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In a previous paper, we demonstrated that a set of new resonances can accompany the conventional

infrared Lamb-dip or double-resonance transitions in CH,F gas. These satellite lines have a different

origin from the primary resonances even though they are similar in intensity and linewidth. The

traditional double resonance, for example, requires that a molecule interact simultaneously with two

radiation fields, causing a transition from an initial to a final state through an intermediate level. Here,

the double-resonance concept is extended to the situation of two coherently driven optical transitions

that do not share a common level but are coupled by molecular collisions that tip the angular mo-

&mentum vector while preserving the molecular velocity and rotational energy. Thus, velocity-selective

population changes are communicated from one transition to another through collisions. Collis!on-

induced double resonance is observed with Stark tuning as a series of sharp lines, free of Doppler

broadening and can be explained in the same order of perturbation theory as the ordinary double-

resonance experiment. Each satellite corresponds to a specific level structure involving one or more

collision-induced transitions among the space-quantized M states. Virtually all characteristics of these

satellite resonances, either in Lamb-dip or double-resonance experiments, are in agreement with

theory presented. %'hile purely optical coupling mechanisms can yield double-resonance behavior also,

such effects are estimated to be too weak. Fnr &he symmetric top molecule CH, F, the dipole-dipole

interaction of collision pairs dominates and induces the observed reorienting transitions. The corre-
sponding cross section for low-angular-momentum states (J,K = 4,3 or 5,3) ls found to be —100 A-'

whereas for high-angular-momentum states (J,K = 12,2), the cross section is calculated to be about

100 times smaller, and satellite resonances are not even detected. A treatment is presented also for the

case where the collisionally coupled M states require a sequential transfer of population over intermed-

iate levels. The problem of velocity smearing is discussed in this context where the energy exchange in

a collision is small and also for more energetic collisions that may involve rotational quantum jumps.

I. INTRODUCTION

Nonlinear resonance phenomena that utilize laser
light have provided unique spectroscopic techniques
for the study of atoms and molecules. Examples
are the Lamb dip and the double-resonance effect
where a molecule interacts simultaneously with
two radiation fields. The fields may be of the same
frequency. and propagate in opposite directions as
in the Lamb dip, or be of different frequency, 0,
and Q„and move in the same direction as in the
double-resonance effect. In either case, the two
monochromatic light waves saturate two narrow
velocity groups within the Doppler distribution.
When these merge into one velocity group either
because of tuning of the molecular level structure
or the laser frequency, this group interacts simul-
taneously with both fields and exhibits a sharp res-
onance that is free of Doppler broadening. This
class of nonlinear optical effects is now well known
and extends the radio-frequency double-resonance
methods developed in molecular-beam' and optical-
purnping experiments.

In a previous paper, ' we demonstrated that a set
of new resonances can accompany the ordinary
Lamb-dip' or optical double-resonance transi-

tions. ' ' These satellite lines, which have not been
discussed before, have a different origin from the
primary resonances even though they are similar
in intensity and linewidth. As an illustration, Fig.
1 shows a double-resonance spectrum for an in-
frared transition of the symmetric-top molecule
"CH,F which is tuned by means of a dc Stark field
for the experimental arrangement shown in Fig.
2(c). The ordinary double resonances, lines c and

e, correspond to the molecular level structure of
Fig. 2(a) where the transition proceeds from an in-
itial to a final state through an intermediate level.
The remaining lines, the satellites, display a dif-
ferent tuning behavior and correspond to the level
structure of Fig. 2(b). Here, the two transitions
involved do not share a common level but are cou-
pled by molecular collisions rather than optically.
In a bimolecular encounter, the partially saturated
molecules are transferred from one level to
another without an appreciable velocity change.
Thus, velocity-selective population changes are
communicated from one transition to another
through collisions.

The relevant collision mechanism, first discussed
by Anderson, ' is the electric dipole-dipole force
of two "CH,F molecules. The anisotropic part of
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FIG. 2. (a) Traditional double-resonance level con-
figuration; (b) collision-induced double-resonance level
configuration, with wavy lines indicating collision-in-
duced transitions; (c) experimental arrangement for
monitoring optical double-resonance signals.

this interaction can tip the angular momentum

vector without changing the longitudinal molecular
velocity or the rotational energy. Recent photon
echo experiments'o on "CH,F reveal, in fact, that
the average velocity jump per collision is only
85 cm/see. It has not been realized until now,
however, that even if the velocity changes but little
in a collision, a molecule may reorient easily,
going from an initial space-quantized state Mto
another of the same J state. This circumstance
leads to the newly discovered double resonance,
characterized by a sharp resonant tuning behavior,
free of Doppler broadening, and with an intensity
comparable to the traditional double-resonance
signal. For the same reasons, I amb-dip spectra
also are found to exhibit collision-induced satellite
lines. ' ' These effects thus add another dimension
to nonlinear optical spectroscopy and offer a new

way of examining molecular collisions, particular-
ly those involving reorientation.

This paper presents further observations and a
theory of collision-induced Lamb-dip and optiea, l-
double-resonance phenomena not contained in our
earlier communication. ' The basic interpretation

that the two optical transitions are coupled by col-
lisions, rather than optically, is fully confirmed
by our theoretical findings in virtually all details.
Optical coupling mechanisms have been explored
also, but according to our estimates are too weak
to be seen (Appendix C).

It should be noticed that collision-induced optical
double resonance resembles four-level microwave
double resonance, "where eollisional relaxat'
among molecular rotational states has been inves-
t'igated. There are, however, two significant dif-
ferences. First, the optical work is velocity sen-
sitive and the more energetic collisions needed to
produce a rotational energy jump can also lead to
a velocity smearing which would manifest itself in
the linewidth. The microwave experiments do not

supply this information because the entire Doppler
lineshape is monitored.

Second, in microwave double resonance, the four
levels involved are usually all coupled to one
another by collisions. The infrared experiment is
simpler because radiation and collisions induce
different transitions lsee Fig. 2(b)]. This arises
from the vibrational decay being considerably slow-
er than orientational and rotational relaxation.
Hence, the upper and lower level pairs essentiall y
remain eollisionally isolated from each other.
Data analysis is therefore straightforward for the
optical case and the extraction of collision cross
sections is facilitated.

Recently, molecular collisions which induce an

pinversion" in NH, and a rotational quantum jum "
in CO, have been noted in other forms of optical

ouble resonance. These wexe observed as s' 1

resonances corresponding to one collision-indueed
quantum jump but are manifestations of the same
double-resonance condition even though they were
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not observed as satellite lines accompanying the
primary double-resonance signals, Each satellite
line, on the other hand, corresponds to a specific
level configuration where the eollisionally coupled
M states involve one o~. mo~e quantum jumps.
Another distinction is that pronounced velocity
smearing can occur when the collisions involve a
larger energy transfer than the angular momen-
tum tipping process described here.

&&. THEORY

A. Basic equations

&~II.lb&=I ., «, &cl v. ld&=u„«

&cl u. ld&= &bl w. lc&=0.
(2.3)

We want the equation of motion for the four-
level system in Fig. 2(b) including collisional cou-
pling between a-c and 5-d. A straightforward
generalization of the treatment of Ref. 15 leads to
the equation of motion for the velocity-dependent
density matrix:

i = iA(U)+ [II,p(v)]- —p(v)
. sp(v)

Bt 7

+j, II v, v' —6v —v' p v',
(2 4)

mhere the diagonal matrix A is the steady-state
rates at mhich molecules enter the optically active
levels. The decay constant ~ is the duration of the
interaction assumed to be dominated by the molec-
ular transit time across the laser beam and is
taken to be equal for all density-matrix elements.

The double-resonance experiment is performed
in the configuration shown in Fig. 2(c). Two cw
lasers are locked to a fixed frequency difference
0, —, and their light enters the Stark cell from
the same direction. We write the field in the cell

E,(z, i) = E, cos(Q, i —kz)+E, cos(Q, i —kz), (2.1}

mhere me neglect the differences between the prop-
agation vectors k, =Q,/c (i=1,2). This is a good
approximation because the frequency difference is
in the rf region. " A moving molecule mill experi-
ence a field obtainable from (2.1}when its instan-
taneous position z(t ) along the beam direction is
inserted.

The tmo fields can resonantly drive two transi-
tions, shown in Fig. 2(b), where c and a are sub-
levels of the excited state and b, d of the ground
state. In the dipole approximation, the levels are
optically coupled by

H, = —p, „E,( iz),

and the selection rules are such that

The last term of Eq. (2.4) represents the effects
of collisions on the density matrix; T(v) is the
average time between collisions. In general the
collision operator II is complicated (see Appendix
B and below), but for the present purpose it re-
duces to the term containing z in Eq. (2.10).

The collision kernel II(U, U'} is a matrix operator
in the indices of the density matrix. It can cause
three qualitatively different features. We will dis-
cuss the influence of each one for the double-res-
onance experiments on the symmetric-top mole-
cule CH, F.

(a) The phases of the complex off-diagonal ele-
ments, H„say, cause phase shifts of the molecu-
lar oscillators. These are observed as collision
shifts and broadenings of the spectral lines as in
the ordinary Lorentz treatment. " In dilute molec-
ular systems, collisions affect the vibrational
transitions very weakly; in particular Schmidt,
Herman, and Bremer'0 show that phase-changing
collisions have a negligible influence on CH,F.

(b) The integration in the collision operator de-
rives from the velocity changes induced by the
molecular scattering process. In Ref. 10 it is
shown that an average velocity jump is 4u —85
cm/sec, which corresponds to a frequency of
&v=k4i~ =10' Hz. Because this is of the order of
the observed molecular linewidth, most encounters
take place mithout removing the molecule from the
velocity group interacting with the field. In the
simplified treatment to be presented me neglect
velocity changes, i.e. , II(v, v')~5(v —v'); an ex-
tension allowing collisional smearing of the veloc-
ity is discussed in Appendix B.

(c}The collisions are allowed to change the M
state of the molecule. We assume the mixing of
the optically coupled (vibrational) states to be
negligible but allow reorientation of the angular
momentum. This manifests itself as a coupling
betmeen the states a-c and b-d. The result is a
transfer of velocity-dependent populations from
one transition to the other. As the two transitions
are driven by different frequencies we expect the
stochastic distribution of the collision times to
make the coherent coupling average to zero (i.e. ,
there is no transfer of off-diagonal elements be-
tmeen the tmo transitions). . This presumes that
the influence of off-resonance driving (Q, on a-b
and Q, on c-d) is negligible. The possibility that
off-resonant driving could be observed in a double-
resonance experiment is discussed in Appendix
C, and it is shown to be too weak.

We introduce the col.lision broadened linewidth

(2.5)

with (1/T) being the contribution from all types of
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collisions (for simplicity we assume the same T
for all levels). The fraction of the linewidth due
to reorientation is mhere

(a, +kv) —iy
~ Pl hg (2.14)

K= + (2.6} +1 +ah ~l ' (2.15)

%'ith pomer broadening, y determines the ob-
served linewidth and v determines the strength of
the nem resonances. Collisions that change the
angulax momentum J are not monitored in the
present experiments but contribute to y. The tran-
slt1on frequencle s Rre

From (2.8) and the equation for p„we obtain

2&+i
n ba Pbb Paa (Pab Pba }

+ ~huPu~ &oPcc+
y

(2.16)

(o„=(E; E,)/I-I, (2.7) From these equations me find that

with E& the energy of i i) In.general four velocity
groups are excited, viz. ,

2' y
Pab Pba (~ I ab I 2 ~bdpdd ~acpcci+ p) + y

kU = Qi —
(ding, y kV = 02 —

(ding (2.8)

(2.9}
mhere

(2.1'I )

In the double xesonance only one pair mill be of
interest, e.g. , (2.8), where the field E, is in reso-
nance mith transition a-b and E2 mith t."-d. %'e can
then consider one field for each transition only, as
opposed to both fields driving both transitions.

For a certain choice of selection rules (vide
infra) each field can interact with one of the tran-
sitions only.

Ii=y +4+i (2.18)

i(Qag -Az)

(n, +kU) —iy"" ' (2.19)

is the pomer-broadened linemidth.
The populations p«and p„have to be obtained

from the equations for the transition e-d. In anal-
ogy with Eqs. (2.10)-(2.16) we obtain

8. Calculation of the density matrix

Rnd

o., = p, „E,/2ri (2.20}

%e f1x'st consider the equRt1ons fox' the transition
a-5 only. With the simplifications discussed in
Sec. IIA these equations are

fpbb
--f(Xb —ypbb) + 2Cki cos(01k —kZ) (pba pab)

Further me obtain
2g Q'2

&dc
=

pdd
—pcc =— (pc d Pdc}

(2.21)

+ ~y~~Pgg (2.10) —A.
+ ~M~hh ~ad oa +

y

bpab Rabpab —Zypab —2&i cos( 1f —0 )(pbb —paa) q

(2.11)

and the corresponding equations for p„and p„. %e
use the notation

In order to insert pdd and p„ into (2.17) we solve
Eqs. (2.19) and (2.22) with the collisions neglected.
This corresponds to a perturbation expansion in
xM and a„, mhich is justified in the present case
because x is small. %e obtain

Qi = P, abEi/2A (2.12)

and introduce molecules in the state i b} at the rate
Xb as defined in Eq. (2.4) (and X, for level i a)). The
collisions are assumed to transfer population, not
coherence, and y is the decay rate due to all pro-
cesses depleting i 5) including transfer to id).

%e remove the rapidly oscillating component of
the off-diagonal element" by setting

mhere

I 2 =y'+4+22.

In the same approximation me can obtain

Pd, +P„=(Zd + Z, ) /y

(2.23)

(2.24)

and perform the rotating-mave approximation to
obtain from (2.11)

~A, A.q
—A. 2 N2

y y (6b+kV) +I'b (2.26)
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A. X~ —A~ 2nq

y (b, +kv)2+ I"', '
exhibiting a resonance behavior identical with that
of (2.28).

giving for the dcuble-resonance part of (2.17) the
expression

(,) (,) 4i a, o(22(((„ + K„)(X~—X,)
[(a, +kv)2+ I', ][(b,, +kv}2+ I', ]

(2.28)

where we have omitted terms which fail to display
sharp double-resonance behavior. %e note that the
polarization given by (2.28) is strongly enhanced
when 4, = 4„because this allows the same velocity
group to satisfy both resonance conditions of the
denominator.

Proceeding from Eqs. (2.19) and (2.22) we can
in an identical way derive the double-resonance
contribution to the element p, ~ in the form

(,) (,) 4ia, (z', (((M+ «„)()(,—)(,)
[((),+kv}'+ I', ] [((),+kv)'+ I",]

(2.29)

C. Absorption measurement

W= (E(z, i)P(z, i))'„'„",", (2.31)

where ( )'„",",
"

denotes a time and a velocity average.
Introducing p, ~ from (2.13) and p, ~ from (2.19}into
(2.30), we obtain

2+([WabE1Q1(pab Pbc)/~+ 4'cdE2Q2(peg Pdc)!(]) ~

(2.32}

From (2.28) and (2.29) we obtain the velocity
average

The polarization induced in molecules by the field
(2.1) is

P(z, t) =N[p„(p,,~+p~)+p„(p, z+pz, )] . (2.30)

The energy absorbed in the sample is proportional
to

(
dx

[(r, + kv)'+ I', ][(n, , +k v)'+ I', ] „„, ku(("' „[(~,+ «}'+r', ] [(~,+ «}'+I', ]

z(r, + I;)
r, r, [(z, —~,}'+(I,+r, )'] '

Inserting (2.28), (2.29) with (2.33) into (2.32}we find for the absorption

(2.33)

(2.34)

where i), equals Q in the exponent at resonance. This is the final result to be compared with the experi-
ments. In our approximation the result is proportional to the average collisional reorientation rate
y' =-,y(((„+«„). This result is to be compared with the expression for the ordinary double resonance which

is given in Appendix A for easy comparison.

D. Lamb-dip measurements

It is straightforward to generalize these considerations to a Lamb-dip experiment. ' %e take a standing
wave

E,(z, t) =2EcosQ, icoskz = Ecos(Q, i-kz) +Ecos(Q, t+kz} (2.35}

instead of (2.1) and find that the calculations remain the same with (Q, i —kz} replaced by (Q, t+kz). The
parameters n, and n, now contain the same field F but still have different transition-matrix elements. The
double-resonance contribution to the polarization (2.29) now reads

P(l) -(1) 4ia, n2(((„+«„)()(,—X.)
[ ((d, ~

—Q, +k v) + I', ] [((d,~
—Q, —k v)' + I' I]

and the final result after Doppler averaging is

(2.36)
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There now occurs a resonance at

Qt = a (td as+ tdr a) (2.38)

wltll llnew1dtll (I'1 + I's), ltt colltl'ast to tile prev1-
ously found linewidth (I;+I;). This derives from
the two conditions

+,~=A, —kv, m, ~=A, +kv (2.39)

being satisfied for the same velocity group [see
(2.8)]. Now, however, the conditions

(dq~ = Q~ +If!vg (d~g = Qg —O'U (2.40)

corresponding to (2.9) are satisfied simultaneously,
thus enhancing the signal by a factor of 2. Two
symmetrically situated velocity groups at

frD = k(eddas —Qt) (2.41)

III. APPARATUS

A. Double resonance

The experimental arrangement' schematically
given in Fig. 2(c) is displayed in detail in Fig. 3.
It consists of two laser beams which are collinear
and propagate in the same direction through a pre-
cision Stark cell, containing a "CH,F-gas sample,
before striking a photodetector. The signals are
monitored with phase-sensitive detection using
small-amplitude Stark modulation. The radiation
is provided by two CO, lasers with identical con-
struction for frequency stability. " Each operates
cw with single frequency output, the power is about
1 % in each line, and oscillation on any one of 70
lines in the 9 and 10 p, m bands is controlled by a
rotatable grating at one end of the laser cavity. In
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FIG. 3. Block diagram of the double-resonance experi-
ment.

are involved, in contrast to the ordinary Lamb dip
which involves only one group at zero velocity. The
measured intensity is, consequently, twice the re-
sult given in (2.3'I).

this experiment, both lasers oscillate on the same
line, the P(32} line of the 9p, m band at 1035.474
cm

Reproducible resonances are obtained by fre-
quency locking one laser to the other. This is ac-
complished by monitoring their beat frequency
(Q, —Q, ) with a germanium-gold-doped photodec-
tor, and comparing it with an rf reference. A fre-
quency-to-voltage converter produces an error
signal that drives the cavity length of one of the
lasers by means of a piezoelectric. Long term
stabiUty of 1/100000 can be achieved in the differ-
ence frequency (Q, —Q,}, which could be set in the
range 10-50 MHz.

Both laser beams are expanded to 1 cm diameter
with the aid of a telescope in order to increase the
molecular time of flight in the transverse direc-
tion. The resulting power densities at the Stark
cell are -1.2 and 0.4 Wjcm'. The beams are nor-
xnally polarized perpendicular to the Stark field,
imposing 4M =+1 selection rules. However, par-
allel polarized light and the 4& =0 selection rule
are obtained by inserting a CdS half-wave plate in

one or both beams.
The vibration-rotation transition of "CH,F in-

vestigated was the fundamental vs band line (Z, K)
= (4, 3)- (5, 3). It coincides within its 66-MHz

Doppler width with the P(32) CO, -laser line. The
double-resonance spectrum, as will be seen, con-
firms the line assignment unambiguously and

agrees with that of conventional infrared spectros-
copy, "where the K splitting is not resolved. The
gas sample contained a 90% or more enrichment of
"CH,F.

The optical Stark cell is made of components
having optical tolerances and consists of two fused-
quartz disks that are 4-in. -diam& &-in. -thick, flat
to +10 ' cm, and coated on the inner surfaces with

vacuum-deposited aluminum. Separating the flats
are fused-quartz spacers whose thickness as de-
termined by gauge blocks is 0.60256 +0.00001 cm.
Measurements of the Stark voltage are made with

a digital voltmeter, checked against a standard,
and accurate to 0.008~j(;.

The Stark field is swept in steps and the double-
resonance spectrum recorded digitally by means of
a small computer. This procedure facilitates sig-
nal averaging and data handling and allows a least-
squares fit of the lines to a I orentzian line shape,
including an accurate determination of the line
centers and linewidths. The spectrum of Fig. 1

shows an example of the computer plot. Alternate-
ly, spectra may be obtained without a computer
using a continuous Stark voltage sweep as in Figs.
4 and 5. For the dipole-moment measurements,
line positions are an average of forward and re-
verse sweeps and the zero-voltage condition was
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tested by reversal of the power supply leads to the
Stark cell.

&. Wmbdip

This experiment requires only one CO, laser and
resembles one of our earlier studies. " The inci-
dent beam, after passing through the Stark cell, is
partially reflected (-8/q) back upon itself by a BaF,
optical flat. It is slightly misaligned in angle so as
not to enter the laser cavity and disturb its opera-
tion. The remaining 92/q of the incident beam is
monitored with a photodetector and displays Lamb-
dip resonances with Stark tuning.

TABLE E. CH&F double-resonance lines (A& = 30.008
MHz). (Selection rules: ~=+1 in both transitions.
See Fig. 1.)

370,9 (4A) —2A„)

281.99(2D,))
237 0(Et +Au)
]92 48(2Q )

147 8(36'

80,90
92.00

106.42
126.58
155.90
203.08

80.78
91.85

106.42
126.51
155.90
203.17

960
640
410
810
400
750

Line center
Stark ti~ning rate (V cm ~) Linewidth

Line (kHz V ~ cm} Observed Predicted (kHz, F%'HM)

IV. EXPERIMENTS

A. Double resonance

An optical-double-resonance spectrum of "CH,F
is shown in Fig. 1 when the optical selection rule
is ~M = + 1. This constitutes the primary evidence
for collision-induced optical double resonance.
These lines appear as the molecular levels

~

J', K, M) in lower and upper vibrational states are
tuned by an external electric field e causing the
first-order Stark shift"

& W, = —geMK/J(J+1) . (4.1)

All of the lines of Fig. 1 satisfy the resonance con-
dition

n, —n, =(m~,. -a~)e, (4.2)

where m and n are integers, and from (4.1) the
Stark tuning rate a -=aW, /c applies either to the
lower or upper vibxational state. The strong lines
c and e are the ordinary double resonances with the
level structure of Fig. 2(a) and correspond to LM
=2 intervals in the lower and uppex levels, respec-
tively.

The remaining lines (a, b, d, and f) are the col-
lision-induced resonances and corxespond to the
level configuration of Fig. 2(b), where the two tran-
sitions do not share a common level. Table I lists
characteristics for each line of Fig. 1, where
0, —0, =30.008 MHE, and identifies the integers
m and s in Eq. (4.2). Thus, line a involves two
transitions whose lower levels are separated by a
4M =4 interval while the upper levels are split by
a AAf=2 interval. The positions of the satellite
lines are predicted on the basis of the Stark tuning
rates A, and 4„obtained from the ordinary double-
resonance lines c and e and it is seen that the
agreement with the observed values is good to
1/1000 or better. The accuracy of these predic-
tions removes any doubt that the satellite lines are
double resonances involving four levels, i.e. , two
transitions without a common level.

The linewidths indicated in Table I are about

8. Dipole moments

In Table II similar data are presented for the
case (0, —0,) =40.039 MHz and n, M=+ 1 selection
rules. The behavior generally reproduces Table
I but is considered to be more accurate owing to
the higher beat frequency and narrower linewidths.
For this reason, permanent electric dipole mo-
ments for the ground and excited v, vibrational

TABLE II, CH&F double-resonance lines QQ =40.039
MHz). (Selection rules: ~=+ 1 in both transitions. )

Line center
Stark tuning rate Prem ') Linewidth

Line (kHz V cm) Observed Predicted (kHz, FWHM)

325.6 (Rh) —6„)
281.07 (26,g )
236.4 g, +~„)
191.82 (24„)
147.1(.'M„—4g )

122.98
142.45
169.36
208.73
272.12

122.93
142.45
169.34
208.73
272.01

440
250
495
240
590

50& narrower than the 66-MHz Doppler width, but
notice that the satellite lines are about twice the
width of the three-level double resonances, in
agreement with Eqs. (2.34) and (A19). The fact that
the two types of double resonance have about the
same linewidth shows that the velocity is essential-
ly preserved and supports the photon-echo results. '

Other characteristics of Eq. (2.34) have been con-
firmed by experiment also. For example, by at-
tenuating the intensity of either laser beam, it is
seen that the collision-induced double-resonance
signal varied as E', E2, in accord with the ay~p
product of (2.34). The three-level double-resonance
signals behave in the same way [see Eq. (A19)].
Furthermore, the anticipated linear pressure de-
pendence is verified. Only at the lowest pressure
is a quadx'atic dependence approached because then
g-y'/y varies as N since the linewidth y is domi-
nated by the molecular time of flight v across the
laser beam.
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states were obtained from these data and are given
in Table III. These values were reported by us
earlier in preliminary form [Ref. 8(b)] and they
are in good agreement with the values derived from
molecular-beam experiments" (ground state) and
Stark-tuned laser spectroscopy of Freund et al."
The slightly higher moment for J= 12 suggests the
influence of rotational distortion.

C. Off -resonant driving mechanism

Another possible mechanism that could couple
two transitions not having a common level is an
off-resonant driving effect. This involves two dis-
tinct molecular groups, each in resonance with its
own radiation field. If we consider„ for example,
that the field of frequency 0, not only drives the
transition c-d resonantly but also the transition
a-b nonresonantly, an interference effect with a
double-resonance tuning behavior can occur, as
explained in Appendix C. While such an effect re-
produces some of the observed double-resonance
characteristics, it severely violates others. A
dramatic example of disagreement with this mech-
anism is shown in Fig. 4 and the corresponding
Table IV, where the selection rule for one transi-
tion (a-5) is &M=0 and the other (c-d) is n~=~ l.
Clearly, off-resonant driving cannot occur in this
case because the light is incorrectly polarized,
and yet double resonances appear. The lines y and
5 are the primary three-level resonances with a
h~ =1 interval in the lower and upper vibrational
state, respectively, andthe lines n, P, and p are
the satellite four-level resonances that are colli-
sion induced.

D. Lamp dip

Other experiments were conducted using one
laser beam reflected back on itself through the
Stark cell. With the selection rule ~M =0 operat-
ing, this yields a series of Lamb dips (M = 1-1,

TABLE HI. CH&F dipole moment (in debye).

v 3,J,E CHEF v &,J,E ~2CH F [Ref. 8(b)]

0, 4, 3
1, 5, 3

1.8578 (6)
1.9038(6)

0, 12, 2
1, 12, 2

1.8597(4)
1,9067(4)

2- 2, etc. ) and a set of lines, almost as intense,
midway between them on a frequency scale. Thus,
the double-resonance condition 0, = —,'(u&„+to„) is
satisfied in agreement with Eq. (2.38). We see that
a particular velocity group defined by Eg. (2.41)
contains (i) molecules in level d that Doppler shift
one light wave into resonance with the transition
c-d, and (ii) molecules in level 5 that Doppler
shift the oppositely running light wave into reso-
nance with transition a-5. Again, communication
between the two transitions results from angular
momentum tipping collisions that preserve veloc-
ity v, . That such a coupling must occur is espe-
cially evident here since only one of the two light
beams is monitored. However, in this case the
Lamb-dip and satellite lines are observed to have
the same itnewidth in agreement with Eg. (2.3'I)
and in contrast to the double-resonance results of
Sec. IV A.

V. MPOI.E INTERACTION

The mechanism which tips the angular momentum
vectors of two colliding CH, F molecules is the
long-range anisotropic interaction of their perma-
nent electric dipoles. ' We consider one of the
molecules in state ( Z, K, M) and with velocity v,
to be tagged by the laser beam, and the other
molecule is in an arbitrary state with any velocity.
Owing to the weakness of the interaction, the colli-
sion-pair molecules proceed along nearly straight-
line trajectories without changing their rotational

I I

120 140 160 180 200 220 240 260 280 300 320 340

Stark F ield (Volts/cm)

FIG. 4. Optical double-resonance spectrum for CHSF with O1 —&2=29.930 MHz. The optical selection rule is AM
=0 for one transition and AM =+ 1 for the other. The spectrum is displayed directly on an x-y recorder as the Stark
field is swept continuously. The phase of the detector is reversed by 1r from Fig. 1. Lines p and 6 correspond to the
level structure of Fig. 2(a) and n and p to Fig. 2(b). Line p of Table IV is not displayed here.
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TABLE IV. 3CH&F douhle-resonance lines (DA= 29.930
MHz). (Selection rules: ~= 0 in one transition and ~
=+1 in the other. See Fig. 4.)

Line
Stalk tuning rate

(kHzV «cm)

Line center
(Vcm «)

Observed Predicted

228 4(Mt Mu)
184.5(M) -6„)
140 35+,, )
95.72( .)
51.52(M„-6, )

131.0
162.3
213.25
312.68
580.9

130.4
161.8
213.25
312.68
585.8

+—200 kHz

I l I I } I j I i

}580 l680
E (volts/cm)

or vibrational energy. A small orientational or
Bark energy is exchanged, however, for transla-
tional energy which modifies the average v, com-
ponent of each. This velocity smearing, which is
on the order of 0.2% of thermal velocity, contrib-
utes to the satellite linemidth but as yet has not
been detected because of its smallness. These ex-
periments, therefore, allow a detailed unfolding
of the relaxation process in its dependence on J,
I4, and M quantum states as mell as on v, .

The dipole-dipole collision mechanism for two
symmetric-top molecules mas originally discussed
by Anderson, ' mho showed that the relevant matrix
elements are the same as for radiative transitions
with selection rules M=0, +1, 4' =0, +1, and 4K
=0. To first order, the transition rate for one of
the collision partners, mhen J is fixed, will be
proportional to the matrix element squared

[(Z,K, M( e„„„JZ,K, M a) P

where
(5.1)

3(g r—)(V2 r)/r'
dIPOIC 3 (5.2)

It is apparent that molecules with high J and lom

K are not tipped easily. This is in conformity with
the classical argument that more rapidly rotating
objects are more difficult to reorient by an extern-
al force. Only the component of the dipole moment
p. along the J' direction is fixed in orientation and

can exert a time-averaged force on a second mol-
ecule where the projection of p, along J'is p, cos6
= pK/4, in accord with (5.1). It is for this reason
that collision-induced double resonance has been
seen here in the "CH,F transtion (Z, K) =(4, 3)- (5, 3) but not in our earlier studies' of the CH, F
transition (Z, K) = (12, 2) —(12, 2). The double-reso-
nance spectrum for the latter is x'eproduced in
Fig. 5 and shows no hint of satellite lines, partic-
ularly midmay between the tmo primary three-level

FIG. 5. Optical-double-resonance spectrum for
«2CH3F with Q« —Q2 ——39.629 MHz. The optical selection
rule is 4 I=+1. (See Hef. 8 for details. ) The lines
correspond to the level structure of Fig. 2(a).

resonances. Estimates based on (5.1) suggest that
the satellite lines of Fig. 5 should be weaker than
those in Figs. 1 and 4 by about tmo orders of mag-
nitude. On the other hand, microwave-double-res-
onance experiments" failed to show any collision-
induced n. M =+ 1 transitions (J constant) for OCS
because for a linear molecule, the dipole direction
is not fixed, corresponding to K =0, and the time-
averaged force between two molecules is zero.

An estimate of the cross section for reorienting
CH, F collisions can be derived from the intensity
ratio of lines d to e or d to 8 of Fig. 1. The inten-
sity ratio of the satellite line, Eq. (2.34), to the
primary line, (A19), is just (x„+x,„)/2=@'/y when
me take into account the difference in linewidths
and ignore power broadening. This gives y'/y
=0.15 and a cross section of -100 A' for AM =+1
collisions, as an average of the upper (Z, K = 5, 3)
and lower (J', K =4, 3) vibrational states. We infer
that the remaining 85% involves M=+ 1 jumps;
the matrix elements are also given by Anderson.

The cross section is only an estimate. The lines
c, d, and e contain 7, 8, and 9 different transitions
each. They are distributed over the Doppler pro-
file and only an exact knowledge of their positions
would allow a precision determination of the cross
section.

By inspection of Table I, me see that lines 5 and

f each involve a AM=1 and a 6M =3 splitting,
mhereas line d involves tmo AM = 1 intervals. %'e

see from Fig. 1 that lines 5 and f are indeed half
as intense as d, in agreement with the idea that
4M =1 jumps are significantly more probable than4' = 3 jumps, the x'esult being approximately in-
dependent of vibrational state. Line g, mhich is
about one-fourth the intensity of 5 or f, exhibits
a ~M =4 and 4M = 2 interval and requires either
two n M =1 jumps in series (see Appendix D) or a
single AM =2 jump. The selection rules that apply
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in this case mill require further study as mell as
the behavior of CH, F in the presence of foreign
buffer gases, where dipole-induced dipole and di-
pole-quadrupole interactions can occur.

where me have expanded in

)32 = p~gE2/2 tt .
We introduce (2.13}and

(A5)

APPENDIX A: THREE-LEVEL DOUBLE RESONANCE

In Fig 2(.a) we label the top level a and the two
lower levels 5 and d mith the selection rules chosen
so that

(pl)LI&)=p. , «, (ol) l(t)=)L., &0.

~(~) e~(&&~-~~) -(i) ~(~)e- «&

( 3+k~ ty)pad olpM t 2 du (A7}

where AQ =Q, —Q, . From (A3} and (A4} follows,
in the rotating-wave approximation,

This is the case treated in detail by Feld and

Javan. ' We recalculate their result within the
present framework to allom an, easy comparison
with the nem features discussed in the present
work. We consider a velocity group such that A,
is nearly in resonance with „and A2 with v„.
As in Ref. 7 me restrict our treatment to the case
where E, is small enough to admit a perturbation
treatment.

When E, =0 me easily obtain the Eeroth-order so-
lution [cf. Eqs. (2.14}-(2.16) with K =0]

~(g) (o}
(a, +kv} —iy

6 btt(

p(O) —(p(0) y p(0) p(0) +p(0))

and

(P} Ab A(2 2 Qy

(tL, + k U)'+ I,

Solving (A"I) and (A8) we obtain

((g gQ+ty}p(&) — o, P(&)+P P(o)

where

~(p) = (p) ~(p}
de +dd ~ac

(A8}

(A9)

(A10)

A,b A, +

'(6 +au)'+I") (A2) P =P +-(q} „Xb- A, Qy ~(p)
ad f 2 ~ gg+ 1 ha

db

In addition, me need to solve the first-order per-
turbation equations

ip~~ = ((d~~ —iy}pg~ —2Q~ cos(Q~t —kz)p(, z

—2p, cos(Q, t —kz)n,',", (A3)

ip„= (- (u„—iy)p„—2n, cos(Q, t -kz)p„~ ~ (S) ~ (x) (x)

Inserting

Q
&3+0v+ ' . —iy

COdb
—AQ + gP

p„= „,' ~ (z)., +kv —iy)-(0) ~x()(~ —).}&y

(All)

(A12)

+2P, cos(Q, t -kz)p,',", (A4} and n~(0) from (A9) we find

2 1

~ca &Q+ ty ' ' &, +kv —iI, '

&, +kv- iy Ab —X~

(&, +k() —ti', ) ((o„—aQ+iy) (A13)

Here the term proportional to p,',"[cf. (A9)] has been omitted as irrelevant for the double-resonance
phenomenon. Performing the Doppler average of (A13} we notice that the only singularity at the integrand
in the lower half-plane is

k p = —&~ —iI"~

and me can calculate

( (l)) Pz L -LP&/A +
( ) db Q+ty+2t(y+Fl) ~b ~g

kn(( tI i([hip(, —zLQ + t(y+ I~)] ((dye —tLQ+ ty) —(L|}

(A14)

(A15)
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The zeros of the denominator are and the observed quantity (2.32) will contain a term

(u~~ —&Q = -pi[(2y + I;)a(r, —4a', )'~']

= ——,'i(2y+r, +y). (A16)

W, = —8NAQ, a,a2G(h„h~),

where

(84)

The singularity of width 2y+2I; cancels the nu-
merator and we are left with

( (,) 2w P,a, e & (x, -A)r/2 2 +2/ $2g2

our, [~„-n.Q+ ,'f(y—+r, )]

(A17)

This is the narrow resonance obtained by Feld and
Javan [Eq. (54) of Hef. 7].

As in Eqs. (2.32)-(2.34) we calculate the power
absorbed by the sample:

W = 2&{y„—E,Q. ,2 Imp„" + p„E,Q,2 Imp, „")„„,.
(A18)

We have calculated p,~, and a similar calculation
gives p & . We illsel't these lllto {A18) alld obtain

dv""~)=. (~.~.)"~dv', X, (v') —x, (v')

(»)
We assume a Gaussian steady-state distribution

~,(v) —X,(v) = (A~/v v'u) e " '", (86)

with a width u» I'/k. Then (X~ —A, ) can be taken
outside the integral with v' = n, /k.

If we choose the collision kernel II to be a sym-
metric function of an arbitrary linear combination
of the velocities,

II(v, v') =II(v —av'),

we find

2~ '&&'P2 -g,',ga2s2)

km''~ 1 2

{v)= vII(v, v')dv

(88)

(A19)

This is the final result to be compared with the
new double resonance (2.34).

APPENDIX 8: EXTENSION OF THE COLLIMON MODEL

The general collision kernel of Eq. {2.4)

p'(v) =, ,
)
II (v, v') p(v')

mixes the velocity components. If we introduce
this into Eq. (2.10) we get, instead of (2.17) [omit-
ting the term (X, —X,)/y ],

2fa1 II (v, v ) (,)(6 +kv)2+ Q „T(v')
(82)

Introducing the collisionless result (2.23) for n~,
we obtain [cf. (2.28)]

2~(y ) ~( y ) I3l A y EX2

(~, +) v)2+I'

„~"1I(v, v') x, (v') —X,(v') „, ( 3)
yT(v') (n, , +tv'P+ I,

((v —(v))') = v'II(v, v') dv —{v)' -=au'.

A kernel of this type is the Keilson-Storer" colli-
sion kernel, where

~(., ') =(~/ )""-""-."'& (810)

In Hef. 25 it is shown that the kernel (810) leads
to the thermal equilibrium (86) in the absence of
radiation if

P = 1/[(1 —a')u'],

which gives for (89)

&u' = ';{I—a')u'.

(811)

For n =0 this shows that we regain the thermal
distribution (86) from (81) with the width &u'.
When a approaches 1 (velocity persists) (812)
shows that M becomes small and the velocity dis-
tribution narrows.

Already the general. form {87)allows us to draw
several conclusions about the distribution in A„g.
Assuming T to be independent of velocity (slowly
varying over a range v = r/k) and changing to the
variables x= kv, y =kv'o. we find

which shows that the center of gravity of the veloc-
ity distribution after the collision is av' (this a
should not be confused with +, and e2). If a=0 we
have complete randomization and if n =1 we have
a distribution symmetric around the velocity before
the collision, The width of the distribution is



SHOE MAKE R, ST E NHOL M,
' AND BREWER

dx " x — exp[ (y-/n&u)']

yv u'v"'u „(~,+x)'+I', . y I (n~, +y)'+n'I', ' (813)

Because II is a symmetric function we can see
that the distribution G(n,„&,) has a maximum for
&, =+42, which gives

0, —0, = u)„—~~ —(1 —n) &,. (814)

The resonance is thus shifted by (1 —n)&„which
is small in the cases under consideration (perhaps
10' Hz). Measuring both beams as in (2.26) one
finds no shift but a broadening as the term in field
2 is shifted to

Q~ —Q2 = u)~) —Q)qg + (1 —n) 6g ) (815)

which goes in the opposite direction. This result
is obtained in the same way as above. %'hen there
is little spread in the velocity by a collision we set

Ne consider the field E,e'("2' "', where z = a,
+v(t -f,), acting on molecules with a velocity that
is in resonance with the transition c-d. The in-
duced dipole moment is then

(02t -4 ) 2
pc@ lcd (g y )

' ncaa ' (Cl)

The same field can, however, drive another tran-
sition g-5 in an off-resonant fashion. To consider
this we write down a correction p(~~ to the polar-
ization of the transition a-b driven by the field E„
viz. )

fp.",)=(~.,- fy)p.',"-2n,'cos(n, f-uz) ~;.), (C2)

where

I'= (I' + nI' )'+k'hu' (817)

11(~v) = 5(~v)

and (84) and (85) reproduce the result (2.34). The
width of the line is then I', + I;. The total width
I', of the distribution (813) is of order

ab 2 ~ ab

2e

Introducing the ansatz

(&) ~(&)&-t(~2& -& ~)
Pa& Pab

we find from (C2)

(C3)

(C4)

k4tl && Ig 2

we obtain from (85)

(818)

where we used (89). We have taken the widths of
the Lorentzians to add'linearly, which in the limit
(818) reproduces (2.34) correctly, and combined
it quadratically with the velocity-changing collision
c'ontribution.

From the observed linewidths l „ I'„and 1",

(n =1), the quantity &Du in (817) can be obtained
(see Sec. IVA). To obtain more detailed informa-
tion about the kernel II one would have to deconvo-
lute (85). In the limit of large collisional velocity
transfer

A~- ~
6, +Qv+AQ+ jy

where ~A=A, —0,. If now the field E,e'("&'
drives the same velocity group at resonance we
can insert

where only the second term will be of interest.
The total dipole moment oscillating at the frequen-
cy 02 is now

m
~'

G(~ n )
)) ~

H ~ 2 e-(Q/»)

which shows that, in this limit, the tuning spec-
trum as a function of ~, and 4, gives II directly.
In practical eases (818) may well be satisfied even
when keg is much less than the Doppler width.
The measurements by Rhodes et al."are closer
to this regime than the present work.

APPENDIX C: OFF-RESONANT DRIVING MECHANISM

Another process that has been considered as the
cause of the double-resonance phenomenon will
be discussed here.

This polarization will radiate by Maxwell' s
equations and in the radiated energy there will be
a cross term corresponding to

W~ &e [p~o'(v)]'p,',"(v')e'"" ""dvdv'. (C8)

This quantity will be time independent only when
v' = v and interferes destructively otherwise. The
electromagnetic wave is scattered off two molec-
ular groups (in different level pairs) and the for-
ward- scattered radiation interf ere s destructively
except when the two groups have the same velocity.
The observed quantity is then from (C5)-(C7)
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))R][[t)[)]-(&[)[X—II(l —X)}
y'

1 1 dg)x i

J s [(~, +)' + ~)) + )')] [(d. +). ) ~ ) ]( (a, ~ I u)* y')

4(X.-][.,)(X, -X,)a', n,' . (Q+kv)
[(~,+l e)2+y'][(~+I &)2+y&]

'

~h~~~ we have noted that ~n» (~, +a v) ~ y. per-
forming the integral we obtain

4e(][,, —X,) (X, —][..)n', o,',

y AQ

8Pee„=—~e ~ee+We K~Pbb+reKe~P~~ ~

In steady state we find

Pee = Kb Pbb + Ke~&ua ~

(Dl)

(D2)
(a, —a, )

(g —a,)'+4q' ' (C10) For the population of level
~ b) we thus obtain

We observe that this result involves the following
features: (a) It occurs in the order n', a,' like the
other double-resonance phenomena. (b) It shows
a resonant behavior for a, = g as the result (2.34).
(c) It has twice the width (2y) of the ordinary dou-
ble resonance [let I', =y in (A19)]. (d) It shows a
dispersive behavior near resonance due to the
n, —6, in the numerator. (e) Because of the fac-
tors (A, —Xa)(])., —X,), the effect is expected to de-
pend quadratically on pressure.

The experimentally observed resonances agree
with features (a)-(c) but clearly disagree with (d).
Experiments also show a more complicated pres-
sure dependence than the single quadratic depen-
dence of (e). This can be explained by the colli-
sional coupling, which involves pressure in a more
essential way, see Sec. V. Finally, an estimate
of the contributions from processes of the type
(C10) indicates that they should be at least three
orders of magnitude too weak to be observed in
the present experiments. It, hence, appears as if
this mechanism can be dismissed as an explanation
of the new resonances.

APPENDIX D: SEQUENTIAL TRANSFER OF POPULATIONS

We now assume that the transition 5- d in Fig.
2(b) occurs via an intermediate level e through two
collision processes, each collision obeying the
&M =+1 selection rule. As we are investigating
a velocity group such that 0, resonates with a-5
and 0, with c-d, it is not possible for

~ e) to be in
resonance with either field. (We assume the split-
ting between the sublevels to greatly exceed the
power-broadened linewidth. This is satisfied in
the experiments. ) Thus we obtain the equation for
the population of

~ e)

~bb = —y, p»+y, [[[),p„+(radiative terms)

Kbg = KbeKey e (D4)

This is a natural result which can straightforward-
ly be extended to higher-order sequential couplings.
The coupling (D4) will exhibit a different pressure
behavior from the case where the 1.evels are cou-
pled by a single collision. If we also have a single-
collision coupling K,', between 5 and d, we obtain
for the total coupling 5-d the expression

Kby) ~pf
—Kb[f + Kbe Keg ~ (D5)

Because the present experimental method allows
separate measurements of the different resonances,
one can separately measure K~K a and ([[,a)„,.
From this Kb„can be deduced.

For example, line a in Fig. 1 consists of levels
differing by A~ = 2 and 4M = 4. Assuming the
coupling between hM =4 levels to be negligible,
the sequential decay rate (x[,„,)' can be determined
from the resonances b, d, and f (see Sec. V) and if
the intensity of a were known accurately, (D5) would
give K', i.e. , the amount of single-collision mixing
for levels separated by 4M=2. This would derive
from either a second-order Born approximation or
a breakdown of the dipole selection rules in a col-
lision. This indicates a type of experiment that is
made possible by the new double resonances, but
for the moment the intensity of a is too weak to
allow any specific conclusions.

= —'4(1 [[[ )p[[ +&[KneKaapaa + ' ' '

Comparing this equation with Eq. (2.10) we find
that the factor (1 —x~) is to be incorporated into the '

effective decay rate y and the coupling to level
~d) is given (to lowest order in the collision frac-
tion /c) by
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