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According to early experiments and calculations, doubly excited states of helium are grouped into
channels (Rydberg series and continua) with very different excitation and decay probability. Macek has
identified channels by using hyperspherical coordinates [R = (i + r3)' ° tana = ry/r;, Q= f{a. ?,,
7,}] and solving the Schrédinger equation initially at fixed R; each eigenvalue U ,(R) and eigen-
function ®,(R;Q) characterizes one channel and the approximate solution of the whole equation has
the form F ,(R)®,(R;Q). We study the electron correlations in each channel by obtaining explicit ex -
pressions for the ®,(R;Q), and extend the range of Macek’s investigation to higher channels. Pairs of
orbital quantum numbers (I,,/,) are found to be quasiconstants for each channel; channels with the
same (I ,l,) and (L,S, 7) differ mainly in the degree of excitation of the radial correlation. Channel
functions ®,(R:Q) of 'S, 'P +, and ‘P + channels have an antinode at or near a = 45°, while those
of ’S, 'P—, and ‘P — channels have a node at or near a = 45°. An antinode or a node appears to
occur generally at or near a = 45°. This location of nodes in the minus and °S channels is shown to
be related to the weakness of coupling both among these channels and to plus channels with the same
(L,S, m) symmetry. Examples for H™ are discussed. The interactions between channels with different
(1,,1,) are important where their potential curves are nearly degenerate. Examples of the effect of this
degeneracy in the spectra of alkaline-earth atoms are indicated.
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I. INTRODUCTION

The spectrum of helium states with two excited
electrons was first studied systematically by Mad-
den and Codling with synchrotron radiation.' This
work showed that levels with the same 'P° classi-
fication are grouped into different Rydberg series
with very different excitation cross sections and
autoionization widths. In the more familiar spectra
of single excitation, each series and its adjoining
continuum —which are jointly called a “channel” —
are easily identified by the quantum numbers of an
independent particle model. In the spectra of dou-
ble excitation, attempts to classify channels by in-
dependent-particle angular -momentum quantum
numbers have failed thus far, because of the domi-
nant effect of correlations.

The early efforts toward a classification were
reviewed by Fano.? By that time calculations of
double excitation had shown that the existence of
channels with given total angular momentum but
with very different properties is not limited to the
'P° example of the initial experiment but is com-
mon to all cases that have been studied. These
calculations predict energy levels and decay widths
with accuracy comparable to that of experimental
results and generally agree with one another. Un-
fortunately, however, the calculations fail to char-
acterize the channels themselves and the grouping
of levels into channels emerges from analysis of
the results as accidental. Only one approach, by
Macek,? yields a grouping of levels into channels
by reducing the Schrddinger equation to a single
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variable form with alternative optical potentials.
Different channels correspond to different potential
wells and the channel properties are related to the
well shape. However, the method was not devel -
oped sufficiently to reveal the physical nature of
each channel or to test the approximations ade-
quately.

Macek’s method solves the two-electron Schro-
dinger equation in hyperspherical coordinates. In
this coordinate system, the radial distances of the
two electrons from the nucleus, 7, and 7,, are re-
placed by a single radial coordinate R=(#?+72)"?
and by a pseudoangle a=arctan(r,/7,); the other
angular coordinates of the two electrons 6,, ¢,,

6,, ¢, are treated as usual. By assuming quasi-
separability of the total wave function y into y(R,R)
=F,(R)®,(R; Q), where § represents the five an-
gles (including the pseudoangle a), Macek calcu-
lated ¢ ,(R; Q) numerically for fixed values of R

to obtain potential curves U,(R) for the motion
along R. The numerical method used by Macek
prevented him from studying the nature of each
potential curve.

This paper introduces a different numerical
method to calculate & ,(R; 2) and the potential
curves. The method will permit us to distinguish
the effects of angular correlations, radial corre-
lations, and exchange in determining the properties
of a given potential curve. The use of hyperspher-
ical coordinates is particularly suitable for this
study. In this coordinate system, the correlations
are mapped onto two of the five angles only, while
the coordinate R represents the size of the system

1986



10 CORRELATIONS OF EXCITED ELECTRONS.

and the other three angles (i.e., Euler angles)
specify the orientation of the system; their vari-
ations do not affect the relative distances of the
electrons.

No previous work has related the properties of
the channels to the type and strength of correla-
tions beyond qualitative discussions. In their ini-
tial interpretation of the data of Madden and Cod-
ling, Cooper, Fano, and Prats® suggested that two
channels found experimentally, which they called
the plus and minus series, are characterized by in-
step and out-of-step radial motions of the two elec-
trons, respectively. The in-step motion allows the
two electrons to penetrate simultaneously near the
nucleus where both excitation and autoionization oc-
cur, while the out-of-step motion does not. This
suggestion explained qualitatively the origin of the
plus- and minus-series character of the two chan-
nels. Roughly speaking, the out-of-step motion
of the minus series should have an extra node in
the wave function in a@. However, later work point-
ed out that there are three series for 'P° converg-
ing to the n =2 limit of He" instead of only the two
series observed experimentally. Thus one cannot
account for all three channels in terms of the in-
step and out-of-step radial motion of the two elec-
trons. The analysis of this paper will indicate
that radial correlations are actually most impor-
tant for distinguishing the plus and minus series,
but angular correlations cannot be disregarded
completely.

In fact, the type of electron correlation charac-
teristic of each channel will depend on the size of
the system; that is, on the coordinate R. In the
limit of large R, one electron is separated from
the residual ion core; here the correlation is
mainly radial and causes the field acting on the
outer electron to be screened by the other electron.
In the opposite limit of small R, the correlations
are mainly determined by the kinetic energy, in-
clusive of the effect of the Pauli exclusion princi-
ple. In the intermediate region, the kinetic ener-
gy, the electrostatic potential energy, and the ef-
fect of exchange are all important. The primary
goal of this paper is to describe the change of
correlations with increasing R for a number of
channels. This will be done, as in Macek’s work,
with reference to a Born-Oppenheimer approxima-
tion for the total wave function y~F,(R)® ,(R; Q),
analogous to the approximation of the wave func-
tions of diatomic molecules, in which case R indi-
cates the internuclear distance. The change of
correlations will be represented by the variation
of the angular function & ,(R; Q) as the system ex-
pands from R=0 to the R=« limit, much as the
electronic wave function of a molecule evolves
from the united atom to the separated atom limit.
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It is not obvious that a Born-Oppenheimer ap-
proximation should be valid in atomic problems.
In molecular physics, because of the small ratio
of electron and nuclear masses, the nuclei are
slow, thus permitting the electrons to adjust their
motions adiabatically to changes in the nuclear
positions. This favorable circumstance is absent
in our atomic problem. Nevertheless, the approx-
imation will be seen to have considerable validity,
apparently because of the slow variation of Cou-
lomb interaction strength as the system expands.
In particular, at low total energies, the kinetic
energy of the motion along R is small compared
with the kinetic energies of the motion in &; also,
the relative magnitude of kinetic- and potential -
energy terms depends on R only linearly. There-
fore, the angular wave function ¢ (R; £) can adjust
adiabatically to changes of R. These considera-
tions will be developed in subsequent sections.

Alternative approaches have been attempted with
the aim of identifying the characteristics of cor-
relations of doubly excited channels. In particular,
Waulfman,® Alper and Sinanoglu® and more recently
Sinanoglu and Herrick” have approached the prob-
lem, starting from a classification based on the
SO(4) symmetry group of hydrogenic wave func-
tions. The Hamiltonian expressed in terms of a
basis constructed from that symmetry was found
to be almost diagonal. Interesting results have
thus been obtained, especially in the more recent
work. Our work differs, in essence, in the choice
of a basis frame for the analysis of correlations.
The use of hyperspherical coordinates permits us
to distinguish the various types of correlation ef-
fects and to follow their changes as the system ex-
pands.

The use of a hyperspherical coordinate system
in the study of two electrons in a Coulomb field
and of other three-body systems is far from new.?
Previous use for heliumlike problems was to pro-
vide trial wave functions for variational calcula-
tions® and a series expansion form of the ground-
state wave function of helium near the nucleus.®
The harmonic functions on the five-dimensional
spherical surface (hyperspherical harmonics) are
described in Morse and Feshbach’s text.!'! Recent-
ly, this approach has been generalized to an N-
electron atomic system by Knirk,'? with particular
emphasis on the ground states.

For any N-electron atomic system, it should be
possible to study the singly excited and doubly ex-
cited states using the methods of this paper and
those of Knirk. In particular, in the system where
two electrons move in the field of a closed-shell
ion core, the problem is similar to our two-elec-
tron system except that the pure Coulomb field of
the nucleus is replaced by a screened potential.
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Here again, when the two outer electrons come
close to each other, the short-range correlation
effects can be studied as a purely two-electron
problem. As mentioned above, this is because the
short-range correlation effect is determined by
the kinetic energies including the effect of the Pauli
exclusion principle. By studying the kinetic-en-
ergy operator at small R, we can obtain informa-
tion about the short-range correlation effects. An
application of this method of analysis to the spec-
tra of alkali-earth metals will be indicated in

Sec. VI.

In this paper we study the effect of correlations
and its connection to the characterization of chan-
nels in doubly excited states. Later papers will
give calculations of potential curves and energies
for several combinations of L, S, 7 for He and H™.
For H~ this is the first calculation of this type.
For He we extend Macek’s calculations to several
additional symmetries; we will also discuss short-
comings of the Born-Oppenheimer expansion in
this type of problem.

II. SQUARED GRAND ANGULAR-MOMENTUM
OPERATOR A*

In this section we formulate the two-electron
problem in hyperspherical coordinates and discuss
it qualitatively. The nonrelativistic Hamiltonian
expressed in the coordinates of separate electrons
and in atomic units is

A=-tvi-tvi-= 2.1 W

In Eq. (1) Z is the charge of the nucleus, 7», and 7,
the distances of the two electrons from the nucle-
us, and 7,, the separation between the two elec-
trons. Following Macek,® we express the Schro-
dinger equation in hyperspherical coordinates as
2 2 ~
(i AT/ € ) ao/agy 0, @
where ¢ is the total wave function of the system
and the factor R°/2 is introduced to eliminate the
first-order derivative with respect to R. In Eq.
(2) the potential energy is —C/R, where
C=R (2 +2 - l)
Yy V2 72
2z . 2Z 2
“cosa sina (1 -sin2a cosf,,)V?’

@)

a=arctan(r,/r,) and 6,, is the angle between the
two electrons subtended from the nucleus. The
important operator A? is defined as

1 d (. d i3 13
A= - ———— — [sin’acos’a— ) +—5— +—3
sin‘acos®a da da cos‘a sin‘a

4)

in this coordinate system, where 12 and 12 are the
squared orbital angular-momentum operators for
the two electrons. Its properties will be discussed
below.

Equation (2) is similar in structure to the Schro-
dinger equation for the radial wave function of a
hydrogen atom, with d2/dR? the kinetic-energy
operator for the radial motion, (A%+15/4)/R? the
centrifugal potential energy, and C an effective
nuclear charge. However, the potential energy
-C/R depends here on angular coordinates and
does not commute with the operator A%, Even for
an N-electron atomic system, the nonrelativistic
Schradinger equation in hyperspherical coordinates
has the same form as Eq. (2) except for different
definitions of the operator A? and C. From Eq.

(2) we notice that the relative magnitudes of the
centrifugal potential energy (A%+15/4)/R? and the
electrostatic potential energy —C/R scale linearly
with R. This slow variation in relative magnitude
of the two potential-energy terms is characteristic
of Coulomb interactions.

The operator C in Eq. (3) depends only on the
relative radial distances of the two electrons (mea-
sured by @) and on the angle 6,, between them.
Figure 1 is a three-dimensional plot of -C(a, 6,,)
for Z =1 on the plane (a, 6,,) in the range 0 < a <im
and 0 <6, <7. This is a plot of the potential sur-
face at R=1. In the limit @ =0 (or =47), the poten-
tial surface has a sharp drop caused by the elec-
tron-nucleus attraction. In the situations where
¥,=7,, Wwhich corresponds to a=im, the potential
energy depends critically on whether 6,, approxi-
mates 7 or zero. When 6,,%0, a=37, the two
electrons lie close to each other in the configura-
tion space where a large electron-electron repul -
sion is expected. In Fig. 1 this repulsion appears
as a spike near 6,,=0 and a=}r. Over a large
area around the saddle point at (a=3m, 6,,=7) the
potential surface is very flat. Our task is to study
the pattern of standing waves on this potential sur-
face.

The operator A® has been studied in the context
of three-body collisions by Smith'® and is the
square of the grand angular -momentum operator
A. Itisa straightforward generalization of the
squared angular -momentum operator from three to
six dimensions and is thus the Casimir operator
for the group O(6). Its eigenvalues are v(v+4),
with v a non-negative integer. In ordinary three-
dimensional space, the eigenvalues of the angular-
momentum operator measure the strength of the
centrifugal field which pushes the particle away
from a force center. Similarly, the quantum num-
ber v indicates the strength of the field that keeps
a pair of particles from approaching a force cen-
ter simultaneously. The operator A? commutes
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with L?, 8, and 7, where L? 8% are the total or-
bital and spin squared angular momenta of the
system, respectively, and 7 is the parity. There-
fore, its eigenvalue would be a constant of motion
in the absence of a force field, such as -C/R,
which depends on angular variables. Furthermore,
A% also commutes with operators of subgroups of
O(6); for example, it commutes with the squared
angular-momentum operators for each of the two
electrons, Tf and E, whose eigenvalues are [,(/, +1)
and L(l,+1). This implies a degeneracy of its
eigenvalues. Since A% doesn’t commute with C,
the degeneracy is removed in the presence of this
potential field and v is no longer a good quantum
number.
Since the electron-nucleus interaction compo-
nent within C commutes with 12 and 12 and thus pre-
_ serves the quantum numbers [, and [, of the two
electrons, the hyperspherical coordinates we have

-

1

S ()= 7 2y 0am(@)Ys 1,00 Py, 72) + (=

Uy iam
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chosen will prove suitable for describing the dy-
namics of two electrons in a Coulomb field. In
this particular representation the operator A? has
the form given by Eq. (4) and its eigenfunctions
vy,1,m(82) are labeled with quantum numbers /, and
l, and m, where m is a non-negative integer, re-
lated to v by v=1,+1,+2m. The first-order de-
rivative term d/da in the eigenvalue equation [A?
- v(v+4)]v;1,m(R) =0 can be eliminated by intro-
ducing u, ,zm(a 7., 7y) =sinacosav, ; .(a,7,,7,),
where “lxlzm(u) satisfies

a2 BB .
~da? Tcos’a 'sinta = W+2)*Juy ;,m(R)=0.

®)

The eigenfunctions 7, (Q), with symmetry (-1)°
for singlet or triplet states with fixed L, M, S, 7
are given by'*

1)11”2-1‘4. S+mf1211m(a)‘ylgllLM(;u ?Z)J if l). # lz

=%[1 + (_1)‘L+ S+m]fum(a)‘yul.u(;u F)if li=l=1. | (8)

In Eq. (6), € represents the five angles a, 6,, ¢,,

6, ¢, and 7,=(6,, ¢,), ¥,=(6,, ¢,). The function
Yi,1,2u(P1, 72), given in Eq. (9) of Ref. 14, is the
total orbital angular-momentum eigenfunction con-
structed from the orbital angular-momentum ei-
genfunctions of the two electrons; here the quan-
tum number pair (/,/,) is ordered. The function
f,l,zm(a) is defined as

f,llzm(oz) =N, 1,m(cosa@)'1 " (sina)'?*!
XF(-m,m +1, +1,+2| L, +3|sin®a), (7)

where N 1,m 1S @ normalization constant given ex-
plicitly in Ref. 14. The quantum number pair (/,1,)
is also ordered in N, ; ,, and f; ;,,. By contrast,

it is not ordered in the symmetrized basis func-
tions «S;¥ (Q), in which case we set I, > ,. In Eq.
(1) F(=m,m +1, +1,+2 |1, +3|sin®a) is proportional

J

-
to a Jacobi polynomials of degree m in sin®a, with
m nodes in the range 0 <a <37. Since we are al-
ways discussing states with fixed L, S, w, these
indices will be usually dropped.

For a given state, the angular correlation is
represented by the statistical distribution of the
wave function in the range 0 < 6,, <7. Our basis
function u,“zm(ﬂ) is not expressed as a function of
6,, explicitly. However, we can expand ‘y,l,zu
X(7,,7,) and Yo, u(7,, 7,) in Eq. (6) in terms of
Legendre polynomials P,(cosé,,) of degree k. For
L=0,M=0, we have

1! (21+1) /2

g5 m() = (-1 P(cosb,,)f 1 m(a)

x%{1+<-1>“3*'"1, | (8)
and for L=1, M=0, n=-1, and [,=1, -1

‘zltzm(‘Q) W [[ Y@ +Y10(r2)][flllzm+( 1)s+mflzllm] E( 1)*@2k+1)P, (cosolz)) +H[ Yo (7)) = Yyo(72)]

Iz
X[ f1y19m = (—l)s*’"flz,lm](z (2% +1)P,,(c05612)ﬂ , )
k=0

where Y, (7,) = [(2L+1)/47T]‘/2PL(COSGi). The basis
functions of Eq. (8) are products of a function of
6,, and of a function of « only. For L#0, one can-
not separate the two angles a and 6,,. In Eq. (9),
the first term is peaked near 6,,=7 and the second

term is peaked near 6,,=0, the more sharply the
larger /[,=1{, -1.

In Eq. (2), the potential energy —C/R depends ex-
plicitly on 6,,. It might then seem natural to
choose 6,, as one of the angular coordinates.'®
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. 7 v &5 o (4, %,). Third, the symmetrization or antisymme-
T T trization of the basis function is very simple in
cose! +— —4 40 : : PR . :
0 this coordinate system but nontrivial if 6, is
- 'C(d.eg) 4 30 u’sed 16
4 i 1% Using the basis set {u,‘,zm} for the expansion
22 - B 1;) . R%/?sina cosa¥ =Z),1,?mg,l,zm(R)u,l,zm(ﬂ), the
0 i WW////////% 10 Schrodmger.equatlo.n 2) red'uces to z?n mf%mte set
oy of coupled differential equations, written in ma-
20] V7 A7 5K 170 .
7 //////,’/16" trix form as
10 Iy, ///////,’//6“ 4-30
€o e R Y 2 2
—— e d* 1/4 (L+b+2m+2) e
-0 AT / //[" +f W-FF—_—_‘R—Z_— +2El+9_/R g(R)=0,
201 ff
0 (10)
/ where I is the identity matrix and —~C/R is the Cou-

FIG. 1. Three-dimension plot of —C(a,6;;) with Z =1
in hyperspherical coordinates; the ordinates represent
a potential surface in Rydberg units at R =1 bohr (cour-
tesy of C. E. Theodosiou).

However, we prefer to use (6,, ¢,, 6,, ¢,) as angu-
lar coordinates because of other advantages.
First, in the dissociation limit (@ =0) in which one
electron is moving far away from the rest of the
system, these coordinates reduce smoothly to in-
dependent-particle coordinates. By taking the
limit @ -0 and R - « such that 7, =R sina remains
finite and », =Rcosa =R, Eq. (2) can be easily
transformed to the sum of two hydrogenlike Schro6-
dinger equations in the coordinate (r,, 6,, ¢,) and
(r,, 6,, ¢,), respectively, with charges Z and Z -1.
At this limit, the angular correlation between the
two electrons is unimportant; use of 6,, would re-
quire a frame transformation in this limit. Sec-
ond, using (6,, ¢,, 6, ¢,), we can label the eigen-
functions of A% by /, and /,. These quantum num-
bers will prove useful in that the matrix elements
of C are almost diagonal with respect to the pair

lomb interaction matrix, both of infinite dimen-
sions, and g(R) is a column vector. The proper-
ties of this set of coupled differential equations at
small R have been studied recently by Macek'* and
by Knirk.'? The evaluation of the matrix elements
of C, (L{ljm’|C|l,l,m) has required considerable
effort in the present work. A detailed derivation
and the resulting formulas for computer calcula-
tions are given elsewhere.!’

In Table I, we give some of the matrix elements
(L11m'|C|1,l1,m) calculated for 'S states and Z =2.
In this particular example, m is limited to even
values. From the table, which is quite representa-
tive of other cases, we observe the following.

(a) The diagonal matrix elements (l,L,m|C| l,m)
are always much larger than the off-diagonal ones.
Also, (l,l,m|C|l,l,m) decreases with increasing
l, +1, and constant m, but it increases with in-
creasing m at constant (/,, J,). .

(b) The matrix elements diagonal in the (/,, {,)
pair are much larger than the off-diagonal ones,
because the electron-nucleus interactions are diag-
onal in (/,, /,). In addition, in the electron-electron
interaction matrix elements, the integrals over a
are largest for the monopole component, i.e., for

TABLE I. Matrix elements (1,1, m|C|2{l,m’) for helium 'S states.

@l,m) (000) (002) (004) (006) (110) (112) (114) (220) (222) (330)
@ sm' TN +2)? 4 36 100 196 16 64 144 36 100 64
(000) 11.18 3.70 1.99 1.50 0.96 -0.20 0.09 —0.58 0.17 0.41
(002) 16.86 7.18 4.60 -0.47 0.65 —0.16 0.39 —0.33 —0.32
(004) 19.48 9.24 0.15 —0.46 0.59 -0.20 0.33  0.20
(006) 21.19 -0.08 0.13 -0.47 0.10 -0.19 -0.12
(110) 9.40 2.12 0.51 1.34 -0.36 —0.88
(112) 13.06 4.06 —0.59 0.85 0.51
(114) 15.10 0.25 -0.55 =0.29
(220) 8.80 1.61  1.52
(222) 11.66 —0.62
(330) 8.47
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the component that does not involve any angular
momentum transfer between two electrons. Phys-
ically this means that the screening effect—which
has central symmetry—includes most of the elec-
tron-electron interaction. This contribution to
—-C/R is diagonal in ([, 1,).

III. PROBLEM OF IDENTIFYING CHANNELS

From the discussion of Sec. I, we know that dou-
bly excited states are grouped into channels. The
infinite set of coupled equations [(10)] doesn’t dis-
play the channel characters because the off-diag-
onal terms of its matrix C become increasingly
important as R increases. The empirical fact that
the channels are weakly coupled implies that the
channels are best specified if the coupling terms
in the system of differential equations can be mini-
mized. Macek has used the Ansatz Yi(R, Q)
=F!(R)®,(R; @), for which all the doubly excited
states ; within a given channel u have the same
angular wave function <I>,,(R; Q). This approxima-
tion implies that the coupling terms can be neglect-
ed and that each channel is characterized by the
different type and strength of correlations repre-
sented by the wave function ¢ ,(R; Q).

The physical argument for separating R from

where I is the identity matrix,

THE STUDY... 1991

the five angular coordinates in the identification

of channels is discussed elsewhere.'® In this sec-
tion we shall study the mathematical definition of
channels. Beginning from the complete set of cou-
pled differential equations [(10)], we study its
transformation from the representation in the ba-
sis of u; ;,,(2) to other bases for which the magni-
tude of the coupling terms is reduced.

Equation (10) is almost diagonal at small R;
therefore, each channel is characterized by the
quantum numbers (/,/,n) at small R. The wave
function & (R; §) for each channel at small R coin-
cides then with u«, s (). As R increases, the off-
diagonal terms in —L/R become increasingly im-
portant. To minimize the coupling at each R, we
make a suitable transformation of the basis
{4, 1,m(S2)} to a new basis {@ (R; @)} in which the
complete wave function is expanded as

UR; )= Y F (RS (R; Q). (11)
m

The system of coupled differential equatlons for
the F(R) is then

[ (%:? A +2E> I-u@® +_VZ(R)] F(R)=0 (12)

U, (R = ( | o4 L, T RC‘@ (B; sz)) (13)
by R? T da? cos’a  sin’a
—
and clear how to define a minimization condition for
the coupling terms. Therefore, we approach the
W“,,,(R)=2( uR; Q), deIJ AR; Q)) problem of minimization empirically.
Equations (11) and (12) are analogous to equations
. d . of the so-called molecular-wave-function expansion
* (q)“(R’ ), dR? (R; 82)> ’ (14) in molecular physics, in which case R is the in-

In Egs. (13) and (14) the parentheses mean integra-
tion over the set of angles represented by ©. Our
purpose is to choose &, such that the off-diagonal
matrix elements of U and W are as small as pos-
sible. -

The matrix W(R) which appears in Eq. (12) but is
absent in Eq. (10) comes from the R dependence of
¢ (R; Q). Its off-diagonal elements contribute to
the coupling between channels together with those
of the matrix U. Since the two matrices Uand W
do not commute, one cannot diagonalize them si-
multaneously so as to cancel the coupling terms al-
together. Qualitatively, the observation that chan-
nels are weakly coupled implies the existence of
basis functions & (R, ) for which the off-diagonal
terms of U-W are small at all R. Since the ma-
trix W contains nonlocal operator d/dR, it is not

ternuclear distance of two atoms, F,(R) is a nu-
clear wave function and ‘I’u(R; ) an electronic wave
function. Molecular physics considers two familiar
representations of @ (R; 2): the adiabatic repre-
sentation in which U is diagonal and the diabatic
representation in which W is diagonal.’ In the
adiabatic representation, one obtains the Born-
Oppenheimer approximation by disregarding the
off-diagonal elements of W. This approximation
was used by Macek in our problem to obtain adia-
batic potential curves which are plots of the diag-
onal terms of U. In this representation the off-
diagonal terms of W may be large, especially in
ranges of R where two adiabatic potential curves
are nearly degenerate. Transformation to an al-
ternative representation, e.g., a diabatic one, may
then serve to reduce the magnitude of the off-diag-
onal terms of W without increasing those of U ex-
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cessively.

It must be emphasized that there are no formal
restrictions on the choice of the functions & «R; Q)
except that they form a complete basis set at each
R. Equation (12) contains no approximations if the
full matrices U and W are retained, independently
of the representatmn which is chosen. In fact, one
can choose representations in which neither U nor
W is diagonal. The transformation properties of
U and W from one representation to another have
been studied by Smith in Ref. 19 and are summa-
rized in Ref. 17.

We take advantage of the flexibility in the choice
of <1>“(R §2) to unravel the electron correlations.

To this end, we shall not use either an adiabatic
or a diabatic representation in the first step of
calculations but choose angular wave functions

PerR; Q) = 3wy 4, (Qab (L, R), (15)

which diagonalize only the submatrix of U in each
subspace with fixed (/,/,). This is done by diag-
onalizing at each value of R submatrices of the
form

L+ +2m +2)?
(l1lzmlU“112m,)=(l_2}Tz——) mm
_(Lm|C|LiLm")

R ’ (16)

where the integers m and m’ run from 0 to . In
this representation with basis functions ¢§,“’2), the
complete matrices of U and W have the form

(Lip" |U(R) |1, L,p) = 04%2(R)5,, , L EY)

(L1l lUR) | Lbp) = =(UjL5p" [Cl L Lp)/R
when (;0,)#(1,1,), (17b)

(Ll IWR) | 1,1p) = (L Lp" | W(R) | L10)0;,410, 55
(17¢)

Each channel ({,/,p), defined mathematically above,
is characterized by the channel function ¢>(‘1‘2)(R Q)
and by the optical potential v(’l‘z)(R) In this basis
set {pY112(R; Q)}, neither U nor W is diagonal.
However, U has off- dlagonal terms between chan-
nels of different (I,L,) pairs only, whereas W has
off -diagonal terms between channels with the same
(1,4,) only. The off-diagonal term of U, given in
Eq. (17b), is of the order (I{i;m’|C|1,l,m)/R,
where (/;l;m’|C|l,l,m) is rather small, as indi-
cated in Sec. II. Therefore, even though U is not
diagonal in this representation, its nondi:;gonal

terms are important only when their magnitudes
are comparable with the differences of the cor-
responding diagonal terms.

The representation we have chosen is suitable
for unraveling electron correlations because, in
each (l,1,) subspace, different channel functions
¢('1‘2) correspond to different patterns of radial
correlation. These patterns will be described in
Sec. IV together with the angular correlations that
result only from the coupling of angular momenta.
The alternative patterns of correlation, both ra-
dial and angular, represented by the various chan-
nel functions ¢>21‘2) are, however, superposed by
the action of the matrix elements (17b) which caus-
es transfer of orbital momentum between two elec-
trons and mix the channels of different (/,1,) sub-
spaces. This superposition results from a second
step of transformation to a new basis set, {§,(R;Q)}.
As developed in Sec. V, this second step will have
the effect of diagonalizing the matrix U, thus re-
producing and extending Macek’s results. How-
ever, we would like to emphasize that diagonaliza-
tion of U is not necessarily a desired goal. In or-
der to establish the closest correspondence with
the physically observed channels, one should find
a representation & (R ) in which the off-diagonal
terms of Uand W are minimized simultaneously,
though neither matrix is diagonal.

IV. DESCRIPTIONS OF CHANNELS ¢ 1/ wITHIN
FIXED (/,1,)

In this section we will describe the properties of
the potential curves and of channel functions ¢21'2’
X(R; Q) for various sample channels (I,l,p) within
subspaces of fixed (/,l,), obtained by the method
described in Sec. III. Since all of the discussions
in this section are within a fixed (/,{,) subspace,
the superscripts in u"l‘z) and ¢, G112 may be dropped.
In Sec. IV A we examine up(R) and the properties
of ¢,(R; ) in the limits of R~0 and R~ . The co-
ordination scheme, i.e., the rule of evolution of
the potential curves v,(R) and the properties of
channel functions ¢,(R; Q) at intermediate R, are
discussed in Sec. IV B for the special case [,=1[,.
(This class includes not only all S states but also
others, i.e., p?3P and p?'D.) The variations of
¢,(R; ) with R for a given channel p and the dif-
ference in the properties of ¢p(R; §2) between dif -
ferent channels p will be examined in detail. In
Sec. IV C the general case of [, #/, is discussed
with particular reference to P° states. We will
show that the pair of channels with the plus and
minus character mentioned in the Introduction oc-
cur quite generally. In Sec. IVD the coupling
terms in W, i.e., (I,l,0|W]L,l,p’), are discussed
with reference to the excitation mechanism.
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A. Limits R—>0 and R~
1. R—>oolimit

At small R, the off-diagonal terms
(L,L,;m|C|1,l,m")/R in Eq. (16) are much smaller
than [({,+1,+2m +2)® = (I, +1,+2m’ +2)*|/R? and
therefore can be disregarded. From Eq. (16), -
v,(R) is given by

Do(R) ~ [(L, +1,+2m +2)°
—R(l,lym|C|L,l;m)|/R? as R~0. (18)

Since (I,, !,) is fixed, the potential curves v,(R)

at small R are ordered with increasing m without
degeneracy, and each channel function ¢>P(R; Q) is
approximated by the basis function u,l,zm(ﬂ). The
properties of each channel p at small R are there-
fore determined by the properties of u,l,zm(ﬂ) for
different m.

The function "'sz(m’ as given in Eq. (6), is a
five-variable nonseparable function. However, for
L=0, we have [,=1,=1and u,,, reduces to the pro-
duct of a function f,;,(«) of @ and of a function of
6,,, as shown by Eq. (8). In other words, the chan-
nel function in this limit can be separated into a
function of « that represents the vadial correlation
and a function of 6,, that represents the angular
correlation; this function is independent of the
orientation in.space of the vector (7, 7,) since it
pertains to an S state. With [ fixed in each sub-
space, the function of 6,, is the same for all chan-
nels and different channel functions differ only in
their a-dependent part for various m; the angular
correlations, represented by a function of 6,,, de-
pend on [. For fixed [/, channels with increasing p
correspond to increasing degrees of excitation of
radial correlations; as usual, excitation to a high-
er harmonic ¢,(R; Q) ~/f;,,(@) requires higher-en-
ergy v,. The effect of Pauli exclusion principle
is, in this case, to restrict the quantum number
m to even values for singlets or odd values for
triplets. Thus, in this simple case, the effect of
radial correlation can be separated from the effect
of angular correlation and of exchange, at least in
the limit of R~ 0.

When [, #1,, the function «; ;,,(%) is no longer
quite factorable into functions of a and of (7, 7,).
Therefore, the radial correlations are not com-
pletely independent of angular and exchange cor-
relations. As given in Eq. (6), the symmetrized
function “luzm(m is the sum of two product func-
tions, superposed according to the symmetrization
condition required by the Pauli principle. In each
of two product functions —f,l,zm(a)‘y,x,zLM(?l, 7,) and
f,z,l,,,(a)fy,z,lw(?l,?z) —the a-dependent part sepa-
rates from the (#,,7,)-dependent part; i.e., the
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part that represents radial correlation separates
from the part that represents angular correlations.
Exchange superposes these two product functions,
thus generating a more complicated pattern of cor-
relations. Different functions «, ,,, of the same
(I,(,) spaces differ, however, only in their degree
of radial correlation represented by the function

flllzm(a)'

2. R—oo limit

In this limit, one electron is moving far outside
the ionic core. The channel function ¢ ,(R; Q) is
concentrated at small « in the deep well of the po-
tential surface of Fig. 1 (or in the symmetric well
at @~3m). Physically, in this limit, the two-elec-
tron wave function is represented by the product
of two hydrogenic wave functions, one with the full
charge Z, the other with screened charge (Z -1).
One can expand ¢p(R; ) near w«-0 and R~ as
done in Ref. 3, but we choose to transform the
operator U of Eq. (13) back into independent-parti-
cle coordinates », =Rcosa =R, 7,=Rsina, and then
expand the transformed equation in powers of 1/R;
we obtain'’

[ sd® T 22) 2(Z -1)
Ugp= [—(drg_rz +72 " R

1/, & 0 = _
+? }’26—;’7;-*72% +17 +27,co0s6,,

P A EXRARTR TN ARE)

where R is treated as a parameter. This equation
is similar to Eq. (15) of Ref. 3. The difference in
the 1/R? terms comes from the fact that we have
set r, = Rsina instead of expanding in the form 7»,
*Ra. In Eq. (19), the orbital quantum number in
the first parentheses can take alternative values
of ({,,1,). Atlarge R we take ¢, to be an eigen-
function of the operator in the first parentheses
in Eq. (19) and evaluate v, by perturbation theory.
For [,=1,=1 we get

b, = P (7)Y u(Py, 72),

where P,,(r,) is a radial hydrogenic wave function.
The 1/R? terms of v, are then obtained by evalu-
ating (¢,]r28%/8r3+7,8/0r, +12+27,c086,,| ).

As shown in Ref. 17, the derivative terms in this
expression are cancelled by —-[3/R*+W, ,(R)].
Therefore, we obtain

(20a)

z: 2z -
[0p(R) = 1/R? =W, (R)] = =7 - 3172_1)_

1 -
t (¢p|1f+272coselzl¢p) as R—,

(20b)
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where 7 is the principal quantum number. Thus,
in the large-R limit, the potential curves are or-
dered with increasing » in each (ll) subspace and
the channel functions are represented by P,,(»,)
XY, .u(¥, 7,). For I, #1,, two channel potentials
converge to each hydrogenic limit » and are de-
generate. In this case, ¢, is a superposition of
Pntg(rz)‘yz,zzz,u(f’u 7,) and Pntl(”z)‘yxzzll.u(f’n 7,) con-
trolled by the dipole interaction 2»,cos6,,/R* of
Eq. (19).

It should be noted that the hydrogenic limit terms
of the energy eigenvalue (20b), namely, -Z2/n?
-2(Z -1)/R, are independent of (/,,1,). There-
fore channel potentials of different (I, [,) sub-
spaces converge in general to the same limit at
R~ », thus increasing the quasidegeneracy of
channel potentials at large R. The dipole interac-
tion in the last term of (20b) couples all these
channels, whether in the same or in different (,,/,)
subspaces. Separate analysis of the channels in
(1,, L) subspaces thus loses interest in the large-
R limit.

B. Coordination scheme of v,(," 2and properties
of 9, "1'2)(R;Q) with /, =1,

We proceed now to study the evaluation of
vgl‘z)(R) and the properties of ¢(p'1’2)(R; ) in the
special case [,=1,=1. Figure 2(a) shows the low-
est three potential curves v p(R) for the doubly ex-
cited helium 'S states with (7,, 7,) =(0,0), each con-
verging to a different n limit of He*. The p=0
curve converges ton =1 limit of He* and thus rep-
resents single excitation; it is shown on a different
energy scale. Remarkably, these curves remain
close to their limiting values, Eqgs. (18) and (20b),
over a wide range of R. The low-R behavior is
displayed better by plotting R*v,(R), as shown in
Fig. 2(b). Here R®y,(R) has a large region of lin-
ear dependence on R before turning into the quad-
ratic dependence characteristic of the large-R
limit. The region of transition from linear to
quadratic dependence is characterized by avoided
crossings between neighboring curves.

For comparison, in Fig. 2(c) we plot the lowest
four curves of R?v,(R) for helium 3S states with
(Z,,1,)=(0,0). A striking difference of these plots
from those ofFig. 2(b) is that these curves change
from the region of linear dependence on R into the
region of quadratic dependence without any region
of avoided crossings; i.e., these curves behave
independently and hardly repel each other, in con-
trast to the curves of Fig. 2(b). As we will see
below, this difference appears to reflect a funda-
mental difference in the properties of excitation
mechanism. )

The curves shown in Figs. 2(b) and 2(c) never

approach each other. Thus they not only follow
the noncrossing rule, but do not even show any
sharp avoided crossing. Accordingly, the channel
functions ¢,(R; ) should vary slowly with R. For
l,=1,=1, each channel function can be expressed
as

¢, = Z ab(Ru,,;,(Q) =<E aﬁt(R)me(a)>‘yHLM(i'1) 75)

=2 ,(R; )Y, pul?y, 72) (21)

thus factoring into separate functions of « and of
(#,, 7,), as it does in the R—~0 and R— « limits. In
fact, in both limits, p equals the number of nodes
in the range 0 <@ <ji7m. Similarly, in the interme-
diate region, functions g,(R; @) with increasing p
have an increasing number of nodes and thus rep-
resent increasing excitation of radial correlation.
Therefore, p can serve as a good meaningful quan-
tum number over the whole range of R. The varia-
tion of g ,(R; @) with increasing R shifts the distri-
bution of nodes progressively away from the mid-
point @=37. In Figs. 3(a) and 3(b), we plot g,(R; @)
for several values of increasing R in the range

0 <a<gr for the p=1 curves of Figs. 2(b) and 2(c),
respectively; the range $7<a<}r7 is not shown be-
cause gp(R; «) is symmetric for singlets and anti-
symmetric for triplets with respect to reflection
at w=47.. For both figures we can consider the
behavior of g (R; @) in two distinguishable regions:
(A), where R®v,(R) varies linearly with R, and (B),
where szp(R) varies quadratically with R. Inre-
gion (A), v,(R) is much larger than the potential
energy -C(e, 6,,)/R in the flat region of Fig. 1.
Therefore, gp(R; a) oscillates freely with evenly
spaced nodes throughout the range 0 <a <37; the
nodes shift slowly away from a=37 as R increases.

" An essential difference here is that in Fig. 3(a) the

amplitude at the antinode «= ;7 increases with R,
while in Fig. 3(b) it decreases gradually with R
near the node at a=47. In region (B), g,(R; a) is
confined to the potential ditches, the more narrow-
ly the larger R. Here g (R; ) is essentially hy-
drogenic in accordance with Eq. (20a) and its vari-
ation with R is smooth, with g (R; @) peaking at
smaller values of « (or of 37 — ) as R increases.
In-this region, Figs. 3(a) and 3(b) behave similar-
ly; both reduce to hydrogenic 2s wave functions in
the small-a region, with vanishing amplitude at
a~3m. One important difference in the plots of
Figs. 3(a) and 3(b) is the way g,(R; a) varies in
passing from region (A) to region (B). In Fig. 3(b)
this transition occurs smoothly and gradually, the
amplitude near a =37 decreases progressively to
zero in approaching region (B). However, the
transition in Fig. 3(b) is different. One notices
that the amplitudes g ,(R; 7) increase with R in
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LN A |1 ﬁT( . region (A) but decrease to zero in region (B). In
He'S ' the transition region (C), the amplitude at a=37
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FIG. 2. (a) Solid line, potential curves v (R) of
helium !S channels converging to the —4/n2 limits of
He* at large R; dashed line, locus of avoided crossings

between adjacent curves [Eq. (24)]. (b) Plots of R2{") (R).

(© R (R) plots for helium 3S. Absence of clear-
ly avoided crossings in contrast with Fig. 2(b).

changes from a maximum value to nearly zero ina
small interval of R; this behavior is associated
with the “bumps” in the plots of Rzup(R) observed
at the avoided crossing in Fig. 2(b). On the other
hand, the transition from region (A) to region (B)
is smooth in Fig. 3(b) and this behavior is asso-
ciated with the absence of bumps in the plots of
R?v,(R) in Fig. 2(c).

The fast variation of gp(R; a) near a=37 in re-
gion (C) of Fig. 3(a) is not limited to the p=1 case
only; in fact, it is a general property of all chan-
nel functions of 'S states. The transition occurs
when vp(R) is approximately equal to the potential
energy in the flat region of the potential in Fig. 1,
namely, when

v,(R,) = ~C(im, 1) /R, = -V2(4Z - 1)/R, . (22)

Dotted lines representing this equation in the fig-
ures confirm that it represents the locus of avoided
crossings. For the 3S states a=47 is a node at all
R; the amplitude g (R; w) varies smoothly with R

in the proximity of this node as we pass from re-
gion (A) to region (B).

gp(Ria)|P:1
He 'S

-1.0 0-%5‘
20
P TP B O o X
0 10 20 30 40
a (degrees)
f—[ T l T rl ] T

gp(R;a), p=1

1|]|1111

7

I

L1 1y

30 40
a (degrees)

|7
0 10 2

FIG. 3. (a) Channel functions g{® (R; @) for helium 'S
for 0 =@ = %7 and various R. The value of gfoo) near
a =37 peaks at R =3 and then decreases. (b) Same as
(a) for 38!
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Regions of avoided crossing are of critical im-
portance to an understanding of the excitation me-
chanism, as we shall see in Sec. IVD, because the
channel functions change most rapidly there. To
get a closer look at these changes, we plot in Figs.
4(a) and 4(b) the equidensity lines of g5(R; @) for
p=0and 1, respectively, in the polar coordinates
(R; a); the two figures are very similar except for
the presence of nodal lines in Fig. 4(b). Each fig-
ure shows a region (A) with large density along the
a=;7 line and another region (B) at larger R where
this density has fallen sharply, peaking instead
near =0 and 37. Examine particularly Fig. 4 in
the range of R between 1.5 and 2.5 where Fig. 2(b)
shows an avoided crossing between the channels
p=0and 1. This region coincides with the transi-

Jipp—

- —
/

r, (Bohr)

FIG. 4. Equidensity plots of |g{® (R; @) | of helium 'S
channels in the polar coordinates (R, a); (a) for p =0,
(b) for p=1. Peak near @ =45° (Region A) occurs at
larger R in (b) than in (a). Nodal line at small « occurs
only in (b).

tion from region (A) to region (B) in Fig. 4(a),
where the peaking of density at a =37 falls rapidly,
but coincides in Fig. 4(b) with the buildup toward
the peak density in region (A) for the p=1 channel.
This behavior appears to be quite general: The
drop of the value ofg,z, (R; @) in one channel, as it
passes from region (A) to region (B) along « =3,
occurs at the avoided crossing with channel p +1
and is accompanied by the vise of g5, ,(R; ¢m) in the
next channel toward the peak of its region (A). A
transition from the lower channel to the next higher
one at their avoided crossing would thus preserve
a density maximum along the a =37 line; that is,
it would preserve a high probability for the two
electrons to be equidistant from the nucleus. The
implications of this remark will be developed in
Sec. IVD. For °S states, on the contrary, this be-
havior is totally absent, as gp(R; w) remains small
near its node at a=%m.

C. Properties of vgllz’(R) and ¢<,f112 )(R;Q)

with /, #1,; plus and minus channels

When [, #1,, the coordination scheme is com-
plicated by the convergence of pairs of v, to the
same R limit, and the properties of ¢,(R; ) are
more difficult to analyze because of incomplete
separability of radial, angular, and exchange cor-
relations. However, the understanding obtained in
Sec. IV B for S states will provide surprisingly
useful guidance.

In Fig. 5, we show R?v,(R) for helium 'P° states
with (£, /,)=(1,0). Additional results for helium
8P° show similar features.'” A remarkable novelty
of these plots is that one can distinguish two groups
of curves with the characteristic behaviors of 'S
and 3S, respectively. The group analogous to 'S
curves of Fig. 2(b) corresponds to p=0,1,3,5...,

" the other corresponds to p=2,4,6,..., and is rep-

resented by dashed lines. This distinction is con-
firmed and illustrated by the plots of functions
gp(R; a)—analogous to those of Eq. (21)—which is
shown in Fig. 6. The group analogous to the 'S
shows an antinode near a= 37, the other group
shows a node in that region, though not exactly at
a=37. This characterization on the basis of anti-
nodes and nodes is just that pointed out in Ref. 4
as the earmark of plus and minus states.

After this brief initial reference to the functions
g, we should explain that their meaning is not
quite the same as in the case of /,=17,. The analog
of Eq. (21) for [, #1, is

[¢ (¢ Np. s P
‘{15,':'1‘2)=z§’;>l‘12 (B; “)‘yzltzz,u(ﬁ, 72)
+(=1ht et Sg(pllllz)(R; 3T - a)(ylzllLM(/;'lx 7)) .

(23)
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The presence of two terms is required by exchange
symmetrization, which was assured automatically
in the case of [, =1, by the symmetry of each g,.
The superposition of two terms of Eq. (23) makes
it more difficult to describe the electron correla-
tions; we do not pursue this matter but confine
ourselves here to analysis of the separate terms
of Eq. (23). We have simplified this analysis fur-
ther by removing from the matrix (16) the elements
that couple Y, ;,ru with Y,,; 4 by exchange of or-
bital momentum, i.e., that couple the two terms

of the channel function of Eq. (23). This has been
done for the calculation of the function g, shown in
Fig. 6 for helium P states with (¢,7,)=(1,0) by dis-
regarding the dipole component of electron-elec-
tron interaction. The elimination of this coupling
term suppresses the difference between singlets
and triplets, but has a qualitative effect only near
the large-R limit, as will be discussed below.

We consider now why the plus and minus curves
for P states resemble the curves for 'S and %S
states, respectively, in order to anticipate whether
this resemblance should occur generally for 1, #1[,.
One important feature in Fig. 6(b) is that the loca-
tion of the node at @=50° hardly changes with R,
in contrast to other nodes in Figs. 3 and 6 that
shift progressively away from the midpoint. We
have examined the g ,(R; @) plots for p=4 and 6 also
and have found that they also have a node near «
=47 which does not change position with R. This
nearly fixed node near «= i corresponds to the
node at a=37 for 3S states whose location is fixed
by antisymmetry. In both the minus channels and

L DL
6 He P
\\(1122):(1,0)

80

(=]

—

40

2
R vP(R)
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-80
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FIG. 5. R%{® for helium P channels. Straight line,
plus channels; dashed line, minus channels; dotted line,
crossing treated diabatically (see text).
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%S channels, the amplitude of g (R; @) near a=3m is
small and decreases monotcnically with R. On the
other hand, the plus channel functions, like those
of !S states, have an antinode near a=%min region
(A) where the oscillation of g ,(R; @) is nearly free.
The existence of a node or antinode in g,(R; ) near
a= 47 for each pair of plus and minus channels
that converge to the same large-R limit can be
understood by working backward from the large-R
limit toward small R. In the large-R region, the
hydrogenic states nl, and nl, are degenerate, each
of them confined in one of the potential ditches of
Fig. 1. As R decreases, their wave functions can
penetrate into the a =37 region and overlap. This
process is analogous to the introduction of a weak
coupling between two oscillators whose frequencies
need only be roughly equal; the coupling results in
a plus mode characterized by an antinode at or
near the midpoint and a minus mode characterized
by a node in the same region. In our two-electron
problem the “midpoint” a =47 represents configu-
rations with the two electrons equidistant from the

L L LA R
q,(Ria)
He P

(%48,)=(1,0)

0
-1.0
i
l
-2.0 -4
r 1
- 1
T IR I R
0 20 40 60 80
a (deqrees)

L L L |

a (degrees)

FIG. 6. Channel function component gi!? (R; a) [Eq.
(23)] for helium for 0 < a < 7 and various R; (a) p=1,
®) p=2. g{i9 (R; 50°) peaks at R ~3, while g§!¥ de-
creases monotonically near the node. These g§¥ (R; @)
were obtained by neglecting the dipole component of the
electron-electron interactions and thus are the same
for P and *P channels.
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nucleus; the probability of these configurations ap-
proaches a relative maximum in plus modes, a
relative minimum in minus modes. This analysis
suggests strongly that the existence of pairs of
channels with plus and minus characters is a gen-
eral property of all /, #/, cases, provided only
that pairs of channel eigenvalues v(,f*‘2) are suffi-

- ciently close to degeneracy at large R.

The preceding analysis shows that the properties
of gp(R; a) in 'S channels hold for the plus channels
in the case of 1, #(,, whereas those of *S channels
apply to the minus channels. In particular, the
properties of regions (A), (B), and (C) of the map-
ping in Fig. 4 discussed in Sec. IV B for 'S chan-
nels carry over to the plus channels. The existence
of region (C) for plus channels but not for minus
channels should explain that plus channels are
more likely to be excited, as will be discussed
further in Sec. IVD.

At large R, where the v, of each (+, -) pair are
nearly degenerate, their separation depends mostly
on the dipole interaction between the elements
whose effect we had suppressed for purpose of
analysis at lower R. This interaction affects the
channel functions gp(R; a) qualitatively, causing
each of them to approach a superposition of P,,,1
X(Rsina) and Pnlz(R sina). Since.the importance

of various correlation effects in determining the
values of v, change with R, for each pair of (+, -)
channels the transition of potential curves from
lower R to the nearly degenerate larger-R region
may suffer sudden variations if v,’s are obtained by
straightforward diagonalization of the matrix (16).
Indeed, such sudden variations occur at a modest
value of R for 'P channels (at R=7.0 between p=1.2
and R =13.5 between p =3, 4), but only gradually at
larger R for °P channels.®''” In Fig. 5 we have
dotted in the section of v, and v, near the avoided
crossing to stress that in this region it may be de-
sirable to depart from the adiabatic procedure in
the calculation of v, and g,(R; a) in favor of a di-
abatic procedure that would allow v, and v, to
cross, achieving a smoother variation of both the
vpand the g,.

D. Excitation mechanism and couplings between channels

We return now to the system of coupled equations
(12), identifying its channels u with the channels
(1,1,p) described in Secs. IVB and IVC. According
to Eq. (12) the channels interact through two types
of coupling, represented, respectively, by the off-
diagonal terms of Uand W. The off-diagonal terms
of U connect channels with different (,{,) and will
be discussed in Sec. V. In this section we will
evaluate and discuss coupling terms (I, /0| W |1, 1,0")
in connection with the process of excitation from

one channel to the other.

We regard the atomic excitation process as anal-
ogous to the molecular orbital theory of electron
promotion® in ion-atom or atom-atom collisions.
Transition fram one electronic state to another is
attributed to nonadiabatic transitions from the
ground state to excited molecular orbitals during
the collision process. Both ion-atom and electron-
atom collisions start from large R in the ener-
getically lowest channel (p =0 in our case) with a
constant angular momentum (LS in our case). Pho-
toabsorptionby an atom occurs instead in the low-
R region occupied by the atom in its ground state,
but it also brings the atom initially into a state of
its p=0 channel, because radial wave functions
F,(R) with p #0 are excluded from this region by
the centrifugal barrier represented by large values
of v,. In either case we must then solve the com-
plete Schrodinger equation (12) for ¢ =33, F/(R)¢,

% (R; Q) with initial values of F,(R) that vanish for
all p#0. Transition to other channels, represented
by the occurrence of nonzero values of F, with p
#0, should result from the action of off-diagonal
elements of Uand W in the process of integration
of Eq. (12). Upon completion of this integration
the squared amplitude of outgoing wave components
F,(R), with p#0, at large R represents the proba-
bility of excitation in an electron-atom collision or
of a double process of ionization-plus-excitation in
the case of photoabsorption. In the process of in-
tegration the main contribution to transitions to p
#0 should occur where the coupling terms between
the channels are largest. According to Eq. (13),
this would be where d¢,/dR is large, i.e., when

¢, varies rapidly in region (C) of Figs. 3 and 6.

From the results of Secs. IVB and IVC, we an-
ticipate that divect transition from lower channels
to higher channels should be unlikely, At small R,
all higher channels are prevented from getting any
significant amplitudes because of large centrifugal
potentials at larger R, where the wave motions for
lower channels are confined in the potential ditches
of Fig. 1. In both cases, excitation to higher chan-
nels is unlikely. Therefore, transition from a p=0
channel to high channels seems likely to occur via
intermediate channels, i.e., through a sequence of
nonadiabatic transitions in the avoided-crossing
region between successive channels; these occur
at higher and higher values of R. Thus, for (00p)
channels of helium 'S states, transition from the
p=0 channel to p=1 should occur at R=1.5 and
the transition from p =0 to p =2 should occur via
the p =1 channel, through the avoided crossing be-
tweenp=0and 1 at R*1.5and p=1 and 2 at R =6.
Excitation to higher-p channels is described simi-
larly, through the successive avoided crossings
between adjacent channels at values of R given by
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Eq. (22). This can also be anticipated from the be-
havior of channel functions obtained in Secs. IVB
and IVC.

The above discussion emphasizes the excitations
to higher channels based upon the occurrence of
regions of avoided crossing between adjacent chan-
nels. It implies that channels without any well-
developed region of avoided crossing [region (C)
of Sec. IV B] should have smaller excitation cross
sections; equivalently, the doubly excited states
of such channels should have smaller decay widths.
Indeed, the 3S channels of Sec. IVB and the minus
channels of Sec. IV C show no evidence of avoided
crossing between the channels; accordingly the ex-
citation cross sections for S states should bear
the same ratio to those for 'S states as those for
minus channels bear to plus channels. Existing
evidence confirms this expectation. Experimental-
ly the decay widths of the doubly excited states of
helium 'P states in the plus and minus channels are
in the ratio of ~100:1. Close coupling and other
calculations?! for He** show that the decay widths
for the 2sns 'S states are also about 100 times
larger than those of the 2sns 3S states. For *P
states, the decay widths for the plus and minus
channels are also approximately in this ratio. The
same holds for the electron-hydrogen excitation
process. The excitation cross sections from 1s to

*2s or 2p calculated by close-coupling methods®® in-
dicates that the contributions from 'S and S par-
tial waves are in the ratio of ~100:1.

We proceed now to consider to what extent this
seemingly consistent picture is borne out by anal-
ysis and evaluation of the channel coupling terms
of Eq. (14). The influence of channel p’ upon the
equation for the radial wave function F, of channel
p is represented by the inhomogeneous term
Wy F oo =2(¢p,, dpp/dR) dF, /dR +(¢,, szp,/dRz)Fp,.

Existing data'” on the matrix elements (¢,, d¢,/
dR) and (¢,, dp,/dR?) do show that these coupling
terms are rather small, as expected. Yet they are
not sufficiently small to make it obvious that the
channel coupling can be treated by perturbation
methods and will, in fact, yield transition proba-
bilities of the correct order of magnitude.
Numerical tests have been conducted to estimate
the transition probabilities among 'S and among 'P
channels. The result turns out to be too large by
one-half order of magnitude. They also were
found to depend on integrals over more than one
wavelength of radial functions F, and hence sensi-
tive to the accuracy of these functions, all of which
is also rather unexpected. These tests were con-
ducted starting from channel functions &, obtained
in Sec. V. We conclude tentatively at this time
that an adiabatic channel basis ¢, does not provide
the degree of decoupling of channels that we anti-
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cipated from the evidence reviewed in Sec. I and
which seemed borne out by the striking properties
of channel functions described in Secs. IVB and
IVC. In other words, the properties of the adia-
batic channels do not quite match those of the phys-
ical channels.

V. ADIABATIC POTENTIAL CURVES

In this section we indicate how the potential
curves v(p'l‘z) are changed by electron-electron in-
teractions involving transfer of angular momentum
between the two electrons. We give examples for
helium 'S and 'P states and for 'S states of H™. The
calculation of energy levels and of decay widths for
various L, S, 7 combinations will be the subject of
later publications.

Interactions between different v(p'l' 2 are taken in-
to account by completing the diagonalization of the
matrix U of Eq. (17). The resulting adiabatic po-
tential curves U u(R) should coincide with those of
Ref. 3. The corresponding adiabatic channel func-
tions are represented by

@, (R; Q)= Y ab, (R)$IVI(R; Q). (24)

(112p)

The mapping of these functions is complicated by
nonseparability; at this state we can only discuss
the correlations qualitatively on the basis of know-
ledge of the ¢{12 and of the coefficients a} , . (R).
The construction of E(R) on this new basis is de-
scribed in Ref. 17.

Since the off-diagonal matrix elements of U [Eq.
(17b)] are small, as explained in Sec. IV, th;y are
important only when 0412 for different ({,1,p)
channels are nearly degenerate. Therefore the co-
efficients aj ,,, for each value of p will be signifi-
cantly nonzero for a few sets of (I,/,p) only. Often
these sets will belong only to potential curves
vg“z) that converge to the same large-R limit.

Figure 7 shows the three adiabatic potential
curves of helium 'P states that converge to the n
=2 limit of He*. Also shown are v, 419 and
v2Y in dashed lines. We note that u=1 curve lies
very close to v4%, indicating weakness of the in-
teractions that involve transfer of angular momen-
tum between (Z,,1,)=(1,0) and (2,1). Also we see
that the p=2 curve is not far from »(® for R>4;
accordingly its channel function remains close to
¢39 of the sp- channel. The crossing between
v1? and v?" at R=4.2 introduces, however, appre-
ciable pd components in higher bound eigenstates
of the u =2 channel, whose energies approach the
ordinate -1.1 Ryd in Fig. 7; this admixture has
been noted before.?® On the other hand, the poten-
tial curve of the pd channel is raised appreciably
and thus its channel function ¢, has appreciable
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$3° component.

We have also made a few pilot calculations for
'S states of H™. In the following we only mention
some interesting characteristics peculiar to H™.
Among all the potential curves u(;’) of the 'S chan-
nel that converge to a given limit » of H, only the
s? curve, with (I,1,)=(0,0), shows a potential min-
imum below —1/n% limit while all others are com -
pletely repulswe Figure 8(a) shows the two
curves u(l and v0 ) in dashed lines, together with
the two adiabatic potential curves U, and U,. Here
again U, has a well but U, is completely repulsive.
Figure 8(b) shows the three adiabatic curves U,
that converge to the n =3 limit of H. The three U(OO).
240 and 22 curves are not shown, but we know
that only v(°°) is attractive. Among the three U,(R),
with u=3,4,5, U, has a normal well, U, a shallow
well and outer barrier, and U, is completely re-
pulsive. The type of potential U,(R) has the effect
of causing delayed, or “shape” resonances; such
resonances have been discussed in other instances
of electron-neutral atom collisions® near thresh-
old but without any explicit reference to an effec-
tive potential. The height of the outer potential
barrier in the u =4 curve of Fig. 8(b) corresponds
to an energy 12.13 eV above the ground state of H,
which compares well with the shape resonance at
12.16 eV observed experimentally.?®

VL. APPLICATION TO SPECTRA OF ALKALINE
EARTH ATOMS

This section illustrates the potential application
of our approach by examples pertaining to many-
electron atoms. We connect some of the properties

N
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@

in Rydbergs

Uy (R)

I
o

_20 I 1 [ 1 l I | Il l
R (in Bohr)

FIG. 7. Potentials for helium P channels converging
to the n =2 limit of He*. Straight line, U, U,, and U;;
dashed line, v{1?, 0§19 and v{!).

of A® operator discussed in Sec. II with strong cor-
relation effects that have been observed in the
spectra of alkaline earths, whose two optical elec-
trons move outside a closed-shell ion core. As
emphasized in preceding sections, correlation ef-
fects at small R are mainly determined by the ki-
netic-energy operator A%, We also recall from
Sec. II that electron-electron interactions involving
transfer of angular momentum between two elec-
trons are weak in general, but important in cases
of degeneracy. Two unusually strong correlation
effects will, in fact, be traced to such degenera-
cies.

(@) The first example occurs when the potential
curves z;(p‘l’z) of different (I,l,) cross at small R.
Crossing occurs for the 'S channels that are de-
signated by (001) and (110) in the (I,/,p) notation of
this paper and which contain 2 snus, 2pnp states,
respectively. It also occurs for the 'S channel
which contain 3sus, 3pmp, and 3dnd states. As
shown in Sec. IV, all the potential curves vgl’?) are
given by v,~ [(L, +1,+2m +2)* = R(L, 1 ,m|C| L Im)]|/
R? with p=3m at small R. For R~0, these values
of v, are ordered according to increasing values of
v=1,+l,+2m=1 +1,+4p. Therefore, the curve
o8V starts below 0 at R~0, but since (002|C|002)
is larger than (110|C|110), the two curves will
cross at somewhat larger R. As discussed in
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FIG. 8. (a) Potentials for H™ 'S channels converging to
the #» =2 limit of H. Straight line, U; and U,; dashed
line, v{® and v{!"). (b) Adiabatic potential curves U,
Uy, and Us of H™ 'S channels converging to the n =3 limit
of H.
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Sec. V, the off-diagonal element (001|U [110)
caused then a considerable mixing of the two chan-
nel functions near the crossing which lies, at
least in He, at values of R somewhat lower than
the mean radius of the 2s* state and much lower
than the radius of the 2p2 'S state. This remark
interprets the strong mixing of the 2s® 'S and

2p2 'S states of beryllium and possibly also of the
ns? 'S and np® 'S of all other alkaline-earth atoms.
Note also that the wave functions of 2 sns 'S states
do not have appreciable amplitude at small R where
the crossing occurs; accordingly, their admixture
of 2p% 'S is weak, even though their energy levels
lie closer to the 2p2 'S level than 2s® 'S does. The
argument presented here has, of course, only in-
dicative value, in the absence of calculations spe-
cifically designed for alkaline -earth atoms rather
than for He.

(b) Strong correlation also occurs when two
eigenfunctions of A? with the same LS quantum
numbers are degenerate. For example, this de-
generacy occurs normally at R=0 for 'D channels
with (I,,1,)=(2,0) and with (I, {,)=(1, 1) because
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they have equal values of I, +1,. In this case, the
channel coupling due to electron-electron inter-
action remains important and produces appre-
ciable mixing of channel functions over a large
range of R. Thus it is not surprising that all nsmd
!D (m >n) states of alkaline earths interact strong-
ly with the np® ' D state; in fact, the coupling does
not decrease much with increasing m and extends
into the continuum.?® A closely related phenome -
non of strong mixing occurs also in atoms with
three valence electrons; here a strong admixture
of 2snp® D is found throughout the 2s’zd 2D chan-
nel.?” In fact, the degeneracy at R=0 considered
here occurs rather generally for all values of L

>2.
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