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A detailed theoretical investigation of the helium atomic Rydberg states is carried out. Results for
level transition energies and doublet level splittings are found to agree extremely well with the recent
high-precision microwave-optical experiments, The physical effects contributing to the electrostatic fine

structures are systematically studied.

I. INTRODUCTION

The physics of atomic Rydberg states has long
been the subject of experimental study with con-
ventional spectroscopic methods. ' The x esolving
power of this approach, however, has often proved
to be less than adequate. Recently, a 10'-fold
improve;nent in resolution was achieved by I.amb
and co-workers' (WLL) with the development of a
microwave -optical technique. This experimental
breakthrough enables one for the first time to
study with high accuracy the electrostatic fine
structure of the atomic Rydberg states such as
the level shifts and level splittings. The experi-
mental breakthrough has also added great impetus
to the search for a general, first-principles theo-
retical approach, capable of improved quantitative
predictions as well as qualitative interpretations.
As emphasized by those authors, ' the physics of
the atomic Rydberg states holds special theoreti-
cal interest not only because of its quasi-hydro-
genie nature but also because of its close relation
to the scattering of slow electrons by the charged
ion core. In this paper, we report a detailed
theoretical study on the Rydberg series for atomic
helium' within the framework of the Brueckner-
Goldstone' (BG) perturbation-theory approach.

The BG perturbation theory was developed in
the context of nuclear many-body problems, and
in recent years has also been extensively applied
to complex atomic and molecular' problems where
possible many-body effects have been explored.
Thus it is important at this very outset to make
clear that, since the present case involved only
two orbital electrons, the "many-body" aspect of
the BG theory does not really enter into the prob-
lem. Rather, the BG formalism is used here be-
cause of its associated operational advantages.
These include, through the graphical representa-
tion of terms or diagrams, a systematic enumera-
tion of contributing perturbation tex ms and the
convenience in the interpretation of the contrib-
uting physical processes involved. These aside,
thexe is no essential difference between the pres-

ent formalism and the conventional perturbation
approaches.

In Sec. II, we shall briefly recall some of the
essential elements of the general BG formulation.
Specific details of the application to the helium
(ls, nl ) Rydberg states a.s well as the physical
interpretations of the contributing terms are given
in Sec. III. Results and discussions of the present
calculations are given in Sec. IV.

II. REUIEN OF THE BG PERTURBATION APPROACH

The first and foremost task in the BG approach,
as in all perturbational approaches, is the sepa-
ration of the total Hamiltonian H of the system
into an "unperturbed" part H, and the "perturbing"
part O'. For an atomic system, the total Hamil-
tonian consists of the single-particle operators
T;, the sum of the kinetic-energy operator K; and
the nuclear Coulomb potential operator V,". for the
ith electron, and the Coulomb interactions v„be-
tween the ith and the jth electrons. The most
genexal way for the separation of Ho and H' is
through the introduction of an arbitrary (Hermi-
tian) single-particle potential V, :

H= K&+ V; + p;,.

Ts + V)g
j (j

With a given choice of V, one generates a complete
set of single-particle states g„'s:

(T; + V;) fIt „=e „P„

which in turn shall form the basis set for the pex-
turbation expansion. The same single-particle
potential V, because of its presence in H', also
determines the goodness (i.e. , convergence) of
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the perturbation series.
The BG formulation results in the well-known

linked-cluster expansion expression for the energy
of the total system'.

Here we sum over only the "linked" terms while
the "unlinked" terms containing the spurious di-
vergences simply do not appear.

1S

III. APPLICATIDN TO HELIUM (1s,nI }
RYDBERG STATES

%e must first choose the single-particle poten-
tial V for the present calculation. The physics of
the helium (ls, nl) atomic Rydberg states (l ~ 2)
suggests quite naturally the following choice:

V=O, e„=-4/n' for i=0, 1 orbitals,
(4)

V=e /r, e„=—1/n for t =2, 3, . . . orbitals.

The above choice will lead to hydrogenic y„'s
with Z,„=2 for s and P basis orbitals and hydro-
genic P„'s with Z,ff ——1 for d, f, g basis orbitals.
Note that two different sets of radial orbitals are
used here. However, orthogonality of the total
basis states is still strictly maintained through
the angular momentum eigenfunctions.

The Eeroth-order energy E, is now simply

E,(ls, nl) = —(4+1/n') Ry.

The level shifts 6 from this Bohr level is simply
the sum of all higher-order energy terms.

6 =E,+E2+. . . .
We would like to stress the advantage of the

present choice of V. Since. the "unperturbed"
(1s,nl) levels are "degenerate" in l, we may
effectively study the relations of level shifts for
different l levels from a common starting point.
This important advantage will be lost should one
choose instead Hartlee-Foek-type basis states,
as one would normally do in hopes of gaining better
convergence.

One may now proceed to draw all the topologi-
cally distinct diagrams that represent the con-
tributing terms in the perturbation expansion. The
present two-electron system, of course, makes
this enumeration particularly simple. The impor-
tant diagrams up to second -order terms are given
in Fig. 1; other second-order diagrams which
contribute less numerically are given in Fig. 2.
Still higher-order diagrams are illustrated in
Fig. 3. The physical interpretations of the impor-
tant lower-order diagrams ean be given as follows.

Screening effect. The sum of diagrams 1(a) and

FIG. 1. Leading first- and second-order terms.

1(b) (with a minus sign) gives the contribution to
the level shift owing to the incomplete screening
of the inner 1s electron. That is, since the "un-
perturbed" nl hydrogenic orbital assumes com-
plete screening by the 18 electron, these two dia-
grams correct for this assumption by taking into
account the small penetration of the nl electron
inside the 1s core orbital electron.

First-order exchange term Figur.e 1(c) repre-
sents the contribution of the first-order exchange
between the two electrons. This exchange contri-
bution will have opposite sign for spin-singlet and
spin-triplet cases.

Polarization and distortion effects. Diagram
1(d) corresponds to the dominant second-order
direct terms of the perturbation expansion. Phys-
ically this diagram describes the mutual polariza-
tion and distortion between the atomic electrons
because of their mutual Coulomb repulsions. As
diagram 1(d) indicates, the ls electron and nl

electron, through their Coulomb interaction,
"excite*' into intermediate virtual states P and q,
respectively, before "deexciting" again back to
1s and nl orbitals. Thus, this diagram gives the
leading contribution of the effects of the. inter-
eleetronic correlations. By multipole expansion

FlG. 2. Other types of second-order terms.
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TABLE I. Level shift from zeroth-order energy (in
units of 10 Ry).

DQ

FIG. 3. Some third- and higher-order terms.

3
4
5
6
7

8
9

10
11

D2

-126.762
-56.263
—31.029
-18.345
—11.704
—7.912
—5.589
-4.090
-3.081

-157.599
-76.129
-41.322
-24.673
-15.826
-10.733
-7.600
-5.570
-4.202

-9.7339
-5.5875
-3.4505
-2.2629
—1.5625
-1.1180
-0.8240
-0.6242

'3F

-9.9460
-5.7003
-3.5181
-2.3064
-1.5921
-1.1390
-0.8394
-0.6359

of the Coulomb interaction, we can further sepa-
rate the polarization effects into contributions
from monopole, dipole, quadrupole interactions,
etc.

Second order -exchange effects. Diagram 1(e)
is the exchange counterpart of diagram 1(d) and
represents the additional contribution to the ex-
change energy when interelectronic correlation
and polarization are taken into account. Again
the sign of this second-order exchange contribu-
tion must be opposite for the spin-singlet and
spin-triplet cases.

One can make similar physical interpretations
for the diagrams in Figs. 2 and 3. However, since
their contributions are far less than those in Fig.
1, we shall not detail them here.

Finally we mention that in order to obtain the
average level shift values, one only needs to eval-
uate the direct diagrams —the exchange diagrams
cancel formally. On the other hand, to obtain the
doublet-splitting values between the spin-singlet
and spin-triplet levels, one only needs to evaluate
the exchange terms —the direct terms cancel for-
mally. Because of this formal cancellation of
terms, numerical accuracy is now possible, even
in the evaluation of the small doublet splittings.

Two sets of experimental results are available
for comparison with the present theoretical calcu-
lation. The experimental results compiled by
Martin' are from spectroscopic data. Because of
its inherent resolution, these spectroscopic data,
while very extensive, tends to be less reliable
especially for high-nl states. The recent micro-
wave-optical data of Lamb and co-workers' should
be extremely accurate. Therefore comparison
with their results should be more meaningful in

spite of the relative paucity of their data points.
Aside from the good over-all agreement with

experiments, term-by-term comparison of our
calculation with the WLL data' shows a consistent
difference of (1.5-2)%. In our evaluation of the
contributing second-order diagrams, a differen-
tial-equation approach' was used instead of the
usual matrix-element summation method. This
gives improved numerical accuracy and enables
us to obtain with confidence, values of three sig-
nificant numbers. Thus the difference must come
from the higher-order terms, illustrated in Fig.
3 but not evaluated in the present calculation. We
remark that the evaluation of those diagrams is
quite feasible and that therefore agreement with

IV. RESULTS AND DISCUSSIONS TABLE II. Singlet-triplet splittings (in MHz).

Based on theoretical formulation described in
Secs. II and III, we have evaluated up to and includ-
ing all second-order terms and obtained results
for helium Rydberg (1s,nf) states for n =3-11 and

I =2-4 (D, F, G). These results are presented in

a number of tables listed below. In Table I we
list the absolute level shifts, the shifts from the
Bohr level energies (4+ I/n') Ry. For better
comparison with experiment, we present the
level-transition energies in Table II and the level
(doublet) splittings in Table III. To study the
effects of different physical processes, we illus-
trate, in Table IV, a detailed breakdown of the
contributions from their corresponding diagrams.

D2 —D2
n Theory Expt. ~

1F3- F3
Theory Expt.

'G4 —~G4

Theory

4 58.78x 10 59.20x 103

5 33.90x 103 34.41x 10
6 20.82 x 10 20.81x 10
7 13.56x 10 14.78x 103

8 9.282x 10 10.79x 10
9 6.615x 10 7.196x 103

10 4.870 x 10 5.687x 103
11 3.688x 10 4.498x 10

371.1
222.4
143.1
97.31
69.09
50.78
38.34

(369.8) '
(225.3)
146.2
(99.8)
(71.0)
51.3
39.5

121.0
76.19
51.04
35.85
26.31
19.63

' Reference 1.
Reference 2.
Experimental values given in parentheses are ob-

tained from Eq. (4) of Ref. 2.
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TABLE III. Comparisons between the results of the present calculation and available ex-
perimental data for various transitions (in GHz).

'D& —E (aVe)

Expt.
n Theory Martin WLL

D& —E (ave)
Expt.

Theory Martin ' WLL b
P (ave) —G (ave)

Theory Expt. (WLL) b

4
5
6
7
8
9

10
11

159.31
83.51
48.89
30.99
20.84
14.68
10.72
8.064

162 ' 70
83.77
49.02
31.51
18.89
15.59
10.90
8.20

(163.34)
(85 ~ 22)
(49.81)
31.49
(21.23)
(14.95)
10.90
8.20

218.08
117.38
69.71
44.55
30.12
21.29
15.59
11.75

221.89
118.18
69.83
46.29
29.68
22.79
16.60
12.70

21.76

8.742
5.620
3.859
2.739
2.01
1.518

5.607

~ Reference 1.
Reference 2.

'Experimental values given in parentheses are obtained from Eq. (4) of Ref. 2.

experiment to third significant number, if so
desired, can be achieved within the present for-
mulation.

The detailed breakdown of contributing dia-
grams, as illustrated in Table IV, enables us to
observe some systematics and to assess the rela-
tive importance of the various physical effects in-
volved. First, we notice the fact that this relative
importance seems to be dependent only as a func-
tion of l value but is nearly independent of n val-
ues. For example, the screening effect contrib-
utes about 7%%uo of the total level shift for D states
(l = 2), indicating still appreciable penetration of
the outer electron into the 1s core region. For E
states (l = 3j, it is already down to -0.3%%uo, and for
G states (l = 4}, it becomes completely negligible.
The, dominant contribution to the level shifts is
the dipole polarization term, ranging from —89%

for l = 2 states, to -98%%uo for l =3 states, to an
overwhelming -99.5/p for l =4 states.

With regard to the doublet level splitting values,
the most striking result is the importance of the
second-order exchange contributions. Since it is
opposite in sign to the first-order exchange con-
tribution but comparable in magnitude, the re-
sultant sum is vastly different from the value of
first-order exchange alone, which has been used
in essentially all previous calculations. '' With
the inclusion of second-order exchange, our net
level splitting for l =2 states is reduced by a factor
of 1.7 from that of first-order exchange alone.
For l =3 states, this factor is about 2.4; and for
l =4 states it is an even larger 3.3. It is there-
fore clear that the effect of the second-order ex-
change must be properly taken into account if
good value for the doublet splitting is to be ob-

TABLE IV. Contributions from various physical effects to the level shifts (in units of 10 Ry) '. The plus and minus
signs refer to singlets and triplets. respectively.

Screening First-order Second-order direct (polarization)
effect exchange monopole dipole quadrupole

Second-order
exchange Others Total

(5, 2)

(8, 2)

(1o, 2)

(5 3)

(8, 3)

(10,3)

(7, 4)

-2.3161

-0.6412

—0.3374

—1.12(-2)

—4.16(-3)

—2 32(—3)

—1.64(-5)

~8..620

~2.3679

~1.2437

R4.32 (-2)

+1.59(-2)

+8.84 (-3)

+6.38(-5)

-9.98 (—2) -32.2098 -1.3842

-2.78 (-2) -8.2389 -0.3679

-1.46 (—2) -4.2616 —0.1918

-2.97 (—4) —5.5550 -7.46 (-2)

-1.10 (—4) -1.5482 -2.41 (-2)

-6.30(—5) —0.8160 -1.30(—2)

-3.14(—7) —0.5727 -2.62 (-3)

~3.5913

+0.991

+0.5212

+2.53 (-2)

+9.26(—3)

+5.15(-3)

+4.44 (-5)

—0.1644
+0.1155
-4.50 (-2)
+3.19(-2)
-2.35(—2)
~1.67 (—2)
—1.17(-4)
+8.92 (-5)
—4.38 (-5)
~3.34 (—5)
—2.43 (—5)
+1.86 (-5)
—3.18(-8)
+2.55 (-8)

—36.1742
~5.1442
-9,3208
+1.4087
—4.8290
+0.7392
-5,6413
+1.81 (-2)
-1.5767
+6.67 (—3)
-0.8314
~3.71(-3)
-0;5754
~1.94(-5)

Numbers in parentheses indicate the powers of 10 by which the entries are to be multiplied.
~ Sum of all terms given in Fig. 2.
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tained. Here it is interesting to note that the im-
portance of this second-order exchange term has

previously been observed in electron-atom scat-
tering problems. ' The present calculation sug-
gests that it should be equally important for bound-
state systems such as the Rydberg states —per-
haps not too surprising in view of the close rela-
tionship between the Rydberg series and the low-
energy scattering problems.

We mention that for t ~ 3 states, the spin-orbit
interaction becomes significant; and the mixing
effect resulting from this spin-orbital coupling
must be and have been included in our calculation
through the use of the formalism given by Araki'
and Parish and Mires' with the exchange integral
calculated up to second order.

We also mention that for average level shift
values, a polarization-model calculation has been
carried out by Deutsch. " However, the polariza-
tion model implicitly contains adiabatic approxi-
mation and further is not amenable to predictions
of doublet splittings. These limitations as well
as some numerical irregularities contained there
prevent us from making a meaningful comparison.

Finally we turn to the systematics in n values.
Theoretical arguments" suggest that for a given
l value the level shifts (hence the transition en-
ergies) as well as level splittings. should behave
as a function of n in the form of (A/n'+B/n') for
large n values. This parametrization was used in
the analysis of the results of WLL. In fact, the
results in parentheses in Tables II and III are ob-
tained in this way.

Our numerical results do confirm this and the
parametrization is seen to work extremely well
even for very-low n values. Thus for a given n

series, once two data points are obtained, the
parametrization can be used with confidence in
predicting the values of other members in the
series.

In conclusion, we are encouraged by the result
of this calculation, not only in the quantitative as-
pect but also in the qualitative understanding of
the physical effects involved. The generality of
the approach makes it readily applicable to other
atomic cases. These are being investigated to
further assess the-potentialities and the limita-
tions of this approach.
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