence negligible.

In addition to giving the correct expression for
the Josephson current (4.2a), the phenomenological
quantum mechanics contains the equation connect-
ing 5 to the electromagnetic field. This relation
is obtained by subtracting (4.1d) from (4.1c):

where T= T +iT', 6=A' —b. . From (4.1a) it fol-
lows that j' across the barrier is specified in
terms of the phase difference 6 as

(()(' 2ef, E'dx'
its,

~

(4.5c)

The system of equations (4.5) is redundant.
Equation (4.5c) contains (4.5b). If only the E' field
is of interest, (4.5a) and (4.5b) are sufficient. In
fact using (4.5b) to eliminate E' from (4.5a) yields

(s, . -2ss, )s, a=@(TRsina — T'c os), (4.6)

where

r) = —64ve'((p'p )'~'}jg'e.
By (4.5b) the time derivative of the solution of

the nonlinear equation (4.6) is the field F. '. Al-
though it is true in principle that (4.5b) and (4.6)
determine E', it is convenient to retain the linear
problem (4.5c) as an aid to solving (4.6).

V. RECOVERY OF JOSEPHSON'S RELATIONS

Before discussing the inverse method of solution,
it is shown that Josephson's relations, in, (x, f) co-
ordinates, can be obtained from (4.5). To do this
observe first that Maxwell's equation (2.2b) in
(x', i') coordinates is

-8,.k', + 8„E'= —8 B'

(5.1)

8,.4= —— E' dZ'+
I

x (T"cosa —T~ sina) . (4 3)

Replacing J, E' dz by (4.5b),

4e
p8 zQ — 8 & B gz

hc (5.2)

Recalling again that the Josephson current is weak
and the fact that the transmission line is not
charged in bulk, it follows from (4.1a) and (4.1b)
that p' —p is O(T). Thus the second term in (4.3)
is O(T') Neglecting this. term, (4.3) becomes

Integrating (5.2) once yields
3
B' dZ'.

hc (5 3)

a, .a=-(4e)h}I E'dz'.
I

(4.4)
Now in (x, t) coordinates, (4.6) is

(sg —8 8 )6= 'g(T sink —T cosk} ~ (5.4)
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Eq. (4.5b) is

4e ' s
(8 +s8 )A= —— E+—B dz

C1

(5.5)

(q''} r2ef, E' «T '} (@')

(g ) ( T* 2-ef, E'dzj~g )
(6.2)

and (5.3) is 8, , Z = -(4e/h)
2
E' dz, (6.3)

8„6= —— B+—E dz .
1

It follows that

(8, + s8,)6 —ss„h = 8,6

E+—B dz

(5.6)
2

8, , ~ =-(4e/hc) 8'd . (6.4)
l

The strategy is to solve for a and then use (6.3)
and (6.4) to find f, E'dz and f, H'dz. The elimi-
nation of f,'E' dz from (6.1) and (6.2) by using
(6.3) yields

(8, . —2s8, , ) 8, , A= rt(T" sinn. —T'c os'), (6.5)

+— —B+—2E dz .

(5.7)
(0') (--,hS, 7

)
(6.6)

If terms of order s'/cz are neglected, (5.7) yields

4e
8 a=- —

I
Zdz.

h

To the same order (5.6) is

4e8„~= —— 8dz .
hc

(5.8)

(5.9)

Equations (5.4), (5.8), and (5.9) are the macro-
scopic relations Josephson uses to describe weak-
ly coupled superconductors. ' ' Thus the phenom-
enological quantum mechanics defined above con-
tains Josephson's relations, complete with both
the sine and cosine components of the tunneling
current.

VI. CONNECTION WITH THE INVERSE METHOD

To relate the above analysis of the interacting
system to the inverse method, recall first that the
relevant equations for the junction are

2

(8, —2s8, ) E'dz = q(Tasina —T~cosa},
1

(6.1)

It is important to notice that (6.3) is an approxi-
mation to (4.3). Because of this, (6.6) is an ap-
proximation to the phenomenological quantum me-
chanics. The approximate wave functions are de-
noted by g'. This approximation is consistent with
those made in deriving (6.1), (6.3), and (6.4). It
is to be emphasized that while the diagonal terms
in the approximate quantum mechanics (6.6} are
approximations to those in (6.2}, the quantum me-
chanics retains the same basic structure. It is the
approximate quantum mechanics (6.6) that is the

key to the inverse method.
The inverse method deals not with the physical

system (6.5)-(6.6) as it stands. Rather this meth-
od retains the approximate quantum mechanics
(6.6), but replaces the nonlinear wave equation
(6.5) with a pair of linear equations in (g', tt ).
This pair is chosen so as to carry the information
that specifies the nonlinear wave. This set of four
linear equations is integrable (defines the two func-
tions ttI' and |tt ) only if a satisfies (6.5). Thus the
nonlinear wave equation becomes the integrability
condition for a linear Pfaffian system.

More precisely, consider a family of linear
equations (indexed by a parameter g} having the
same structure as the quantum mechanics (6 6),

(6.6 )

In the inverse method one assumes that the "~' ev-
olution" of the pair (g', g ) is governed by a linear
equation of the form

(6.7)

where ta is a matrix function of (»', t') and b, (»', t')
It is to be found. A linear ansatz such as (6.7) tha, ,e = th 8, ,x+ (xe-tssc) . (6 8)

seems natural since quantum mechanics in a linear
theory and the operator ih 8„. represents the veloc-
ity operator in quantum mechanics.

If (6.6) and (6.7) are to hold simultaneously, cer-
tain consistency relations must hold. In particular,
8,. applied to (6.7) must equal 8„. applied to (6.6).
This condition implies the matrix equation
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If & is assumed independent of x' then in compo-
nents, (6.8) is

biz, t =(i/h}(t*b, 2 c-b„) -2», „,
22, t bll, g

b„, = ia, .b„+{ig/h)(b„—b„),
b.. . =-i~, b., —(i~*/h)(b„-b..).

(6.9a)

(6.9b)

(6.9c)

(6.9d)

(6.16)

b„= -b22=b =5*, b,2=b2, = C (6.10)

It is clearly consistent to seek solutions satisfy-
ing

h——Btiht

h gT+
s Bsg*

—+ e
h qT*

2s as'*

(6.1V)

If these restrictions are made, (6.9) reduces to

b, =(ilh){g'C*- gC) --,'hd, „, ,

CP. =i a, C' +( i'/ h) b,

c, =-ia, c -(2ii*/h)b.

(6.1la)

(6.11b)

(6.11c)

--,'hd, „.= -(h/4s)~, , +(h/4s)&(~};

F(n) = q(T~ sinn —T'cosa),

and thus (6.11) can be written in the form

{6.12)

b ~ = —(g'C* —gC) ——s ~ ~ + —F(s), (6.12a)i h

a 4s '' 4

The system (6.11) is solved by observing that d,

satisfies the nonlinear wave equation

No claim is made as to the uniqueness of the ma-
trix is. However, it is claimed that Eqs. (6.16) and

(6.1V) are consistent for this S matrix because h
satisfies the nonlinear wave equation. If a did not
satisfy the nonlinear wave equation (6.12), the lin-
ear problem (6.16) and (6.1V) would not be consis-
tent. In this sense the linear equations carry the
information contained in the nonlinear wave equa-
tion. The inverse method' ' exploits this feature
and uses Gelfand-Levitan theory to construct 6
from the (known) scattering data of the linear prob-
lem.

For completeness (6.16) and (6.1V) are expressed
in (x, f) coordinates

ih&, g = ~h(h, +sg)g' 2+/ — e'~
g

h gT~

(r'c*+ fc), =i&, (1;*c*-tc)
It is readily verified that

(6.12c)

(C"c'—I;c), = i&, (t'c'+ rc) + (4i I I; I'/h)b,

(6.12b)
gT ]p + j~

(6.18a}

(e.lsb)

b=-{h/4. )s, ~,
g*c+ —gc = + (ih'/4s)&(s),

~'C" ~C = {h'/4. )F'(~)+s 'I ~l', -

(6.13a)

(6.13b)

(6.13c)

provided F"(6)=-E{h), which F(b,) does in fact
satisfy. It is interesting to note that this condition
has arisen previously in a Backlund-transforma-
tion approach to the sine-Gordon equation. ' Equa-
tions (6.13) yield the matrix S,

ihs, g'=-4—(n., +sb„)g +2 i+ 4

ihb $ =—g*+ e ~~
g +—(6 +s4„)$kqT )~-, h

2s 4g 4s

(6.19b)

To compare this linear problem with those ap-
pearing in the literature on the inverse method, it
is convenient to change dependent variables

b„= -b„= -{h/4s) s, .a,
b„=b+, = {h'qT+/esca*)e'~+g/2s

(6.14a)

(6.14b)

& =0'+0
U =i(t)' —It ).

(6.20a)

(6.20b)

In summary, for the nonlinear wave equation

(S, —2s S,,) S,.a = g{T"sins —T' cosb), (6.16)

the linear problem, which arises from the quan-
tum mechanics, is given by

The linear problems discussed in the literature
correspond to the case of real T so attention is re-
stricted to that case. It should be noted that as
long as T is constant, the complex nature of T can
be removed from (6.9) by the change of variables

g+g g' g+'e" ~2
g |I) 'e "~2 where the
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constant c denotes the phase of T. Complex T have
been explicitly treated here in order to show that
the phenomenological quantum mechanics is rich
enough to contain both the sine and cosine compo-
nents of the Josephson current. ' It should further
be obs'erved that (6.18) is valid for variable T. The
restriction to constant T was made when g was
sought.

Returning to the problem at hand, for real g and
T and using the transformation (6.20), (6.18) and

(6.19) become

h8 v =+ —. f — cosh v
h qT

2i 4g

—
4 (6, +sn, ) + sinn, v, (6.21a)
h ih qT

8g

h'qTk8v'=+, g+ cosa v'
2is 4g

——(s, +s~) + sinn v'. (6.21b)
ih qT

4 $' Ssg

This linear problem agrees with that used by Ab-
lowitz et al. ' to solve the sine-Gordon equation.
Thus it has been shown that the associated linear
problem used to solve the sine-Gordon equation by
the inverse method is not a purely mathematical
device which happens to be useful but rather a bas-
ic equation of the physical system being analyzed.

In the Appendix a second example illustrating this
same feature is given. The Appendix is an exposi-
tion of Lamb's work on the SIT equations. There
his work is presented in a manner which empha-
sizes its connection with the linear physical prob-
lem. In addition, a precise analogy between the
SIT systems and the Josephson transmission line
is developed in some detail.

ties of physical interest are

q' =2e(q'y'*+g q *),

j —= (2eTi/h)(g'g * —g g'*),

f=-T(4'0 *+0 4 *),

(7.4a)

(7.4b)

(7.4c)

(7.4d)

2

(8, —2se, .) E i de = -(4v/c)j,
1

8, Q'=0,

8, Q =2j,

(7 5)

(V.5a)

(7.5b)

(7.5c)

However, this problem is replaced with the ap-
proximation (4.5). Define

2e9'0 -'+V 4 "»

@ = 2e(0'0'* - 0 V *)

j =(2eTi/h)(g+g *—g g+ ),
j -=T(VV*+VV*).

(7.6a)

(7.6b)

(7.6c)

(7.6d)

Then, using the dynamics of Eq. (4,5), (7.5) is re-
placed by the following approximate system:

(st ~ —2ss ) E'dz = noTslnk,
16n'e

1
(7."Ia)

where Q' is the total charge on the junction, Q is
the charge difference across the junction, j is the
Josephson current, and f is the barrier energy. In
terms of these variables, the basic problem to be
solved, Eqs. (3.6) and (3.8), takes the equivalent
form

VII. REPRESENTATION IN TERMS OF PHYSICAL

QUANTITIES

Equations for physical quantities, such as charge
and current, can be derived from the equations for
g' in the pr'eceding sections. To obtain these, use
is made of (6.16) and {6.17) with g= T. For con-
venience T is taken to be real.

f'2
I)

E' dg ~

1

Bt&Q —21

s, f= [(h/2e)~, ]j,

{v.vb)

(v.8b)

(V.8c)

2e 8f
8 g

where f is defined by

f=2(p'p )'~'Tcosa.

(7.2)

Thus, in terms of g' and g, Eq. (3.6), the densi-

j = —(4e/h)(p'p )~'T sins. (7.1)

The surface coupling energy f of the barrier is re-
lated to the Josephson current j (Ref. 2) by

8g j = --&t (7.8d)

2g8„Q' = 0,
2ss, , Q =2j +(16ve /eT2)(jf -fj),

(7.9a)

(7.9b)

The last four equations are redundant, but are
equivalent to the linear problem used to solve the
nonlinear wave equation. Using equation (6.17) with
g= T, the x' variation of the physical variables is
found to be
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4~.
2s&„f = —b)i j — jQ (7.9c)

B,.f = —2 E'dz j,
s2s, .y-- (2f z ~z)g ~ 2(z)g,

2
s, j=—

2 2e

E'deaf

—
2 Q

1

2T' - 4e2sej = —, 2e E'de f —,Q ——,(2e&)f,
1

where the additional electric field E due to the
charge separation Q has been defined by

As above, if it w'ere not for the last terms in the
expressions for s„f and s, j, these equationswould
imply j =j(x —st),f =f(x —st) However. , these last
two terms break this translational symmetry.

Notice that the expression e,f represents power
and is naturally given by jV= j(-2dE'). On the oth-
er hand, the "moving derivative" 2ss„f also rep-
resents a power. Here an additional term appears
representing the work done on the Josephson cur-
rent j by the electric fieM E which arises from the
charge separation Q .

APPENDIX A: GENERAL DESCRIPTION OF SIT

Here a description of ultrashort optical pulses
interacting with a two-level quantum system is
summarized and presented in a fashion that empha-
sizes the connection between this quantum mechan-
ics and the linear problem of the inverse method.
In addition, this appendix displays concrete ana-
logies between this model of the self-induced
transparency (SlT) of optical pulses and the model
of the Josephson transmission line discussed in

-"q ""
(7.9d)

This section concludes with some comments con-
cerning equation (7.7) and (7.8). First, notice that
Eqs. (7.8a) and (7.9a) show that Q', the total charge
(density) on the junction, is constant in both space
and time. The junction is initially uncharged and
remains uncharged S.econd, notice that Eq. (7.8b)
is merely the definition of the Josephson current.
Equations (7;8b) and (7.9b), taken together, would

imply that Q mo~es at the speed of linear propaga-
tion [Q = Q (x —st)] if it were not for the second
term in (7.9b). This term is a correction arising
from the ba, rrier penetration current.

Consider now Eqs. (7.8c) and (7.8d) and (7.9c)
and (7.9d). They may be rewritten as

the text. 'The existence of such an analogy is sug-
gested in Josephson's review article. '

Thorough discussions of the physics of SIT may
be found in the review article by G. Lamb" and the

paper by A. Icsevgi and %. E. Lamb. " G. Lamb""
was the first to solve the SIT equations by the in-
verse method; Ablowitz, Newell, and Kaup"'"
have developed the method and extended its appli-
cation to SIT considerably; see also the work of
Gibbon, Caudrey, Bullough, and Eilbeck. ' The
main point of this appendix is to display the direct
connection between physics (quantum mechanics)
and the linear inverse method. It begins with a
physical description of SIT.

Ultrashort pulses of light can travel in a two-
level optical medium as if it were transparent.
This effect can be explained as follows. The time
interval of an ultrashort pulse (10 '-10 "sec) is
less than the phase memory time of the atomic lev-
els in the optical medium; therefore, the induced
polarization can retain a definite phase relationship
with the incident pulse. The leading edge of the
pulse then inverts the atomic population, while the
trailing edge returns it to the ground state via
stimulated emission. Thus, the energy transferred
from the leading edge of the pulse to the quantum
system is recaptured by the trailing edge. The re-
sult, under proper conditions of coherence and in-
tensity, is a steady pulse profile which propagates
without attenuation at a velocity that can be tw'o or
three orders of magnitude less than the phase ve-
locity of light in the medium.

In order to model this effect, Maxwell's equa-
tions are needed to describe the light wave, and an
a,ssembly of quantum (two-level) atoms to describe
the medium. The light wave polarizes the atoms
which, acting together, become a source of the
electromagnetic field.

For the SIT situation" "the electromagnetic
field E satisfies

Here E is specialized to a plane wave traveling in
the x direction and nonresonant losses have been
neglected, s denotes the speed of light in the di-
electr ic medium, and P denotes an additional po-
larization due to the interaction of the electromag-
netic wave with the two-level quantum mechanics
of the medium. The quantum-mechanical model
for I' is now described.

APPENDIX 8: THE QUANTUM MECHANICS

Consider the wave function for a typical atom in
the medium,

g(R, t; r).
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Here R denotes the position of the atom and r de-
notes collectively the H electron coordinates. Ne-

glecting any motion of the atom itself, the Hamil-
tonian of the system can be assumed to act only on
the electron coordinates. In the absence of exter-
nal fields, the dynamics of the system can be ex-
pressed by the Schrodinger equation

me, q=x„|t . (82)

Expanding g in terms of the energy eigenfunctions
of „yields

6(It, f; r) =a(f, It/. (r) +b(f, R)q, (r)

+ (negligible terms) . (BS),

Here the orthonormal eigenfunctions g, and 6, sat-
isfy

6'=-
&pl 6'l g) = p(ab*+ba*) . (810)

6'-=p(ab*+ba*),

T = (aa*+bb*),

N =- (aa*- bb*),

Q —= ip(ab *—ba*),

(81la)

(Biib)

(811c)

(811d)

vrhere 6' is the polarization, T is the total proba-
bility density, and N is the population inversion.
The two-level dynamics [Eq. (89)] may be ex-
pressed in an equivalent form in terms of these
quadratic quantities:

In order to couple this polarization back to Max-
well's equation (AS), it is necessary to compute
8«6'. To do this define the quadratic quantities

+atmfg F 4F y

(84)

Only hvo terms are kept in this energy expansion
because of the trio-level assumption. For simpli-
city the following symmetry is assumed:

8,T=O,

spr = -(2/h)Eq,

8,6'= (dQ,

s, Q= &utP+(2/h) (fpE)N,

Using (812), s«.6'is found to satisfy

6„6'= -(u'6' —[(2P'/h)E)(uN .

(812a)

(812b)

(812c)

(81M)

I r; I 1{» ) = Q ~ Ir; 16 ),

F=a, b; i=1, 2, . . . , N. (85)

The external field E = ES acts as a perturbation
on this quantum mecha, nics, the Hamiltonian taking
the form

3C Xgtm X'

In the dipole approximation the interaction Hamil-
tonian 3C. , takes the form

The macroscopic polarization P is given by P
= &6'}, where ( ~ ~ ) denotes an averaging process
that maps the microscopic quantities into macro-
scopic quantities. It mill be specified more pre-
cisely below. Thus, the complete physical system
to be solved is given by equations (Al) and (812)
with s«P = &s«6') given by (81S). Equivalently,

where E(R, f) denotes the electric field at the loca-
tion of the atom. Thus, the dynamics takes the
form

ih st 6'= (statm+ &m~) 6»

4=&4.+&0&.

(88)

Using the orthogonality of g, and g~, this dynamics
may, be written in two component form

~~~~~ f -=&q. l6*I6,) =&6, I&I6.&
The field f perturbs the initial unpolarized states

g, and g~ into a nonsymmetric state g, and thus in-
duces a polarization O'. To calculate this polariza-
tion, consider the following matrix element:

with a„6' satisfying

B«6' = -uPtP —(2P E/h) &uN . (815)

It is important to notice that Eqs. (811), (812),
(814), and (815}are directly analogous to Eqs.
(7.4), (7.5), (2.4), and (S.V) which describe the
Josephson-junction system. The analogies a,re E'
=E Q =6' q =a+5 q =a-b.

APPENMX C: AN APPROXIMATE INTERACTING
SYSTEM

Just as in the ca,se of the junction, the full sys-
tem (814) is not analyzed but rather is replaced by
an approximate system. First Lamb approximates
the source (s«6'} since, "For the resonant situa-
tion being considered, the term 6«{P may be re-
placed by -(d,'6', where (d, is the carrier frequency
of the incident pulse. "" This follows from (81S)
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provided the carrier frequency ~, =u, and provided
u»(P E/h),

s„d'= -~'d'- (2 I d'I'/h)~E&,

—-4Po6 ~

It is to be emphasized that, at this point, the ap-
proximation is precisely the opposite of that used
in the junction problem. For the junction, the ex-
act source [Eq. (7.5)] satisfies -2s, ja equal to

this phenomenological model, could be realized ex-
perimentally.

Returning to the SIT case, the first approxima-
tion is the replacement of the source e«6' by
-mod', where u&, (=&a) is the carrier frequency of
the electric field. In a related ayproximation, the
electric field is written in terms of the carrier
mave and slowly varying envelope and phase func-
tions,

E(x, t) =8(x, t) cos[h,x ~,t-+y(x, t}],
s'4' = (d'0 0 (C4)

For the junction, the coupling coefficient T is
small. Thus the first term in (C2), being O(T'},
is neglected. This perturbation result is precisely
the opposite of the SIT case, where the first term
is retained because of the resonance situation,
while the second is neglected.

To see for the junction that the first term is in-
deed neglected, recall f=2n, Tcosn. , n. , = 4edE'/h. -'
These expressions yield

8 «2g =-8 ««Q

Sn,eT cos(s)a, .+, Q,4 T2

It is assumed that the envelope and phase functions
vary slowly on the length and time scales. of the
carrier wave, ~,g» e,h and h, S» Ivh I. Under
these assumptions the wave equation reduces to

[(e, + s 8,) 8]sin(hox —&u, t + p)

+ [(s, +pe„)y]h cos(h, x —(u, t+y) =2v(u, (d') .

(C5)

Here {d') denotes the map from microscopic polari-
zation to macroscopic polarization. "In general,
it is appropriate to allow for a continuous distribu-
tion of transition frequencies about ~'*:

s,.(sins)+O(T') .Bn,eT (C2')
(4') =n, I dog(S)5'(a;x, t),

Upon integration, Eq. (C2') yields the Josephson
current after O(T') terms have been neglected,

where g(h) describes the uncertainty of the energy
level &u, and g( ) is normalized so that

ja= ' sinn, +O(T').4n, eT
(CS) kg 6 =1.

The above paragraphs show the precise mathe-
.~atical differences between this model of the Jo-

-, yhson transmission line and the tmo-level model
for SIT pulses in nonlinear optics. If one consid-
ers retaining the first term (4T Q /h) in Eq. (C2),
the model suggests the possibility of SIT pulses on
the Josephson transmission line. Such resonances
mould be in addition to those which involve the "ac
Josephson current" interacting with a small-amp-
litude ac field. It seems of interest to check if
these SIT-like-resonances, which are present in

These first tmo approximations determine the
form of Maxwell's equation to be used, Eq. (C5).
Next, the quantum mechanics [Eq. (814)] which

specifies the source {d') is ayproximated. This
derivation of the approximation differs from
Lamb' s, but yields equivalent results. This ap-
proach has the advantage of providing a direct
physical interpretation of the linear problem which
is used to solve the SIT equations.

Consider the quantum dynamics governed by
equation (814). It may be written as

(s) jh&o, 0 i s 0
eeI II '

I
+

'~hj ( 0 h~ j h phcos{h, x-&o,t+p)

phc o(s,hx—a&,t+y)) (a)
) (&jj

(C6)

The E field in this interaction Hamiltonian may be written as

—,
' $]exp[i(h~ —&u, t + p)] + exp[-i(h, x —e,t + p}]}.

As in the study of paramagnetic resonance, only one component in (CV) contributes significantly in produc-
ing level transitions. " Thus, we replace the quantum mechanics (C6) by the approximate quantum mechan-
ics
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0 el (
iks I

- I= - I+
b) 1 g -4 — 4) 0 b

(CBa)

This quantum mechanics, together with Maxwell's equation in the form

[(8,+ss)b]sin(kx —e&t+p)+ [(8,+as„)p]h cos(kx —e,t+p) =2vrup(ab*+ba*), (CBb)

constitute the approximate interacting system to
be studied.

X' = 2ipAB*, X*= -2ipA*B.
(DB)

APPENDIX D: ANALYSIS OF THE APPROXIMATE

SYSTEMS

In terms of these variables, (D4) can be expressed
in more standard form:

(Dl)

which reduces this quantum mechanics to

In analyzing the quantum mechanics, (CBa), the
fast variation exp[i(k,x —u&, t)] can be removed ex-
actly from the problem by the change of variables

A —e-t(&ox-~ o g)/2a

e+0(ko& QPo~)/2g

s, [Se' ~] = 2x(u,p (x),

o,T=O,

s+= -(p/2k)[(Se'~)x*+ (ge '~)x],

eP = -(ig/k)~+(P'he "/k)N

s,x*= (i g/k)x'+(p'he '~/k)N

(D'I)

After some algebraic manipulation, Maxwell's
equation (CBb) takes the form

(8, + ss„)he' = 2&&ooP,~(2iAB*) . (DB)

Defining 8, +se„=—8, and selecting the zero of the

energy such tha, t ((/k) = (2&v, —u, ) = (2m~+v, ), the

final form of the SIT equations results:

s,(he'~) =2m(u~(2iAB*), (D4a)

(D4b)

ih &„=
The matrix is suitably chosen so as to carry the
information described by Eq. (D4a). Then Gelfand
Levitan theory is a.pplied to construct the 8 field.
For details, see Ref. 13.

We remark that usually the SIT equations are
expressed in a slightly different form than (D4).
Define the quadratic qua. ntities by

This quantum mechanics (D4b) is identical to the
linear eigenvalue problem introduced in Ref. 13
(see also Refs. 11, 12, and 14) to solve the SIT
equations by the inverse method. As with the junc-
tion, it arises naturally from the quantum mechan-
ics of the medium supporting the nonlinear wave.
As discussed above, one now introduces a linear
problem which describes evolution in g,

This last form is the sta, rting point in Ref. 13.
In summary, we have gone to some length in

these appendices to describe the precise relation-
ship between the linear problem used in the in-
verse solution of SIT equa, tions and the quantum
mechanics of the interacting SIT system. In addi-
tion, we have drawn a precise analogy between SIT
and the Josephson junction. In both, the interac-
tion of the electromagnetic wave with the medium
is described by semicla, ssical radiation theory.
And in both cases the "exact" interacting system is
replaced by an approximate interacting system. In
the SIT case, the approximation is based upon the
resonance interaction between the frequency of the
carrier wave and the excitation energy for the two-
level medium: for the,Tosephson junction the ap-
proximation is based on the small magnitude of the
Josephson current. In both cases the approxima-
tion forces the electromagnetic waves to be gov-
erned by a nonlinear wave equation which is solved
by the inverse method. In both cases the linear
problem used in the inverse method is the approxi-
mate quantum mechanics. In the case of the junc-
tion, this approximate quantum mechanics is re-
lated to the exact quantum mechanics by a pertur-
bation theory with respect to the strength of the
Josephson current. For the SIT system, this ap-
proximate quantum mechanics is obtained from the
actual quantum mechanics through a resonance and
fast variation argument.

Note added in proof. In Ref. 2V the two-level de-
scription of the Sosephson junction is derived from
a more fundamental theory. There the validity of
this two-level description is discussed.
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