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Many-body perturbation theory of intermolecular interactions
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We suggest a general many-body perturbation theory for the ground state as well as for low-lying

excited and charge-transfer intermolecular interactions. In this theory the interactions energies are ex-
pressed by the Rayleigh-Schrodinger perturbation formulas, where each individual contribution can be

interpreted by a slightly modified Hugenholtz diagrammatic technique.

I. INTRODUCTION

The theory of intermolecular and/or interatomic
interactions' ' is still one- of the serious problems
in the quantum theory of atoms and molecules.
The correct treatment requires that the wave
function of the bimolecular system "supersystem"
be antisymmetric with respect to all the electrons.
Then the wave function may be expressed in terms
of an antisymmetrized product of exact isolated
molecular wave functions, which allows one to
write the total energy as the sum of the energies
of the isolated molecules plus the perturbation
corrections. The use of such unperturbed wave
functions, however, renders the formulation of the
problem in the framework of the Rayleigh-
Schr5dinger perturbation theory nontrivial, be-
cause such antisymmetrized unperturbed wave
functions are not eigenfunctions of the unperturbed
Hamiltonian describing the system of the two iso-
lated molecules or atoms. Neverthe)ess, theoret-
ical problems emerging in this approach are at
present resolved~ " in several different ways.
Unfortunately, these perturbation methods are
based on the assumption that exact eigensystems
for both isolated molecular systems are known,
which severely limits actual applications. There-
fore it seems that it might be of value to solve the
problem of correlation effects of isolated systems
simultaneously with that of intermolecular interac-
tions. Sinanoglu and Kestner" "elaborated a very
interesting many-body theory of interatomic inter-
actions. Their approach is bg, sed on the simple
application of the Sinanoglu many-electron theory. "
Then the interaction energy can be divided into
contributions describing the intercorrelation and
intracorrelation effects. Recently, another many-
body theory of the intermolecular interactions
has been suggested by Basilevsky and Berenfeld. "
The relation between this and our approach will
be discussed elsewhere.

In the present article we describe a quite general
diagrammatic perturbation theory of intermolec-
ular interactions, from which the particular cases,
as for example, the Basilevsky and Berenfeld

method" and the diagrammatic theory of long-
range interactions (Sec. V), can be derived in a
simple way. Furthermore, the suggested method
is used for the construction of the diagrammatic
perturbation theory of low-lying excited as well
as charge-transf er intermolecular interactions
(Sec. IV).
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The matrix of the overlap integrals between the
systems A and 8 (for the fixed distance A) is de-
fined by

spit = 4 4 {sti = (t'pt I ps); 5 EA,y 68) .
From the column vectors [(la) and (lb)] we may
construct a new column vector

Let us assume that there exists such a nonsingular
matrix A which (i) transforms 4 onto 4,

4 = A4={lf;);ieA+ B),
elements of which form an orthonormal system,
and (ii) satisfies the asymptotic condition

lim A= 1. (5

Then, we have a one-to-one correspondence be-
tween the elements of the column vectors 4 and 4
realized by the relation

»m IA) =I~i), (6)

for all ieA+ I3.
One of the possible procedures for constructing

the transformation (4) together with the asymptotic
condition (5) is the L5wdin symmetric orthonor-
malization method':

II. CONSTRUCTION OF THE HAMILTONIAN

%e assume orthonormal sets of spin orbitals
localized on the molecular systems A and B which
form the column vectors
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(7a)

(7b)

n S"= 1 -~S+ ]}S2—.. .
g=0 2

(8)

From (4) we obtain for the individual components
of the column vector 4 an expression

A = (1 ~ S)-'"

tO Si
~AB

Assuming that all the absolute values of eigen-
values of the matrix S are less than 1,"the right-
hand side of (7a) can be expressed as a power
series" of S:

where t(1) is the kinetic-energy operator and t(j„(1)
and ws(1) are the nuclear-attra, ction operators
within the systems A and B, respectively. The
matrix elements (lla) and (lib) can be written
[cf. Eq. (9)] in the form

h (i, j) =ho(i, j) + rhh(i, j),

g(ij, kl) g()(ij, kl) +tkg(ij, kl),

(13a)

(13b)

where h, (i, j) a,nd g, (ij, kl), as in (lla) a,nd (lib),
are one- and two-particle matrix elements calcu-
lated in the initial nonorthogonal set (~ (t),.); i eA+B},

1
2 feB

l, (i, j) f (p,.'h(1)(pp(1)dl, (14a)

3
+8 Q Q SjAjlvj)—

aeB 1cA
(9)

wherei eA; fori eB one has to exchange A-B
in the summations.

Now, after these introductory remarks, let us
turn our attention to the construction of the Ham-
iltonian for the "supersystems" A+ B. In the sec-
ond-quantization formalism this Hamiltonian can
be written in the form

g, (ij, ki) ff 2,. (1)ppj(2)g(1, 2)(1 —P„)

xct)h(1)9r, (2) dl d2. (14b)

Matrix elements Ek(i, j) and hg(ij, kl), defined by
(13a) and (13b), tend to zero for R ~, which can
be simply verified by (6).

For further considerations it is appropriate to
introduce an unperturbed ground-state vector""
~C,) of the "supersystem, "

H = g k(i, j)X,'X,
Cj EA+B ~c,}= g x,'. II x',. ~0&,

i&A
(15)

+ — Q g(ij, kl)X(tXjtX)X~ 2

C fa!cA+8
(10)

where X,"(X,.) are creation (annihilation) operators
defined on the orthonormal set of spin orbitals
(]g, ); i cA+B} introduced by (4) [cf. also Eq. (8)].
One- and two-particle matrix elements from (10)
are determined by

H= 80+Ho+H, . (16)

where the product index i (j) runs over all occupied
spin orbitals of the system A (B), and ~0) is the
normalized vacuum-state vector. Then, using
Wick's theorem" "and expressions (12) a,nd (13),
the Hamiltonian (10) can be rewritten in the form

h(i, j) f 2,. ())h(1)pp(1)dl,

g(ij, kl)=g2 (1)2 (2)g(1, 2)(1 P

x()h(1)qj(2) dl d2,

(11a)

(11b)

Scalar quantity 8, from the right-hand side of (16)
is defined by

h =EHF+E„F+eo, (17)

where EgF (EL) is the Hartree-Fock ground-state
energy of the system A (B),

h(1) = t(1) +gdj„(1) +gve(1),

= k„(1)+sje(1),

=he(1) +t(j„(1),

(12)

where ~„is a transposition operator and g(1, 2) is
the two-particle interaction operator. The one-
particle operator k(1) from (11a) can be expressed
in the following identical ways:

0CC OCC

E" =gk„(i, i)+- g g, (tj, ij),
C jcA

(18a)

OCC OCC

+HF= g k (i, t) + - g g.(ij, ij), (18b)
i&B i j&B

and for e, we have obtained the following expres-
sion:

OCC OCC OCC OCC 0CC 1 occ 0CC

e, = P tt)e(i, i)+ P jjj„(i,i)+ g t)h(i, i)+g P[g,(ij, ij)+ng(ij, ij)]+ —P 4g(ij, ij)+ —P thg(ij, ij).
CGA CEB CGA+ B CGA jCB fjeB (19)
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The operator H, from the right-hand side of (16) is
given by

Ho= g f„(i,j)N[Xf~x&]++ fz(i,j)N[X(X&],
j fE'A

(20)

OCC

f„(i,j ) =h„(i, j) + Q g, (ik, jk),
kgA

(21a)

where N[ ) is the normal product" defined with
respect to ~4,') and f„(i,j) and fz(i, j) are the ma-
trix elements of the Hartree-Fock operator of sys-
tems A and B:

fz(i, j) =e, 5,~
for i, jcB, (22b)

Hp E,jN Xj Xj + 6jN XjXj
jeA

(23)

which we shall call unperturbed Hamiltonian.
The operator H, from the right-hand side of (16)

(called perturbation) has the form

H, = Q u(i,j )N[X, Kq].

where ej are the Hartree-Fock one-particle ener-
gies. Then, the operator H, defined by (20) can be
written in the diagonal form

fz(i,j)=hz(i,j) + P go(ikjk) . (21b)
j jEA+B

f„(i,j ) = e,.5,.~
for i,j & A, (22a)

keB

We shall assume that sets of spin orbitals ( ~ y, );
i c A] and [[qr,);j cBj are the eigenfunctions of the
Hartree-Fock operator defined within the systems
A and B, respectively, i.e.,

+
4 Q [g,(ij, kl) + ng(ij, kl)]
1

j jkl &A+8

XN[X, X) X, X~]., (24)

where one-particle matrix elements u(i, j) are de-
fined by

OC

u(i, j)=t(h(i, j)+ Ag(ik, jk)+z(i, j),
+B

r
t„(i r j)=we(i,j )+ P go(ik, jk) for i,jgA,

km'

OCC

z(i, j)= ( h, (i, j)+ g g,(ik,j k) for ieA,j eB oricB,j EA,
kEA+ B

(i, j(r=ro„(i j ) gg (irk jll) for i,joB.
km A

(25a)

(25b)

For the better physical understanding of the Ham-
iltonian (16) and its individual terms (17), (20),
and (24), it is suitable to rewrite (16) as

(ii) a certain part of the interactions between A and
B [the remainder is contained in the scalar quanti-
ty e, defined by E(l. (19)].

H-HA+HB+HAB,

where

(26)

III. DIAGRAMMATIC PERTURBATION THEORY

H~ E(sr+ Q e; N[X;X(]——
jr A

lim HAg = 0
Q ~co

(26)

+— g g (ij, kl)N[X&~XtX, X, ] (27)
jjk jGA

is the Hamiltonian of the isolated system A. The
operator Hz from (26) is the Hamiltonian of the
isolated system B, and it is defined similarly as
(27), with A B The -ope. rator K„s=H- H„—Hz
satisfying the asymptotic condition

In order to apply the diagrammatic nondegenerate
perturbation theory ~ "to the calculation of the
interaction energy of two molecular systems, it is
necessary to introduce the suitable diagrammatic
interpretation of the individual terms of the per-
turbation H, . We shall use the Hugenholtz diagram. -
matic technique and his classification of dia-
grams. ' ' The diagrammatic representation of
individual terms of H, is presented in Fig. l. Using
the Goldstone-Hugenholtz linked-cluster theo-
rem, ""the electronic ground-state energy of the
"supersystem" can be expressed by

describes an interaction between the systems A
and B. Then, the perturbation H, defined by (24)
contains two effects: (i) the correlation between
electrons inside the isolated systems A and B and

Bf~=h. &4'. +I H, +H, Hi+"
]

I4'0&,1 1 H 1

(29)
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where the subscript C means that only connected
ground-state diagrams contribute. Using (1V) we
can rewrite (29) in the form

+EAB +A 8 EA +8

gy of isolated systems, A and B. The interaction
energy between the systems A and B is then (prin-
cipal result of this section)

nz„e = W„e+eo+ (eo ~ B,+B, B,+ ~ ~ ~
~

4'o),' -&0 ' e+

(31)

where ~„'~ is the ground-state electronic inter-
action energy, E„'~~~ is the perturbed electronic
ground-state energy of the isolated system A (B),
and, finally, the subscript C* means that we omit
the diagrams contributing to the correlation ener-

where W» is the potential energy of the Coulomb
repulsion of nuclei between A and B. The diagram-
matic expression for the interaction energy up to
the "second order"" is shown on Fig. 2. Using
the rules of Hugenholtz's graphology, "'2"' the
algebraic interpretation of this diagrammatic ex-
pression is

+4 g, sl, , ~k ag, )k, ~l +~@ gl, ~kg, ~k, gl +gg~~, &y4
&& && 6&+ E, —6& —C~

(32)

All the summations run over all indices of the
"supersystem. " The primes in the fourth term
from the right-hand side of (32) mean that all the
contributions which have the line indices only in
A or B are excluded [see comment after Eq. (29)].
If we assume that the conditions for the existence
of expansion (8) are satisfied, then it is possible
to express the matrix elements hh(i, j ) and
rg(t'j, kl) using the expansion (9) (cf. Ref. 18).

g, (ij, kl)

IV. EXCITED AND CHARGE-TRANSFER

INTERACTION ENERGIES

Theoretical treatment of the excited'*' and
charge-transfer intermolecular interactions rep-
resents a slightly more complicated problem than
the treatment of the ground-state interaction en-
ergies, because a degenerate perturbation theory
should be used. For simplicity we assume that the
moleculax systems A and I3 are different, i.e. , ad-
ditional degeneracy due to the resonant effects is
removed. Nevertheless, these effects (if the
molecular systems A and B are identical) may be
taken into account by straightforward generaliza-
tion of the present theory.

In our recent paper~ we have applied th'e degen-
erate many-body Rayleigh-Schrodinger perturba-
tion theory (DMB-RSPT) to the calculation of low-
lying singlet and triplet excitation energies for
closed-shell molecular systems. This diagram-

&g(ij, kl)

FIG. 1. Hugenholtz diagrammatic interpretation of
mdividual terms of the perturbation H~, defined by (24).

I"IG. 2. Diagrammatic expression for the ground-state
interaction energy up to the second order (see Ref. 28)

the framework of Hugenholtz graphology.
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matic approach is also very convenient for the
perturbation-theoretic treatment of the excited and
charge-transfer interaction energies of two dif-
ferent closed-shell molecular systems. There-
fore, in the following part of this section, we shall
recapitulate the main features of DMB-RSPT from
Ref. 30.

One of the basic concepts of this theory is the
closed-shell nondegenerate "core" state vector,
which is in our case identical with the nondegen-
erate state vector I4$ defined by (15). Using this
core state vector we generate a certain finite d-
dimensional model space

where =~ are the ordered products of the creation
and annihilation operators. We assume that the
model space Qp is an eigenspace of unperturbed
Hamiltonian Hp with an eigenenergy E . Let Pp

HL c = E~ p~ P + GL c
RS f}{ 0 RS ~

(33a)

(ssb)

where HLR~ is the model Hamiltonian defined in the
model space Qp, and ORE is the model interaction
defined in the framework of the diagrammatic
technique as follows:

be a projector onto 0„ then Tr(PO} =d and HOPO

=P,H, =E "P,. If we assume that the perturbation
H, is an "analytical perturbation, ""then there
exist d perturbed eigenvalues

(E,E, . . . , E,) -=(E;A,cM)

tending to the unperturbed energy E~" when the
perturbation H, is "switched off, "i.e., H, 0. The
excitation energies ~~ =E„—E„where A.EM and

Ep is perturbed energy of the core state, are then
determined as eigenvalues of the following non-
Hermitian d-dimensional eigenproblem:

G„=(P H, P ) Q (P H, G 'H, G '' G "H, P )
n=l

1 —P, 1 —P, 1 —P=(P 8 I I +(P 8 ~ j p P + F 8 ( ) Il g ) ~ H P
LC En —Hp ~a -&0 LC

1 —Pp
Po H~ (E(0) H ~2 H~ P H~OPo

0. 0I LC
(34)

where subscript LC means that only linked-con-
nected diagrams are contributing, and non-nega-
tive summation indices k„k„.. . , k„are deter-
mined by the two conditions

(35a)

k, ~ m for m=1, 2, . . . , n —1. (35b)

The powers of the unperturbed propagator G~ from
(34) are defined by

—Pp for k=0,

(1—Po)/(E~~ —H, ) for k ~ 1 .
(se)

As has been shown in Ref. 32, a one-to-one cor-
respondence exists between the presented diagram-
matic technique of construction of model interac-
tion Q„~ and Brandow's folded-diagram approach. "

After this short recapitulation of DMB-RSPT we
turn our attention to the application of this theory
to the calculation of excited interaction energies
when the system A is in the ground closed-shell
state and the system B is in the low-lying singlet
or triplet excited state. The model space Qp is
then spanned by the two unperturbed state vectors

I4,&
= x' x,.I4,&,

I 4"& = xaex*sI@0&

(31a)

(37b)

I4~& = (1/W2)(I4, ) + I4,)) (singlet},

I4r&= (1/v2 )(I4,&
—I4,)) (triplet).

{ssa)

(ssb)

According to the fact that the core state vector
I4,&

is the nondegenerate closed-shell state vector,
the model interaction Gs~c~ defined by (34) is the
spinless operator. The model eigenproblem {ssa)
can be factorized in two one-dimensional singlet
and triplet subproblems. Then, for the singlet
and triplet excited interaction energies we get

n, .E„j~= n.E„s + G» + G» (singlet),

b, E~g*= n, E„s+G„—G, 2 (triplet).

(39a)

(39b)

Here ~E» is the interaction energy for the closed-
shell supersystem studied in Sec. III by the non-
degenerate diagrammatic perturbation theory [cf.
Eq. (31}]. The matrix elements G„and G„ from
(39a) and (39b) are defined as follows:

where the spin orbitals with the indices kn, kP,
in, and iP are taken from 8 and unperturbed ener-
gy E&'~= e, -c,-. The model space Qp can be factor-
ized on two orthogonal one-dimensional eigenspaces
of the spin operator 8',
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G» = &@OIXi Xa GsPa &i ICo&

Gim= (@OIXi Xa GssXasX~SI4'0&

(40a)

(40b)

where all the diagrams contributing to the excita-
tion energy of the isolated system B are omitted.

As a second example we shall study so called
charge-transfer intex molecular interactions in
which one electron from the system B is shifted to
the system A. The model space 0, for this case is
spanned by the following two unperturbed vectors:

ic', &
= x' x,.ic,&,

I@'& = x~ xmas I@'0&

(41a)

(41b)

which are formally similar to (37a) and (3Vb), but
in this ease the spin orbitals with the indexes km
and kP are taken from A., and those with indexes
ie and iP fr@.m B. Similarly as in the first case,
the model sp, ~ce Qo can be factorized in two or-
thogonal one .dimensional subspaces

~@',&
= (ll~~)((4', &+ ~C,'&) (»ngl«),

~er& = (1/v2 )(~4)$) —[ep)) (triplet) .
(42a)

(42b)

Then, the singlet and triplet charge-transfer inter-
action energy is detex mined by

JILL = ~0, LZ+IIO+&~, LZ ~ (44)

The scalar part 8, » is defined similarly as (17},
A 8

, LR HF HF o, LR

but eo L„has the following much more simple form
than (19).

the frequency-dependent polarizabilities of imagi-
nary arguments. The 8 ' coefficient calcula-
tions4"49 as well as the nonadditivity contributions
calculations' are in excellent agreement with ex-
periment.

In the first step we shall construct the Hamil-
tonian describing this simplest case of interaction
between the many-electron systems, which are for
simplicity specified as atomic systems. Assuming
that the distance A between two atoms is suffi-
ciently large, the important terms in the perturba-
tion H, defined by (24} are those which are only of
the Coulomb type. The remaining terms, similar
to the exchange interactions or to other interactions
depending approximately on the overlay, tend to
zero. Then, from (16) we get the following Hamil-
tonian for long-range interactions:

b Eg p+ = EE~s-+ Ggg + G~2 (singlet), (43a)

6E~t )e+ = t).E„s+-G'„—G', 2 (triplet), (43b)

8O Lg = M)g $y S + 'NA fag

OC OCC

+ Q g'(ij, ij), (46)
where the matrix elements G» and Q» are defined
formally in a same way as (40a) and (40b). Here
we have omitted diagrams contributing to the
electron affinities of the system A. and to the elec-
tron potentials of B as well.

To conclude this section we stress that these
two simple examples presented here demonstrate
the suitability and formal simplicity of DMB-RSPT
for the treatment of "excited" intex action energies
of vax'ious types.

V. LONG- RANGE INTERATOMIC INTERACTIONS

This section is concerned with the application of
the present general theory to the problem of long-
range"'"" interatomic interactions. It is a well-
known fact that the interatomic interaction energy
can be expanded in a power series of R ". Our
aim is to demonstrate how to calculate the ex-
pansion coefficients directly using the presented
perturbation theory. Another possibility for cal-
culating these coefficients is based on the results
of Mavroyanis and Stephen46 and Chan and Dal-
garno. " In this approach the two-centex problem
is reduced to a one-center one, and only the polar-
izability functions of isolated atoms at imaginary
frequencies should be calculated. In this way the
Goldstone24 and Hugenholtz25 many-body pertux'ba-
tion theory has been adapted to the calculation of

H, ,„=— g + g g, (ij, tl)ti[x,'x,'x,x„]
ijklEA i jkf &8

+ g t„'(i,j }~r[x,'x, ]+ g t,'(i, j)ti[x,'x,].
ije8i jcA

+ g g g', (ij, ki)ti[x,'xtx, x,]
ikeA jf ca

The matrix elements t„'(i, j) and ts(i, j) are ob-
tained from (25b), neglecting the exchange terms,

OCC

t„(i,j ) = so~(i,j ) + Q g (ik, 0j tt),
kE8

ts(i,j)=(M)„(i,j)+Q go(itt, j&).

(49a)

(49b)

where g,'(ij, kl) is the two-particle integral

z!((i, ~)) = I J
((&) y; (2) r", ()2) e, () ) ( , (2) &' &2.

(4'l)

The unperturbed Hamiltonian H, from (44) is de-
fined in the same way as (23}. For the perturba-
tion H, » we gei from (24), (25a) and (25b) this
simple expression with clear physical interpreta-
tion of individual terms,
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The first and second terms in (48} represent the
electron correlation within the systems A and B,
the third (fourth) term corresponds to the Coulomb
interaction of an electron from A (B) with the
whole atom B (A). The last term in (48) repre-
sents the Coulomb correlation between electrons
of the systems A and B.

For the Long-range interactions it is appropriate
to apply the multipole expansions (mono- and bi-
centric) of the interaction potentials to simplify
the last three terms in (48). Let us specify the
matrix elements a)„(i,j) and ws(i, j) appearing
in (46), (49a) and (49b),

~tn
g(1, 2)= g g, ",',k„p, .(1)y,*,.(2),

l~, ll, =O m=- l&

(53c)

where l& = min(l„ lk). The functions '(I, are de-
fined by

')f, (1)=[4m/(2l+1)]'~'r, '
Y, (r",), (54)

and the coefficients A» are determined as fol-
lows":

A( ( =(-1)'k' (l, +lk)!

x[(l, —m)! (l, +m)! (l, —m)! (l, +m)! ]

w„(i, j}= q),"(1)w„(1)y,.(1)d1,

,(i) = I , ( ))~,2( )p;2( )& 22

(50a)

(50b)

(55)

Using these multipole expansions, the scalar quan-
tity eo» can be written in the form

where w„(1) and see(2) are the Coulomb nuclear-
attraction potentials of nuclei A and B (cf. Fig. 3):

(0)
o, ~R+WAq =~ R

U
A=O

(56a)

w„(1)= -Z„/r„
ws(2) = -Z /sr„

(51a)

(51b)

J(

Z Z AP( (6) .a(N~ —Z~)
l g + l y = & fft-- l&

where Z„(» is the nuclear charge of A (B). The
two-particle operator g(1, 2) is the operator of the
Coulomb mutual electronic repulsion,

g(1, 2) =1/r»

Assuming that R-~, these operators (51a), (51b),
and (52) can be expressed by the following multi-
pole expansions"':

+(1 —~),.)G), ]

"&') .0(&s - Za}+(1- '( .o}G) -»
OC

l&A

(56b)

(56c)

to„(l}= -Z„~,„'g...{1),
1

lg=l
(53a)

(53b)

where W» =Z„Zs/R is the internuclear Coulomb
repulsion and NA&» is the number of electrons in

A(B). The matrix elements G), and Gg, represent
the Hartree-Fock mean values of the atomic multi-
pole moments. For atomic systems in the S state
(zero total angular momentum) these matrix ele-
ments are equal to zero. Then, for the electro-
neutral atoms in S state these mean values are
identically equal to zero.

Similarly, the one- and two-particle matrix
elements from the last terms in (48) can be written
in the following form: For i, jEA

tA (k 1 ~) Z' Rk+1 U(j
A=O

(57a)

+ l ~-g fft-- l(
x (~) .o(&s —Zs}+ (1 -6(,.o}G('o» (57b)

FIG. 3. Coordinate system for treating the long-range
interatomic interactions.

for i, j&B

ts(i, j)=g k+, UP, ',
A=o

(57c}



10 MANY-BODY P ERT URBATION TH EORY OF IN TERMOL E C ULAR. . . 2023

A;...(i(g...lj}
1g+ l ~-k m-- l &

x (6, ,(N„—Z„)+ (1 —6, ,)G", ,),
and' finally

g,'( j, kl }= g „,U
=0

(57d)

(57e)

Z Q AP, i, [6i,.06~,a
+ ~&=k m= l&a

(1 -6, .)(il~...l»)
x [6g,o6, , i+ (1 —5~,,)(ilm,*.lf)) (57f)

Substituting (57a), (57c), and (57e) into (48) gives
the final form for the perturbation,

H, ~„=— g + g g, (ij, kl)N[XtXtX, X,]+ P + g g „„U,"&N[X,"X.]
i jkt &A i jki+ B i j&A ij cB k=o

ikcA jt C a k'=O
(58)

Now, let us turn our attention to the interpreta-
tion"" of the individual terms of (44) describing
the long-range interactions. The scalar term
e, ~„+W„s expressed by (56a)-(56c) represents
the interaction of the permanent multipoles of the
systems A and B. The third (fourth) term of (58)
expresses the interaction of the permanent multipoles
of the system B (A) with the induced multipoles of
system A (B). The last term expresses the mutual
interaction of the induced multipoles of the system
A and B.

To formulate the many-body perturbation theory
for the calculation of the long-range interatomic
interactions it is necessary, similarly as in Sec.
III, to introduce the diagrammatic interpretation
of all terms from the perturbation H, ~s (see Fig.

j I

O~

j i

4). According to Basilevsky and Berenfeld, "the
horizontal border line is used. Then, the line
indices above (below) the border line are taken
from B (A). Now we are ready to apply the general
formula (31}to the calculation of the long-range
interaction energy Using. (56a) we get

(k) 1
AB,LR ~ Bk+1 + ( Ol ~l, ps+BI ~ Is

k=p -Ho

xB,
C

(59)

where the subscript C* means, similarly as in
(31), that we take into account only the connected
ground-state diagrams and we omit the diagrams
contributing merely to the correlation energy of the
isolated atomic systems. These diagrams are, in
our diagrammatic technique, completely either
above or below the border line. The diagrammatic
expression up to the second order, i.e., containing
only two vertices, is presented in Fig. 5. Using
the rules of the Hugenholtz graphology, ""the
corresponding algebraic expression is

00.E = E,~-u, -) L
AB LR jI('-0 k k=0

FIG. 4. Diagrammatic interpretation of individual
terms of the long-range-interaction perturbation opera-
tor II& gg defined by (58). The numbering of the vertices
is the same as in (58).

FIG. 5. Diagrammatic expression for the long-range
interaction energy corresponding to Eq. (60).
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AB, LR ~ gk+1 U ~ g&+h'+2
h=0 kk' =O

X Z Z
~

~

occ un (h) (h) occ un (h) (h) occ u occ (h) (h')~ Uhp Uph ~ m Uhp Uph Uhyh2, pgp2 Upgpg ~hgh2

hGB PCB h p hEA PEA h P hy& A pj6 A h2& B P2C B h h P p
(60}

For the electroneutral closed-shell atomic sys-
tems this expression is reduced to a simple one,
since the matrix elements U'h' and U,'~' are identi-
cally equal to zero. Then, the long-range inter-
action energy corresponds only to an interaction
of the induced multipoles [last term in Eq. (58)-
dispersion forces] .

The matrix elements U"', U,",', and U,", ,', can
be simplified in the case where the Hartree-Fock
atomic orbitals are expressed as a product of
radial and angular parts. After integrating the
angular parts to the Gaunt coefficients, "we find
that the above matrix elements depend only on the
radial integrals of the type

r R„,(r)r R„i, (r)r'dr,
0

(61)

where R„,(r) is the radial part of the Hartree-Fock
atomic orbitals.

The correlation effects inside the systems A
or B appear in the interaction energy ~E» L„only
through the diagrammatic contributions having at
least one two-particle vertex corresponding to the
first or second term in Eq. (58). The present
method is applicable not only in the case of two
atomic (monocentric) systems, but also in the
case of molecular (polycentric) systems Un-.
fortunately, the mathematical form of the multi-
pole expansions [as in Eqs. (53a)-(53c)] will be
much more complex than in the atom-atom cases.

VI. SUMMARY AND DISCUSSION

In Secs. II and III a general many-body perturba-
tion theory for the calculation of the ground-state
interaction energies has been formulated. The
applicability of this approach strongly depends on

whether the operator of perturbation (24) is "suf-
ficiently small. " This operator contains terms of
two types: (i) terms describing the electron cor-
relation within the isolated molecular systems and

(ii) terms describing the intermolecular inter-
action. Since it follows from the numerical re-
sults for the correlation energy of small atoms or
molecules, the diagrammatic perturbation method
gives results which agree very well with experi-
mental correlation energies. " Therefore it seems
that part (i) will not bring any difficulties with the
convergency of the perturbation expansions. A

more complicated situation exists for part (ii), de-
scribing the intermolecular interaction. In the case

of short-range interactions this part may be "so
large" that the perturbation expansions will be
diverging. Moreover, the assumption about the
fixed geometries of the considered molecular sys-
tems will be a very rough approximation. A much

more favorable situation is the case of the inter-
mediate-range intermolecular interactions. Here,

I

as certain numerical results indicate, "the per-
turbation approach gives quite satisfactory values
for the interaction energies. These results indi-
cate that the presented diagrammatic method might
be of value mainly in the framework of the ab initio
calculations. Already, for the intermediate-range
interactions, the conditions for existence of the
expansion (8) [cf. comment below Eq. (7b)] may be
fulfilled, which allows us to express the matrix
elements Ah(i, j ) and ng(ij, kl) through the prod-
ucts of the original matrix elements h, (i, j}and

g, (ij, kl) and the overlap integrals S, In this
case our general theory is reduced to the diagram-
matic method of Basilevsky and Berenfeld. " Their
approach takes explicitly into account the overlap
integrals, which produce very complicated rules
for the construction of the diagrams.

The applications of the present theory to the
study of the intermolecular interactions in the
framework of semiempirical Hamiltonians" fre-
quently used in quantum chemistry are very in-
teresting. In the extended Huckel theory" the cor-
responding effective Hamiltonian contains only
one-particle terms, repulsion between electrons
(two-particle terms) being neglected. In this case
the Hamiltonian (16) is built up only from the ma-
trix elements k, (i, j) and n h(i, j ) Using the e.x-
pansion (9) and the general formula (31) for the
interaction energy, we have obtained a result"
which is identical with Imamura's expression. "
The semiempirical CNDO (complete-neglect-of-
differential-overlap) of INDO (intermediate-ne-
glect-of-differential-overlap) methods" contain the
electron repulsion in a some approximate way,
i.e., the CNDQ or INDQ Hamiltonian contains the
one-particle as well as two-particle terms. As-
suming the validity of the zero-differential-over-
lap (ZDO) approximation'2 between interacting sys-
tems also, the spin orbitals of the "supersystem"
will form an orthonormal set automatically. There-
fore we do not need to perform the orthogonaliza-
tion procedure (4). A similar situation also exists
in the case of construction of the long-range Ham-
iltonian H» in Sec. V, where it is justified by as-
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sumption that overlap tends to zero when R -~.
Then, the Hamiltonian of the "supersystem" in
the CNDO or INDO method is formally identical
with the long-range Hamiltonian (44), where the
perturbation should be modified by the additional
one-particle terms

Q ho(i, j)(N[X(X,]+N[X)X(]))
A@A qcB

which, in the case of long-range interactions,
are equal to zero. For the individual terms of the
perturbation constructed in this way, it is possible
to introduce the diagrammatic interpretation and
then to use the general formula (31) for the calcula-
tion of the interaction energy. This approach has

been applied to the study of interactions between
small organic molecules. "

The diagrammatic perturbation theory for the
long-range interatomic interactions elaborated in
Sec. V allows us the possibility of using the clas-
sical interpretation with the help of permanent and
induced multipoles. An application of this method
to the calculation of the long-range interaction for
He-He is in progress. 44

In conclusion, we wish to stress that the present
general diagrammatic perturbation theory of the
intermolecular interactions covers many types of
the many-body approaches for studying this prob-
I.em and may serve as a common procedure for
handling them.

*Work formed part of a thesis submitted to the Slovak
Technical University, Institute of Chemical Physics,
in partial fulfillment of the requirements for a Ph.D.
degree.
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