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We denote as a "primary minimum principle" one in which a quantity 8 of physical interest is

represented as the minimum value with respect to variations in a trial function Q, of a functional

F(ff); F then provides a variational upper bound on 8, (The Rayleigh-Ritz principle for the ground-

state energy of a system is a familiar example. ) If F is quadratic in Q„ the variational property of
F enables one to determine the linear parameters relatively easily, but the minimum property is re-
quired if the nonlinear parameters are to be determined in a way which allows for systematic improve-
ment of Q, . We show here that for a wide class of problems for which primary minimum principles

do not exist, useful and rigorous secondary or "subsidiary minimum principles" are available. That is,
we construct a functional F'(Q, ) whose minimum value is reached for Q, equal to some function Q of
dynamical interest. (The Rayleigh-Ritz method provides a subsidiary minimum principle for the approxi-
mate determination of the ground-state wave function of a system. ) If 8 = 8(Q), then a study of
F'(Q, ) provides a powerful tool for the estimation of Q and therefore 8, though B(Q,) is not normally

a variational bound on B(Q). Subsidiary minimum principles have recently been obtained for the ap-
proximation of the auxiliary functions that appear in the variational principle for the matrix element

Q„, 8'g ), where g„and g are bound-state wave functions and 8' is an arbitrary operator. Here
we extend the method to the estimation of matrix elements of the Green's function g(e) of a bound

system with e below the continuum threshold energy. The response of the system to an external per-
turbation can be represented by matrix elements of this type. While no new results on the bound-state

problem are obtained, our formulation is a convenient starting point for the further extension of the
method to continuum problems. The new result obtained here is the derivation of a subsidiary mini-
mum principle for the problem of scattering of a projectile by a target whose bound-state wave function

is only imprecisely known. The subsidiary minimum principle allows for systematic improvement of the
closed-channel component of the trial scattering wave function that appears in a Kohn-type variational
calculation of the scattering amplitude.

I. INTRODUCTION

The power and simplicity of the Rayleigh-Ritz
method for the estimation of the ground-state en-
ergy of a system is widely recognized. The ener-
gy estimate obtained represents a rigorous varia-
tional upper bound. Just on the basis of its sta-
tionary (or variational) aspect, it becomes pos-
sible, rather easily, to determine sensibly any
linear variational parameters c,. contained in the
trial ground-state wave function X„. Nonlinear
variational parameters, which we will denote by

p f are not so r eadily obtained from a var iational
principle; it is a matter of practice that the sta-
tionary point in the space of the c,. and the y, is not
too easily located. ' The minimum-principle as-
pect, as opposed to simply the variational aspect,
introduces two advantageous features. First, not
only the c& but now also the y, can be determined
rather readily to within a good approximation. As
one goes to more complicated systems, it becomes
more and more important to introduce the y, as
well as the c&, lest the number of c~ required for
given accuracy get completely out of hand. ' Sec-
ond, one has a simple and objective criterion for
determining which of two results, obtained using
different X„'s, is better.

The extension from the Rayleigh-Ritz variational
upper bound on the ground-state energy to varia-
tional upper bounds on excited-state energies is
provided by the Hylleraas-Undheim theorem. ' It
is natural to attempt to find analogs of the Ray-
leigh-Ritz and Hylleraas-Undheim methods for the
estimation of other quantities of interest. These
include, for example, the response functions which
describe the response of a bound system to exter-
nal perturbations, and the scattering parameters
which characterize the scattering of a projectile
by a bound system. %hile minimum principles
have been obtained for a number of such problems,
they remain purely formal and are therefore of
limited value for all but the simplest bound sys-
tems if, as is usually the case, they require pre-
cise knowledge of the wave function X, and energy
e, of the ground state of the bound system. One
may ask whether, for X, and c, not precisely
known, there exists a practical computational
scheme which enjoys the benefits of the Rayleigh-
Ritz method. This question can be answered af-
firmatively at the present time only for a very
limited number of cases, including scattering
lengths for positron-atom scattering. 4 The next
question which arises is what one can do when one
cannot construct a "primary minimum principle, "
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that is, a rigorous va.riational upper (or lower' )

bound on the quantity of interest. Do any computa-
tional schemes then exist which at least approach
the power and simplicity of the Rayleigh-Ritz
method? We will show that for a very broad class
of problems there does exist a rigorous minimum

principle of a secondary or subsidiary nature
which can be used as a (powerful) calculational aid

in the systematic approximation of the various
wave functions (and other functions) that are well
defined but not exactly obtainable and that are re-
quired for the evaluation (or variational estima-
tion) of the quantity of interest. We do not then

have a variational bound on the quantity of interest,
but the relative ease with which the various func-
tions can be approximated, including in particular
the possibility of estimating y, 's contained in the
trial functions, makes it much simpler to obtain
reliable estimates of the quantity of interest.

The present approach to the problem represents
a systematic development and extension of methods
introduced earlier in the problem of obtaining up-
per bounds on scattering lengths when composite
bound states exist. ' Such states must be "sub-
tracted out" in order to preserve the bound. To
be practical as well as rigorous this subtraction
procedure need not require the composite bound-

state functions to be precisely known. An effective
procedure was developed based on a corollary of
the Hylleraas-Undheim theorem. Recently variants
of this method were applied to the problems of con-
structing trial functions in a variational principle
for bound-state matrix elements' and to the var-
iational construction of the effective potential
in scattering theory. '' In the latter problem
the scattering parameters must be determined by
numerical solution of an effective two-body inte-
gral equation. When the target bound-state func-
tion is precisely known this procedure provides a
rigorous bound on an arbitrary diagonal element
of the K matrix, as does the closely related tech-
nique" which utilizes the Feshbach'projection-
operator formalism. " Since the primary mini-
mum principle is lost in the general case where
the target consists of more than two particles,
we are motivated to look for an alternative cal-
culationally simpler procedure which does not

require the numerical solution of integral equa-
tions, but which is based oo a rigorous subsidiary
minimum principle. Such a method has been de-
veloped and will be discussed in the following sec-
tions.

Our approach is based on the introduction of a
modified Hamiltonian from which the effects of
certain low-lying states have been subtracted out;
the Rayleigh-Ritz method is applied to the calcula-
tion of matrix elements of the modified Hamilton-

ian.
Before we go into the details of the approach, it

is worthwhile to continue our attempt to discuss
in broad terms what we hope to accomplish. Given

a bound-state system, it is possible in principle
and almost always possible in practice to express
the quantity of interest in terms of matrix elements

of the form

where J& and J,. are specified functions. For the

bound system in the presence of an external per-
turbation which is incapable of breaking up the

system, g(e) is the Green's function of the system

at an energy which is below the threshold continu-

um but which can otherwise be arbitrary, with e

normally not one of the energy eigenvalues e„of
the system. For an isolated bound system e will

be one of the discrete eigenvalues, say, the nth,
and g (e„) will be a "modified Green's function, "
for the singularity must be removed. g(e„) might

be the normal Green's function expressed in bi-
linear for'm, but with the (infinite) contribution of

the nth term omitted.
For c below the continuum threshold but not an

eigenvalue, the approach of the present paper has
the virtues discussed above, namely, one can
proceed in a systematic fashion, employing, for
example, y, 's. For e = c„, the situation is rather
different, because of the difficulty of obtaining a
good approximation to g(e„) if one does not know

X and e„. Reference 7 gives a completely general
and we believe very powerful prescription for ob-
taining increasingly close approximations to g (e.„).
Thus, for e= e„, the approach of Ref. 7 is not only

useful, in the sense that it is useful for ~ & e„, but

is virtually necessary, since it makes possible the

effective extraction of only formally known singu-

laritiess.

The scattering of a projectile by a target is com-
pletely determined by matrix elements of the form
of (1.1), but with g(e) replaced by G(E), where

G(E) is the Green's function of the projectile plus

target and E is the sum of the projectile and tar-
get energies and therefore lies in the continuum.
The fact that E is an eigenvalue introduces certain
difficulties into the approximate evaluation of G(E).
The exact Green's function G(E) is of course well

defined, the singularity being formally eliminated
in the usual way by the replacement of E by E+ig,
with q a positive infinitesimal number. G(E) is
then a smooth function of E, as opposed to the de-
pendence of g(e) upon e in the neighborhood of e.„.
Nevertheless, not surprisingly, one often runs
across infinities in numerical studies of scattering
problems. " [These infinities can be viewed as
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having their origins in the replacement of the exact
nonsingular G(E) by singular approximations. ]
Procedures have been developed which normally
make it possible in a concrete case to avoid such
singularities, "but it is preferable to have avail-
able a method in which infinities simply cannot
arise. The procedure of Ref. 7, which has exactly
that virtue for e= e„, will be extended in this paper
to E in the continuum. With the scattering wave
function decomposed into open-channel and closed-
channel (decaying) components, the decaying func-
tion can be estimated by a subsidiary minimum
principle, with all its attendant power, without the
possibility of infinities arising. Infinities can arise
in the evaluation of the open-channel component,
but the determination of the open-channel compo-
nent is equivalent to a one-body problem, a prob-
lem that is relatively simple and for which, there-
fore, the possible appearance of infinities is not
nearly so worrisome.

We note that for the single-channel scattering
problem a continuum of states, associated with
the unbounded relative motion of target and pro-
jectile, must be subtracted out. We will show
how this can be done in the context of a Kohn vari-
ational approximation. "

To conclude our general introductory remarks
we observe that matrix elements of the form (1.1)
are not only of interest in their own right, but
arise in essentially all variational principles;
it was, indeed, in the context of variational prin-
ciples that Ref. 7 was written. More precisely,
such matrix elements appear as first-order cor-
rection terms, with 8, and Zz containing (known)
trial wave functions.

Section II contains a description of the method
in the relatively simple context of bound-state cal-
culations. All of the results on bound states are
known, "but have been rederived in a slightly dif-
ferent form. The modified form more readily
suggests the approach to be used in extending
these results to the continuum problem. We have
formulated the continuum results in terms of
Kohn-type variational principles rather than
variational principles that utilize Green's func-
tions. We believe that this provides a calculation-
ally simpler procedure, as discussed at the begin-
ning of Sec. IIIB. In addition to serving a heuristic
purpose the method developed in Sec. II has been
utilized directly in Sec. IIID to carry out the effec-
tive subtraction of discrete closed-channel states.
Our treatment of the continuum problem in Sec.
III is restricted for simplicity to the case of sin-
gle-channel scattering. Level-shift calculations,
which can be treated by similar methods, and
multichannel generalizations will be discussed at
a later date.

II. RESPONSE FUNCTIONS

can be solved approximately for the discrete en-
ergies e„and the normalized wave functions y„
using the Rayleigh-Ritz (or Hylleraas-Undheim)
method. In addition, one is often interested in
determining the response of the bound system to
external perturbations. Computations of this type
ultimately reduce to the problem of evaluating
matrix elements of the form

5)fy( =
&~~ Ig(&) l~;&, (2.2)

where the Green's function g(e) is defined by

g(e) = (e -h) ',
(2.2)

along with appropriate boundary conditions. We
assume that the perturbation has been decomposed
into harmonics with e representing the energy of
the system after it has absorbed or emitted a
quantum of definite frequency &u. IConsider the
scattering of a photon by an atom in state g.
The required (second-order) matrix element is
then a linear combination of matrix elements of
the form (2.2), with e = e„+ )hd. I For simplicity
we confine the present discussion to the case
where e lies below the threshold of the continuous
spectrum of h; the more general case is taken
up in the following sections, in the context of
the scattering problem. With this restriction g(c),
in configuration space, will vanish asymptotically.
We shall be concerned here with variational meth-
ods for evaluating matrix elements of the type
shown in Eq. (2.2), with J,. and 4z assumed to be
known quadratically integrable functions. Actually,
in most cases of interest, J,. and J& involve the
imprecisely known eigenfunctions and/or the eigen-
values of the bound system. Appropriate apyroxi-
mations for these functions can be introduced at
a later stage.

Since we are interested in variational methods
of the Rayleigh-Ritz type we express the matrix
element ~&,- in terms of an ordinary function
rather than a Green's function, That is, we write

%f (
= (Jg I

L,;&, (2.4)

where the function L,. satisfies the inhomogeneous
diff erential equation

(2.5)

L,. will be quadratically integrable since J,. is
and since e lies below the continuum threshold.
Alternatively, we have

Consider a system described by a Hamiltonian
h. The eigenvalue problem

(2.1)
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where

(@ —e) I LI& = —I~y&.

(2.8) below the minimum expectation value of Pg. Since
L,. is quadratically integrable, the choice of L,-,
can be made with the aid of the subsidiary mini-
mum principle

If e coincides with one of the eigenvalues of g,
g(e) in Eq. (2.2) must be replaced by a modified
(nonsingular) Green's function. " This is equiva-
lent to specifying unique solutions to Eqs. (2.5)
and (2.7), whose homogeneous versions possess
nontri'vial solutions for ~ = e„. A particularly
convenient procedure to be followed in such cases
has been developed previously, ' and will be re-
viewed below. The approach of the present sec-
tion may be seen as a straightforward generaliza-
tion of the results of Ref. 7 to the case where e
lies below the continuum threshold but is not an
eigenvalue of g. (The extension to the continuum
domain is given in Sec. III.)

A variational approximation to 3gf,. is given,
as can be verified directly, by

sg„„=&J~ i L, ,&
+ &L~, i J,&+ &L~, ih — (eL, ,& . (2.8)

Our primary concern here is with the problem
of determining quadratically integrable trial func-
tions I, , and L«which are close approximations
to the solutions of Eqs. (2.5) and (2.7), respective-
ly. In particular we look for subsidiary minimum
principles to provide a method for systematic im-
pi ovement of these trial functions. Such minimum
principles can be set up if eigenstates of h with
energies below e. can be effectively subtracted
out.

The subtraction problem increases in complexity
as e increases. Starting with the simplest case
we take e =e,. (This is done for clarity of presen-
tation; no subtractions are needed for e & e, .) The
off-diagonal case involves two approximations
to two well-defined but imprecisely known func-
tions, L,. and I.f. It will be convenient to develop
independent subsidiary conditions for the two func-
tions. To obtain the subsidiary condition for L,.
we begin by observing that the use of Eqs. (2.4)-
(2.8) enables us to express the diagonal matrix
element +, , f'which is not the matrix element under
consideration) as a variational approximation plus
en error:

with 8g, ,„defined by Eq. (2.8) with f replaced by
i. We have defined

(2.10)

jg —~ is a positive definite operator with respect
to quadratically integrable functions since ~ lies

Similarly, the inequality

Kff ~ SRffp

(2.10a)

(2.10b)

The computational strategy outlined above must
be modified when & lies at or above the minimum
eigenvalue of h [setting aside the case where n.L,
in Eq. (2.9) is known by symmetry considerations
to be orthogonal to the ground-state wave func-
tion]. The case where e coincides with e„arises
in the computation of the zero-frequency response
function (e.g. , the static polarizability), in time-
independent perturbation theory, and in the con-
struction of auxiliary trial functions for the varia-

can be used as a. subsidiary minimum principle
for the approximate evaluation of I«. In particu-
lar, as in the Rayleigh-Ritz method, the trial
functions may be expanded in a set of basis func-
tions which contain linear and nonlinear variational
parameters. The parameters contained in I«and
Lf, can be determined by searching for the sets
which minimize the functionals 3R„.„and %ff„,
respectively. It is considerably easier to program
a computer to search for an extremum than for a
saddlepoint. If considered worth the effort, one
can treat the nonlinear parameters as fixed by
the above approach, but treat the linear param-
eters as open parameters t.'-1at are to be recalcu-
lated, as can easily be done, to make the original
functional Jgf &„ stationary.

The procedure is somewhat simpler if the matrix
element of interest is diagonal (i =f ). (The diago-
nal matrix elements that appeared above arose as
calculational tools in the analysis of off-diagonal
matrix elements. ) Moreover, „. „ then provides
a variational bound on the matrix element of inter-
est, that is, a primary minimum principle, if
J,. is known.

Note that the existence of a bound state of en-
ergy e, played no particular role i.n the above
analysis, since we were concerned with «e, . In
the following subsections we will be concerned
with c = c1 and c2 + ~ + ~, . Since we will then have
a bound state at or below the energy under con-
sideration, it will be possible to obtain a subsi-
diary minimum principle only if we can extract
the effects of that bound state; the extraction will
have to be performed in the face of an imprecise
knowledge of g, and E1 It is trivial to extend the
results to the case e& e„ for n +1.
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tional calculation of matrix elements (x, I W I x,),
where 8' is a given operator. An equation of the
form (2.5) is consistent for e= e, only if the in-
homogeneous term is orthogonal to the ground-
state function X,. For e= &, the appropriate modi-
fication of Eq. (2.5) that defines L is

5 -~,)IL) =-l~&+ Ix,)&x l~&, (2.11)

(h —&i) I » = —IW . (2.13)

Here we have introduced the modified Hamiltonian

si I xi}&xi I (2.14)

Note that the eigenfunctions X„ofh are all also
eigenfunctions of k. Furthermore, with the excep-
tion of e„all of the eigenvalues of 5 are eigen-
values of fg, the eigenvalue e, of Q is replaced, for
h, by the eigenvalue 0. It follows that 6 —c, has
no null eigenvector, that there are therefore no
solutions of the homogeneous equation associated
with (2.13), and, finally, that the solution of
(2.13) is indeed unique. To check if

I
I,), in the

form shown in Eq. (2.12), satisfies Eq. (2.11) we
compute

(h —&i) I L) = (h —&i) I M) +5 (& —&i) I xi&

=(& —,~ ) IM&+~, IX'&&xi IM}

=-l~&+~ Ix,&&x, IM} (2 15)

To determine (X, IM) we project Eq. (2.13) onto

(X, I and obtain

&x, I (h - ~, - ~, I x,& &x, I ) I » = -&x, IJ&,

which immediately yields

&x, IM}= (I/&, ) &x, I J& .

Then the last member of Eq. (2.15) becomes

(2.16)

(2.17)

—
I J&+ ~i I x,&&xilM& = —

I J}+I x,&&x, I J&, (2.18)

thus verifying the solution. The parameter 5 is
undetermined by the above considerations, which
are restricted to the determination of the general
form of the solution of (2.11), since x, is a solu-
tion of the homogeneous equation associated with
(2.11). In the application considered in Ref. 7 the

where the subscript i or f is dropped to simplify
the notation. A subsidiary minimum principle
for the determination of approximate solutions
of Eq. (2.11) was described previously. ' We briefly
review that discussion here since it provides the
basis for the generalizations treated subsequently.

%e shall first demonstrate that the solution to
Eq. (2.11) can be represented in the form

(2.12)

where 5 is a parameter to be determined and
IM) is uniquely defined as the solution of

component (x, I L) was of no significance since it
made no contribution to the variational expression
considered there. Hence the simplest choice b =0
sufficed. If the component (x, I L) is specified in
advance and denoted by x (one often requires the
condition X=O, for example), we may project Eq.
(2.12) onto (X, I and use (2.1V) to obtain

&=&X IL) -&X, IM&=x-(IA, )&x, l~&. . (2.19)

Equation (2.8), the variational principle for
JR&, defined by (2.2}, involves LI, and L«, approxi-
mations to L~ and L, The functions Lz and L,
are defined to within a multiple of x, by (2.11)
(ln which the appropriate subscript, f or 2, ls
to be inserted). Unfortunately, however, it can
be exceedingly difficult to obtain approximations
to Lz and L, for &=e„much more so than for
~ & ~„ for ~ = z„ the most obvious equation ap-
proximating (2.11) (that in which the unknown x,
and e, are replaced by estimates X„and e„)has
very troublesome near-singularities, as dis-
cussed in detail in Ref. V. The power of the tech-
nique introduced in Ref. 7, a slightly modified
version of which we are now discussing, originates
in the introduction of a subsidiary minimum prin-
ciple for the approximate determination of ~M,

and Mz, and therefore, via (2.12) and (2.19), of
L, and Lz. More precisely, 5 —e, is a positive
operator so that a trial function IM«} can be sys-
tematically improved by minimization of the form

h I xit& &xii Ih

&x„l~ Ix„)
We assume throughout that y„ is good enough to
generate an ~„with a negative value. Clearly

and 6 j g
6 j for Xy g Xl Furthermore, as

JR(q„= &8, IM(,}+(hl,, l jq}+&M), lg —g, lM„),
(2.20)

in analogy with the earlier discussion leading to
Eq. (2.10a). IM&,}can be systematically improved
in an analogous fashion. In other words, by work-
ing with the modified Hamiltonian A, rather than
with the physical Hamiltonian h, the case & = &,
has been reduced, at least formally, to the sim-
pler case c &a„ the role of the positive-definite
operator previously played by Q —& now being
played by h —e, . We say formally because neither
the eigenvalue c, nor the eigenfunction X, in the
expression for fg is precisely known in general.
However, we may replace g —~, in the functional
Jg«„by jg, —e„where we have introduced a normal-
ized trial function X„and have defined

ei~ = (xit I& I xit&
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shown previously, ' h, —z„will be positive for y„
sufficiently accurate; the precise conditions will
be quoted below. Thus the subsidiary minimum

principle is preserved; the subtraction procedure
is effective even when the wave function and the
energy of tPe state to be subtracted are not pre-
cisely known. This essential feature of our method
will be utilized repeatedly below.

In summary, a variational principle for gg«of
(2.2), with a=e, and 4, and Zz known, is provided

by (2.8), with e = c, replaced by its variational
estimate e„, defined by (2.21), and where, in
line with (2.12) and (2.19), we write

Ihg& = IM;g&+Ixg —(1/&„)&x„lJ;&jlx„&

and a similar equation for L«. M« is obtained

by minimization of the form

3}f„.„,=&J,. live„&+&M, , Iz, &+&M„Ij., —~„li», ,&,

(2 20)

with 5, defined by (2.22). Mz, is obtained by mini-
mization of the analogous form, with i replaced
by f.

Then 5 is determined as

(2.30)

The variational calculation would proceed as
follows. A normalized trial bound-state wave
function X„ is chosen using, e.g. , the Rayleigh-
Ritz method. The trial functions I.«and 1«which
appear in the variational expression Eq. (2.8)
are chosen in the form

lf;g&= IM;,&+bgglxig)

IL„&=1M„) b„lx„&.

(2.31)

(2.32)

The variational parameters in M, t are determined

by minimizing

5j„.„,= &Z,. IM„&+&M„IZ,&+&M„Ib, —e IM„&.

(2.33)

The minimum principle is valid for values of ~

which lie below the minimum eigenvalue of h, .
%e have shown" that for any normalizable func-
tion q the inequality

&@Ibi I 0& (2.34)

with IM& defined by

(b - e}I»& =- l~&

(2.24}

(2.25)

To see if b can be chosen such that IM&+b
I x,&

is in fact a solution we evaluate

(b —&}IL&= (b —&} I »&+b(b —~) I x,&

%e progress now to the next most difficult case,
where c, & e e„with e, representing either the
energy of the first excited sta, te, or, if no excited
states exist, the continuum threshold energy.
Proceeding as above we look for a solution of

(2.23)

in the form

is satisfied. Then from a knowledge of lower
bounds on c, and e, we may suppose that an energy
7, has been found such that

(E(/E~() E2 & 62 . . (2.35)

Thus the minimum principle holds for e «7, . A

similar principle holds for M~t.
%'e turn now to the evalua. tion of the linear varia-

tional parameters 5, t and 5«. Note that, as op-
posed to the case a= e, of Sec. IIB, where the dif-
ferential equation defining I., played no role in
the determinatio~ of 5, and 5&, these linear param-
eters are here defined by the differential equations
(2.23) and (2.25) and were in fact given, if only
formally, in Eq. (2.30). To obtain estimates b«
and 5&t of 5, and 5& we require

= —
I J&+ &i I x,&(x, IM&+b(ei —&) I x,&.

(2.26)

This reduces to —
I J& as required if we choose

9
Iiy, „=0,

8

8 « «v

This leads to the values

(2.36)

(2.37}

', &x IM).
1

(2.27)
&b~ I x.~&

Starting from (2.25}, we can determine &x, lM)
from

&x, I (b —~ —~, I xi&&x, I ) IM& = -&x, I ~&,

which gives with

&x., I h; &

« (2.39)

&x IM) = (1/~}&x, I&&. (2.29} l~„&=I~,& (b- )IM„&, (2.40)
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I h„& = I~;&+(h —e) I)tf;,&. (2.41)

In considering the diagonal case i =f, we might
anticipate the simplifying feature that the original
functional 3g, , itself satisfies a minimum principle.
To verify this we examine the error term in Eq.
(2.9}, which we write as

[It can readily be checked that for the various trial
functions replaced by exact functions the above re-
sults reduce to the results of (2.30).] With this
choice of parameters the variational expression
becomes

SR„.=(J, I~„)+ps„Iz,)+(iw„Ih —e Im, ,)

($f f I X&t)&x~~ I hi ~&

lim (JzIG(E+fq) IZ,.),
where

(S.1)

and where F. lies above the continuum threshold
of the Hamiltonian H. For definiteness, we dis-
cuss the problem in the context of scattering theo-
ry, by far the most important example in which
matrix, elements. of the form (3.1) arise. We con-
fine our attention here to the case of single-chan-
nel scattering of a particle from a bound system.
%'e suppress spin degrees of freedom of the pro-
jectile and assume the projectile to be distinguish-
able from the particles in the target. Generaliza-
tions will be taken up later.

The Hamiltonian is of the form
-(«, Ih —~

I «, &
= -«L, Ih —e —(h —~), I «;) 8 = X+ V+ig, (3.3)

(2.43a)

where we have introduced the operator

(h —e)Ix„&(x. (& —e)
(xi) I& e I xi&)

(2.43b}

The first term may be shown to be negative if
e„—e &0. (This is a simple adaptation of the
basic theorem of Ref. 6.) The second term van-
ishes if J„is chosen according to the above
prescription, namely, I f.„)= IM, ,) +b, , I x, ,) with

b, , determined variationally. An analogous mini-
mum principle for the scattering length when one
and only one composite bound state exists was
proved some time ago. ' ln fact, that earlier re-
sult is easily recovered from the approach adopted
here by studying the limit, assuming that here too
h supports one and only one bound state, as e
approaches the continuum threshold e~, from be-
low, of the Kohn vaxiational expression for the
scattering length. In other words, the earlier
result corresponds to the special case e= c,h, of
the present result.

The subtraction procedure described above can
be extended in a straightforward way to the case
where a known finite number of bound-state lev-
els lie below e. 1t is clear, however, that modi-
fications are required in order to preserve the
subsidiary minimum principle if the energy lies
above the continuum threshold. This is the subject
of Sec. IG.

(3.6)

Note that
I x, k,.) can be factored into Ix) IR, ), with

I E,') denoting the incident plane wave of relative
motion. Ne have dropped the subscript on the
target ground-state function X, but will retain the
subscript on e. Since X satisfies

@Ix&=e,lx&

and since Ik,.) satisfies

xIk, &=a Ik,.&,

(3.7)

(3 6)

where, with k,. =4&=-k and with p, the reduced mass,
we have

E'= h 0 /2p, ,

it follows that

where, in the center-of-mass frame, X is the
kinetic-energy operator describing the relative
motion of projectile and target. The interaction
between projectile and target is given by the po-
tential V; we assume V to be short xanged here,
with Coulomb effects considered in Sec. IDC. The
target-system Hamiltonian is represented by h.
The scattering amplitude is defined as

T(ky "()=
&P, II'Ip&&+»m &~, IG(&+in) IJ&),

(3 4)

III. SINGLE-CHANNEL SCATTERING

A. Formal development

%'e shall be concerned here with variational ap-
proximations, along with subsidiary minimum
principles, for matrix elements of the type

with

E= a, +E'. (3.9b)

Relations (3.5), (3.6}, (3.6), and (3.9a) remain
valid for i replaced by f. Throughout the formal
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~ikP
d (r, p) ————,T, (kp, %,.}X{r) (3.12)

where p
=—p/p, in the limit as p, the separation

between the projectile and the center of mass of
the target, becomes infinite. (The collection of

space and spin coordinates describing the target
system is represented by r. ) Since IC", ,~& must be
an approximation to the solution of

(ff -E) I
4'

&
= o,

) must be an approximation to the solution of

(3.13)

(3.14)

In close analogy with the procedure described
in Sec. II me look for a formal decomposition of

I

L(.'~& into open- and closed-channel components
and we shall Seek a subsidiary minimum principle
to help determine the closed-channel component.
Dropping the subscript I and superscript (+) tem-
porarily, we write

I4 &
=

I x,f&+ f~&,

where

If&= I»+ lf&

By (3.11), we then have

(3.15b)

development in this subsection X mill be assumed
to be precisely knomn. A practical computational
procedure is described in Sec. IIIB. In place of

the outgoing-wave boundary condition implied by
the limiting procedure in Eq. (3.4) we could have

adopted standing-wave conditions, and/or we

could have worked with states of definite angular
momentum. " The following discussion would not

be changed in any essential may.
In analogy with Eq. (2.9) the scattering amplitude

ean be expressed as a variational estimate plus
an explicit error term. We shall not eoneern
ourselves here with obtaining bounds on the error
term. The variational expression, derived some
time ago by Kohn, " is of the form

T„(k~, k,.) =T, (R~, R,.)+(4~,'IH —E I4',.',i&, (3.10)

where the zeroth-order estimate T, is determined
by the asymptotic form of the initial trial function,
and where the matrix element of H —E is a first-
order correction. In the following discussion of
the trial functions me shall consider 4,.', . Similar
remarks hold for 4z, ' with i -f and incoming
waves used in place of outgoing waves in the as-
ymptotic form. We shall write

(3.11}

Then with E belom th6 inelastic threshold me have
the configuration-space asymptotic form

Since xf carries the correct asymptotic form of
L the function M will be decaying at infinity. Of

course the decomposition shown in Eq. (3.15a) is
not unique since an arbitrary decaying component
can be added to I X,f) and subtracted from IM&.

We may take advantage of this lack of uniqueness
to define M in a may which admits a minimum

principle as a method of approximation. We define

ff = 8 - e
I x&(x I

or, equivalently,

H= X+V+6,

(3.17)

(3.18)

where fz is the modified target Hamiltonian defined
in Eq. (2.14}. Since the first excited state of h

represents the ground state of fi, the ground state
having been raised in energy from e, to 0 in going
from h to h, it follows that the component of the

continuous spectrum of H associated with the tar-
get in its ground state has been raised by an
amount e, in the spectrum of H. In particular,
then, as opposed to the spectrum of H, the spec-
trum of H has no continuum between e, and the in-
elastic threshold of H at e, . Then H -E will be
positive if F. lies below the inelastic threshold,
provided H has no discrete states; such states,
if they exist, can effectively be subtracted out,
even though the discrete-state wave functions and

eigenvalues mill be imprecisely knomn. The full
implication of these remarks will be discussed
later. For the moment they serve to motivate the

defining relation mhich me adopt for M, namely,

(ff —z) I~&= —IJ&, (3.19)

in which the positive definite operator H —E ap-
pears. Our task now is to verify that the "source
term" J, which me require to be quadratically in-
tegrable, can be chosen in such a way that a solu-
tion to Eq. (3.14}exists in the form shown in Eq.
(3.16}. As a by-product of this demonstration we

will find a defining equation for the function f
which serves as an Euler-Lagrange equation
associated with the present version of the Kohn

variational principle. Thus, inserting (3.16}into

(3.14) and using (3.19), (3.1 I), (3.3), and (3.9b), we

obtain

(3.16)

Associated with the state vector If) is the single-
particle function f(p) which represents the out-

going wave component associated with the incident
particle; in accordance with Eq. {3.11) the inci-
dent plane wave is not included in the function f .
f(p) represents the complete effective single-
particle wave function. Note that

Ix,f) = Ix& lf), Ix,f&= I x& If).
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(H -E) I
I&

= (8 —E)( I x,f &
+ IM&)

=(H-E)ix f&+(H-E) IM&

+e, Ix&&xlM&

=vlx, f& (x-E)lx,f&- l~&

C, (E) = (E - I -X)-'. (3.27)

&x I &.(E) = (E -x ) '&x I, (3.28a)

Since y is an eigenfunction of Pg with eigenvalue
zero we conclude that

+ ~, I x& &x IM&
so that, from Eq. (3.26),

&xIG=(E-x) '&xl(1+v&). (3.28b)

Since

(x —E')
I x,f &

=
I x&(x —E') lf &

and since &X IM& is a state vector in p space, it
must be possible to find a function w =m (p) such
that

We can now rewrite Eq. (3.25) as

(x-E')If&=-&,(E-x) '&xlv+VGvlx, f&.

(3.29)

If then we define an effective single-particle propa-
gator

vlx, f& —IJ&+ IA= —Ix& la». (3.20) 1 1
(E' -X)(E -X) E' -X E -X (3.30)

(x-E') lf&=-e, &xlM&+ In' &. (3.21a)

(Since V, 4, and J' are quadratically integrable,
ao will have the same property. ) It follows that

f must be defined as the solution of

and an effective-potential operator

& = &xl v+ v&vlx&,

Eq. (3.29) takes the form

(3.31)

On inserting the value of J obtained from (3.20)
into (3.19), and using (3.6), (3.5), and (3.15b),
we obtain

li&= «IX& (3.32)

That is, f satisfies the single-particle Lippmann-
Schwinger -like equation

(H-E)IM&= —vlxf& —Ix ~&. (3.21b) (3.33)

(ff E)I&&&= -vlx-, f) (3.22)

The projection of M on y required to evaluate the
right-hand side of Eq. (3.21a) can be determined
formally in terms of the Green's function

G(E) = (E H)- (3.23)

Here and in the following it will be understood that
E and E' contain a small positive imaginary part
which approaches zero after all integrals are
performed. 'The formal solution to Eq. (3.22) may
be written as

IM& =G(E)vlx, y&,

so that Eq. (3.21a) becomes (with n& =0)

(3.24)

(x-E') If) = -e &xlG(E)vlx, f& (3.25)

To carry the analysis a. step further we observe
that G satisfies the resolvent identity

G =Go+GoVG,

where

(3.26)

With w having been arbitrarily chosen, f and M are
defined by the coupled equations (3.21a) and (3.21b).
The functions f and M depend on the specific choice
of sg. However, as shown in the Appendix, the
dependence is such that the sum L=gf +M is in-
dependent of zo. In the following we sha, ll set se =0.
Thus, the defining relation for lVI is taken as

The interpretation of 'U as the effective single-
particle (energy-dependent nonlocal) potential is
confirmed by the relation

&k, l& lf&= $, , xl vil lx, f&+ IM&]

= &k„xl vl4I'&&=T(&„&,.), (3.34)

which follows directly from the definition, Eq.
(3.31), on using (3.24), (3.15a), and, in the last
step, Eqs. (3.4)-(3.6). The effective potential of
Eq. (3.31) (as well as its multichannel generaliza-
tion) was introduced previously in Ref. 9 in an ap-
proach based on integral equations for the scat-
tering matrix.

The effective potential is of course not unique.
We may, for example, introduce a transformed
effective potential

which preserves the Hermiticity property of the
effective potential in the energy region where
only single-channel scattering can occur. Accord-
ing to Eq. (3.33) the transformed single-particle
function

lf,&=(~ '~) If&

satisfies the usual Lippmann-Schwinger equation



SUBSIDIARY MINIMUM PRINCI PL ES FOR SCATT E RING. . .

If,&= Ik&+E, 'urlfr&.

We have used the relation

with the positive root chosen as a matter of defini-
tion. One easily sees that the scattering amplitude
is unchanged by the transformation, i.e.,

&k, I ~,ff,&= &k, I~ if&.

B. Choice of trial functions

If the target function X were known exactly a
variational bound on the effective-potential opera-
tor mould lead, after numerical solution of the ef-
fective single-particle integral equation for a given
partial mave, to a variational lower bound on the
phase shift. ' " The phase-shift bound is lost. if,
as me shall assume in the following, X is impre-
cisely known. A subsidiary minimum principle re-
mains for the construction of the effective poten-
tial, as described previously. ' The procedure we
nom describe, based on a closely related minimum
principle, should be considerably simpler from the
ealeulational point of view since it does not require
the exact solution of an integral equation. That
step is replaced here by a variational determina-
tion of the single-particle wave function f, with the
closed-channel component M constructed separate-
ly using a subsidiary minimum principle. Experi-
ence shows that accurate variational estimates of
the phase shift (or K matrix) for single-particle
scattering can be obtained without difficulty. The
full many-body complexity of the problem is
shifted to the determination of M for which methods
of the Rayleigh-Ritz type have just been presented.
Use of a Kohn-type principle has another advantage
w'hen X is imprecisely known since the calculation
is known to be variational with respect to errors
in x,

"i.e. , it introduces an error of order (x —x,)'
provided the energy E = c, +E' is replaced by the
variational approximation

(3.35)

with e„=&X, Ih lx, ) and &x, IX,) =l. As a final gen-
eral remark me observe that when long-ranged
Coulomb forces are present the effective-potential
approach involves exact Coulomb propagators
and wave functions while the Kohn method requires
only that the asymptotic form of the Coulomb func-
tions be given correctly. We return to this point
below.

To describe the variational procedure in more
specific ter~s me introduce a trial function of the
form

l~,) =
I x„f,&+ IM,), (3.36)

where, as p —~, f, approaches a plane wave plus
an outgoing wave and M, vanishes. There are three
functions to be determined: x„ f„and M, . The
linear and nonlinear parameters contained in X,
ean be obtained from the Rayleigh-Ritz method.

f, and M, are approximations to f and M, defined
by the coupled equations (3.22) and

(st-E') lf&= -~,&XIM&, (S.37)

arrived at from (3.2la) by recalling that we have
chosen at =0 and using (x —E') lk, ) =0. Assume
that we have in any fashion arrived at a particular
choice of f,. Perhaps the most natural way to ob-
tain such an estimate mould be to use the variation-
al principle (3.10), with E replaced by E„defined
in Eq. (3.35). We would introduce a, trial function

y, = X,f, +M, with f, containing few if any nonlinear
parameters. M, mould contain linear and nonlinear
parameters, but the nonlinear parameters mould,
temporarily, be given arbitrary numerical values.
(We are here using a variational principle and want
to avoid the determination of nonlinear parame-
ters. ) With the parameters in X, determined by
means of the Rayleigh-Ritz theorem and with the
parameters in f, (and M, ) determined from (3.10),
me would obtain an improved set of values of the
coefficients in M, by considering the functional

Sg. = &x„f, I 1'IM,&+ &M, I
1'I x.„f,)

+(M, IH, -E, IM,),
where, using Eqs. (2.22) and (3.3),

(3.38)

x+y~) H xt) xtl (3.39)
&X, I) Ix,&

The continuum threshold of H, is given by the mini-
mum eigenvalue of A, „ for which we have a lomer
bound, Eq. (2.34). We shall assume here that H,
supports no discrete states; if a finite number of
such states exist they may be subtracted out as
described in Sec. IIID. Then for E, &7.„where Z,
is an energy determined such that the inequality
(2.35) is satisfied, the operator H, —E, is positive
in the space of quadratieally integrable functions.
It folloms that the function I, which minimizes
Jg„provides a solution of

(H, -Et) IM, &= -1'I x„f,&.

Thus, for X, and f, fixed, the variational parame-
ters in M, can be determined by mi. nimizing the
functional gg, . In particular, a search for the non-
linear parameters in M„as mell as for the linear
parameters, can be made systematically.

With the improved version of M, , and M&~, and
with the same version of X„we can obtain an im-
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proved form for f, , and fz„and at the same time
an improved variational estimate of T(R„, k, ), by
again using (3.10). The f,'s might have many linear
para, meters, but they would contain very few if any
nonlinear parameters. With g, and the M, 's fixed,
integration over all but the coordinate p reduces
(8.10) to the form of a variational principle for
single-particle scattering, for which spurious
calculational singularities can arise which can be
relatively easily avoided. Alternatively, if it
seemed desirable, the linear (but not the nonlinear)
parameters in the improved version of M„deter-
mined as described just above, could be treated
as linear variational parameters in the study of
(3.10). The same could be done even for the linear
parameters in X,. Having obtained an improved
f„one could go back and improve hI, by the use
of a, subsidiary minimum principle, then improve

f, further, etc. The merit of the approach, as op-
posed to the direct use of (8.10) once, with no use
of (8.38), is that the nonlinear parameters in the
closed-channel component M, of 4, can be readily
evaluated. The approach mould, of course, involve
additional labor, since it begins at the point at
which one has already obtained a variational esti-
mate of T(kz, k,.) by means of (3.10). Since the use
of (3.10) will presumably give a reasonable starting
point for the 4,'s, we expect that very fem itera-
tions will be needed.

Many alternative procedures are possible. One
might insert the Born approximation I/, ) = ik) into
(8.88), as a starting point. Instead of using the
subsidiary minimum princiyle as an aid in con-
structing trial functions in a Kohn variational cal-
culation one might use it as a link in a successive
approximation procedure based on the coupled
equations (3.22) and (3.3V). That is, rather than
solving Eq. (3.22) with f replaced by an approxi-
mation f, one may determine M, by minimizing
the functional in Eq. (3.38}. An improved f, may
then be obtained from

(3.41)

Using the mell-known one-body Qreen's function
{E'-x) ', Eq. (3.41) may be solved to give

with the last term obtained by numerical quadra-
ture. At each stage of the successive approxima, -
tion procedure an approximate scattering ampli-
tude may be determined from the asymptotic form
of Eq. (3.42) in configuration space. We have (re-
lnsertlng subscripts j and f)

f (p) —(2v)-3/2ejk g
' P

—(I/4v)(2p/0 )T,(kp, %,.)e'~i'/p, (3.43)

with T t given by

T~(k~, k,.) = e„(X„k~IJ}fig) ~ (3.44)

This last result also follows from (3.41) on inter-
preting e„(x,i)}f,) as an effective potential opera-
ting on if,), and using the usual definition of tran-
sition amplitude.

Few of the many possibilities for the estimation
of T(kz, k,.) will provide variational estimates.
Thus, while (8.42), for example, may be useful
in intermediate steps in the iteration process, the
final calculation would normally be one that uses
the normal Kohn principle (3.10) in the full many-
body form.

C. Effects of monopole and mulfipole moments

Modifications of the preceding discussion are
necessary when both projectile and target are
charged. These modifications can be summarized
as follows. Let us define the "monopole" Coulomb
interaction U, as the Coulomb i.nteraction between
projectile and target mhich would exist if the
charge of the target system were concentrated at
its center of mass. %e nom reinterpret the single-
particle operator X in Eq. (3.3) as the kinetic-en-
ergy operator plus the pure Coulomb interaction

Accordingly, the operator V in Eq. (3.3) now

has the monopole component removed. Equation
(3.8) is retained with the state ik,.) now represent-
ing a Coulomb wave function satisfying the appro-
priate boundary conditions. The scattering ampli-
tude defined in Eo. (3.4} now represents the dif-
ference between the full amplitude and the pure
Coulomb amplitude. The variational expression
for this amplitude is given by Eq. (3.10) with the
asymptotic form of Eq. (3.12) suitably modified by
the inclusion of the logarithmic phase factor in the
outgoing wave. " Thus, as mentioned above, the
exact single-particle Coulomb wave functions are
not required in actual applications. Coulomb dis-
tortions enter into the asymptotic form of the trial
function f, of Eq. (3.36). The functional to be mini-
mized in the construction of the component M, is
once again of the form shown in Eq. {3.38).

In constructing trial functions for the scattering
of tmo systems each with a net charge, one may
have to take into account not only the effect of the
monopole component on the asymptotic form of f,
but modifications of the asymptotic form of M due
to multipole components. In particular, M falls
off not exponentially but as a power of 1/p. " The
effect on M is also present in the scattering of a,

charged particle by a, neutral but electrically po-
larizable system, for which the interaction has no
monopole moment but does have higher moments.
(For zero energy, even the asymptotic form of f
is affected. ) To see hom the effects of the higher
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N Ne

P
(8.45)

For p very large compared to atomic dimensions
V is approximated by its dipole term,

(3.46)

The asymptotic form of M can be deduced from
(3.24} by using the identity

G =g+G[st -E'+ V]g, (3.4'l)

where we used (3.23) and (3.18) and introduced

moments arise in the present approach consider
the form of the interaction V for electron-atom
scattering. (We have assumed that the incident
particle is distinguishable from the target parti-
cles, but this restriction can be removed; further-
more, we are for the moment primarily concerned
with large p, for which distinguishability plays no

role. ) For an electron incident on an atom of,nu-
clear charge Z with N electrons, we have, the
monopole moment having been removed (for NeZ),

briefly in the present context let us assume for
simplicity that 8 has only one bound state:

Hla& =E, la&,

where we take Ia& to be normalized. The solution
to Eg. (3.22) may be written as

im= I»+b I.&,

where I» satisfies

&H. -E) l»=-Vlx, f&

We have defined

H =H —E ln&&a I
=8- H

I a&&a IH
a a &aHa&

(3.50)

(3.51)

(3.52)

In practice, when approximate normalized states
Ig, ) are employed, the replacement of Ia) by Ig,)
must be made in the second form of Eg. (3.52) if
we are to preserve the positivity of H, —E. [Simi-
Iarly, it ls Et(, Eg. (3.89}, which is 'to be used
rather than 8 in practice. ] Thus, we have subsidi-
ary minimum principles available to construct ap-
proximations to the states IÃ) and In&. The Kohn

trial function would be taken in the form

g~g(&, }=(&,-h) '; (3.48) I+,&= I@', &+5 l~,&, (3.53)

g is well defined since e., is not an eigenvalue of
Since (x E'}Vf va-nishes more rapidly than

p 'we see that to leading order we can replace
G byg in Eg. (3.24). Equivalently we see that for

p fixed and large, M satisfies

with

(3.54)

When the para. meter 5 is determined variationally,
the Kohn functional becomes

Pi —~)l~)=- —* Pi';)Ixf)
P

(3.49)
T„(%f, %,}= T,{k,k, ) +&1J(~~,

~'
I H —E i@i~',~'&

&e';,' IH -E Iu, &&a, IH -E le", ,'&
&a, IH -Ela,&

Associated with this equation is a subsidiary mini-
mum principle described ea.rlier in connection
with the determination of the zero-frequency re-
sponse function [see Eq. (2.18)]. Clearly, Eg.
(3.49) describes the perturbation of the target in
a uniform external field of strength e/p'. Physical
arguments of this type form the basis of "adiaba, -
tic" approximation schemes which are often used
in low-energy electron-atom scattering problems. '
Such methods may now be subjected to systematic
study using the rigorous subsidiary minimum prin-
ciple which involves the function I throughout all
of space, not only in the asymptotic domain.

D. Dosed-channel bound states

The minimum principle which can be used to ob-
tain an approximate solution to Eq. (8.22) must be
modified when II has bound states below E. The
procedure for subtracting out such discrete states
is essentially identical to the one described earlier
in connection with Eq. (2.23). To summarize this

(3.55)

As mentioned in Sec. II the subtraction procedure
is easily generalized to the case where a finite
number of discrete states must be subtracted out.
Since we are interested primarily in atomic appli-
cations we must inquire how the existence of in-
finitely many discrete states, arising from attrac-
tive long-range Coulomb interactions, affects the
applicability of our method. We remark first that
the states to be subtracted out are those of the
modified Hamiltonian 0, rather than H. States pres-
ent in the spectrum of 8 may vanish into the con-
tinuum when modified by the addition of the repul-
sive interaction -e, IX&&XI=H H It is easy t-o s.ee
that this does indeed occur. For example, let the
Hamiltonian 0 refer to the neutral helium atom and
let E lie in the region corresponding to low energy
electron scattering by He' in its ground state. In
addition to the continuum of states above the He
ionization threshold there is an infinite number of
bound states below, accumulating at this threshold
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(each corresponding to an electron weakly bound

to the He' ion). However, in the spectrum of H

the He' ground state has been subtracted out (or,
more precisely, displaced upward). This removes
both the continuum and discrete states associated
with the He' ground state. Similar remarks hold
for heavier atoms, although the He system is dis-
tinguished by the fact that the He' states are known

exactly so that rigorous variational lower bounds
on low-energy electron-He' phase shifts can be ob-
tained using either the effective-potential forma-
lism or the projection-operator method. (The re-
quired Feshbach projection operators are known

for the two-electron system. "}
APPENDIX: INVARIANCE UNDER CHANGES IN w

Ix,f &+ IM.&= lx,f.&+ IM.&. (A1)

Our analysis of Eqs. (3.21) follows that in the
text, but with w &0. Thus, in place of (3.24) we

have

The analysis of Eqs. (3.21a) and (3.21b) given in
the text was based on the choice w =0. Here we

,show that the wave function &I, given by Eq. (3.15a),
is in fact independent of the choice of w. This
demonstration is necessary to establish the self-
consistency of our analysis and to justify the simple
choice w =0. Let us represent the solutions of the
coupled equations (3.21) as f and M to indicate
explicitly the dependence on the function w. The
solutions corresponding to the choice w =0 will be
denoted as f, and M, . We shall show here that

We then have

(x I
vG I x) = U E

1
(A5)

(x-E')lf &=-E ' 'Ulf &

1+'U w +

(A7)

The solution can be written, using the definition
(3.30) in both forms, and adding

I k& to each side,

If„&+~ Iw&= I&& e~(ii„&+~ Iw&)

(A8)

By comparison with the integral equation satisfied
by f, I

Eq. (3.33)] we conclude that

If.) = lf.&+E Ia&.

This result, when combined with ~A2), gives

IM„&=G(E)vlx,f & G(&)vE „-Ix, ~&+G(E) lx, ~&.

which, when combined with (A3) gives

~, (xlM.&=+" ~If.&+@" (&+~ )I~&.

(A8)

With this result Eq. (3.21a) becomes

IM.& =&(&)v I x,f.&+G(&) I x, ~& (A2) (A10)

With the aid of Eqs. (3.28b) and (3.31) we find

e,&XIM.&=E '„'olf.&+E
' &x(1+vGlx, a».

(A3)

As in the derivation of (3.28b) we can show that

If we use (A4), along with the relation

IM.& =G(E)vlx, f.&,

we can rewrite (A10) as

IM.&
= IM.&+ Ix, ~&

1

(A11)

(A12)

G I x&
= (1 +G v) I x& E

1
(A4)

The desired result (Al) follows directly from Eqs.
(A9) and (A12).
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