
PHYSICAL REVIE% A VOLUME 10, NUMBER 6 DECEMBER 1974

Interaction between a spin-1/2 atom and a strong rf field
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Energies of the coupled system of a spin-1/2 atom in a static magnetic field and an oscillating rf field

are analyzed with the resolvent formalism and numerically calculated by quantizing the rf field, for the

general case that the strong rf field is oriented in an arbitrary direction to the static magnetic field. It
is shown that, if the component of the static field along the direction of the rf field has particular
values, level crossings take'place and multiphoton transitions by even or odd numbers of rf photons
become forbidden, even when the polarization of the rf field satisfies the parity condition for the

multiphoton transitions. Particular attention is given to the direction and amount of the shifts of the
level crossings by the rf field, together with the shifts of the anticrossings or of the multiphoton

transitions. Theoretical results are verified by the optical-pumping experiments with cesium vapor.

I. INTRODUCTION

Interaction between a spin-~ atom in a static
magnetic field and a strongly oscillating radio-fre-
quency (rf) field has been analyzed by many authors
for various cases. To study such interaction ex-
perimentally, optical pumping is a very useful
tool, since it gives us information on both real
transitions and coherence between Zeeman sub-
states of the atom.

Consider a spin- —,
' atom with a gyromagnetic ra-

tio y in a static magnetic field H, = v, /y and a.n

oscillating rf field H, cosset = (~,/y) cosset In m.ost
of the work done so far, two particular cases in
which the direction of the rf field is perpendicular
or yarallel to the static field 8p have been studied
extensively.

When the rf field is oriented perpendicularly to
the static field H„an ordinary (single-photon)
'transition and multiyhoton transitions take place
at upo = (2n +1)&u, where n is zero or an integer.
The first observation of multiphoton transitions
was made by Margerie and Brossel' for longitu-
dinal optical pumping (with respect to the static
field H, ) and explained theoretically by Winter. '
Good physical descriptions have been given with a
semiclassical time-dependent Hamiltonian by Shir-
ley, ' and with a time-independent Hamiltonian in
which the rf field is quantized by Cohen-Tannoudji
and Haroche. ' ' Furthermore, Stenholm' obtained
semiclassically a complete solution by making use
of the continued-fraction method. The real transi-
tions, such as ordinary and multiphoton transi-
tions, appear at the anticrossings of the energy
diagram of the coupled atom-rf-field system, or
of the atom "dressed" by rf photons. ' In the cise
of transverse optical pumping, the coherence be-
tween the crossing energy levels at cup=2nco can be
observed as a resonance, known as a "Haroche

resonance "" It has been shown by Cohen-Tan-
noudji and Haroche that the Haroche resonances
shift toward p=0 as the amPlitude H, of the rf
field is increased, but they are not broadened to
the lowest order in the rf-field amplitudes. How-

ever, the broadening of the Haroche resonances as
a higher-orde. effect has recently been calculated
by Tsukada and Ogawa' and by Stenholm and Amx-
noff' by making use of the continued-fraction meth-
od. Another important effect of the rf field orient-
ed perpendicularly to the field Hp is that the atomic

g factor is effectively modified when the condition
~ &(dp is satisfied, ' ' and this effect has been ob-
served experimentally. '

On the other hand, when the rf field s oriented
along the direction of the static field H„a para-
metric resonance occurs when ~p=m~, at which
the level crossing takes place in the energy dia-
gram of the coupled system. For this case, the
energies and eigenfunctions have been obtained
completely by semiclassical' and quantum-me-
chanical" treatments. %hen a weak static field
H„= ~,/y is applied perpendicular to the rf field
in addition to the static field Hg (0 g/y along the di-
rection of the rf field, and the condition cu 1,

=nap is
satisfied, it has been shown by Pegg and Series, "
and Yabuzaki e] gl."that the medium irradiated by
the strong rf field becomes anisotropic, and the
component of the g factor perpendicular to the rf
field is modified, which can be expressed simply
by Bessel functions of the first kind.

As described above, there has been no theoreti-
cal treatment of the general case in which the di-
rection of the strongly oscillating rf field is arbi-
trary with respect to that of the static field Hp.
Recently a new type of resonance has been ob-
served when both components g„and H are not
weak. " Since the behavior of this resonance is
quite similar to that of the Haroche resonance, it
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is called a "Haroche-like" resonance. But the
physical importance involved in thi. s resonance has
not yet been reported.

In this paper, we report on the energies of the
coupled atom-rf-field system in the presence of
both components H~, and H~ for a, wide range of the
rf-field amplitudes. In this ease, it is believed
that there is no level crossing for an atom with the
angular momentum J = —,', hence the multiphoton
transition at u, =nu is allowed for any integer pg.

'

Using the resolvent formalism in which the rf
field is quantized, we first show that. a level cross-
ing exists at u, = (n+2n')w (where n and n' are in-
tegers), if the condition &ug n&u is satisfied. This
kind of level crossing might be called a "crossing
of the second kind, ""because at the level crossing
each elementary process of the multiphoton transi-
tion associated with n +2g' yhotons is allowed al-
though the sum of the elementa, ry processes be-
comes forbidden. %e show that the Haroche-like
resonance observed by Tsukada et al."is due to
the interference between the crossing energy lev-
els. Next, numerica. l calculation of energies of
the coupled system is carried out by diagonalizing
the 40 ~40 matrix of the total Hamiltonian in order
to find higher-order effects. This corresponds to
tenth-order perturbation theory with respect to the
rf-field amplitude. %e give particular attention to
the number of shifts of the level crossings by the
rf field, together with their direction in (&u~„e,)
spa.ce.

The existence of the level crossing of the second
kind is verified by an optical-pumping experiment
with cesium vapor. The theoretical shifts of the
level crossing and anticrossing are compared with
the results of the present experiment and with the
exye»ment by Tsukada e& ~r."

where e„and e, are unit vectors representing the
directions of ~ and z axes. In this system the total
Hamiltonian ca,n be written a.s

X=X,+V,

(3)

(4)

where J is the total angular momentum of an atom,
J, its z component, at and g the crea, tion and an-
nihilation operators of the rf photon (d, and A. the
coupling coefficient. For a large number of rf
photons, the coupling coefficient A. is given by

where N is the average number of rf photons. In

Eq. (3), &uP, represents the Hamiltonian of an
atom in a static field FIo, having eigenstates ~+)
and ~-) and eigenvalues +-,'~„and u&g~a represents
the Hamiltonian of the rf field only, having eigen-
states (n) where n is the number of photons. Thus
we have the eigenstates and eigenvalues of 3C, as
follows:

where j~, n) is the product of eigenstates ~n) and

~+). Consequently, in the absence of the rf field,
the eigenstates )+, n) and (-, ')ndegenerate at
Ko= (n —n')4& l.e~. , the level crossing exists a' t

u, =p&, where p is zero or an integer.
The term V in Eq. (2) represents the interaction

between the atom and the rf photons. It can be
written, in the present case, as

with

H. PERTURBATION THEORY %PITH THE
RESOLVENT FORMALISM

Here we show the existence of the level crossing
of the second kind in the energy diagram of the
coupled atom-rf-field system, even when the sta-
tic field 8', has both components HI~ and H~ parallel
and perpendicular to the direction of the rf field.
The analysis is made with the resolvent formalism
developed by Cohen-Tannoudji and Haroche, 4 6 in
which the rf field is qua, ntized and perturbation
theory is used.

An atom with spin--,' is subjected to the simul-
taneous actions of the static field H, and an oscil-
lating rf field H, cosset, as shown in Fig. 1. The
direction of the rf field makes an angle 8 from
the direction of IIO; hence its polarization e can be
written as

V, = ~ cos 8J,(a+a ),
V„=-2A.sin6(J, a+J' a ),
V, = 2A. Sin 8(J,S +J a),

H»

(8)

(9)

(10)

e=e„cosg+e sing, FIG. 1. Directions ef magnetic fields.
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J, =J,+iJ, .

in Eqs. (8)—(Io), V„V, , and V, represent the

interactions of the atom with the rf photons in n,
o„and o modes, respectively U. sing Eq. (5),
we can easily calculate the matrix elements of
V„, V, , and V, between the eigenstates Is, n&

and Is, n —1) as

&+, n I V, I +, n —1) = &L, n —1
I V, I +, n& = +-,'&u, cos e,

(12)

&+, n —1
I V. , I —,n) = (-, n I V, , I +, n —1)= —,'~, sin 6,

ficient to consider the anticrossing only. In order
to discover the shifts in position of the level anti-
crossing and the energy separation between anti-
crossing levels, it is convenient to calculate the
matrix elements of the level-shift operator R in
the resolvent formalism developed by Cohen-Tan-
r.oudji and Haroche. ' ' Consider two particular
eigenstates Ia& and Ib& of the unperturbed Hamil-
tonian K„with corresponding eigenvalues E, and

E,. The matrix R is given by

R= V+PV VP+PV V PV+. . . ,
Q Q Q

C

&+, nlV. I-, n- &I=& , n -—1IVo I+, n&= —,'&u, sing;

(14)

the other matrix elements are zero.
It might be important to recall the work which

has already been done for two particular cases.
Specifically, we are interested in whether or not
the crossing at (d, = pro in the absence of the rf field
becomes an anticrossing. When g= —,'m, i.e. , the rf
field is oriented perpendicularly to the field H„ it
is known that the crossing at &,= p(d for p an odd
integer becomes an anticrossing by virtue of the
real transitions: the ordinary transition for p = 1
and multiphoton transition for p «1. The energy
separation between the anticrossing energy levels
is closely connected to the probability for the real
transition between them. The crossing at (d, = pcs

. for p an even integer, does not become an anti-
crossing because the parity condition for the real
transition is not satisfied at this crossing. The
Haroche resonance which can be observed in the
transverse-optical-pumping experiment is a co-
herent phenomenon between the crossing energy
levels. ' ' However, when 6=0, the crossing at
cu, =pcs does not become an anticrossing for any
integer p, and the coherence phenomenon between
the crossing energy levels can be observed as a
parametric resonance in the transverse-optical-
pumping experiment. In this case, if the condi-'

tion ~II = pcs is satisfied, it is important to notice
that the component of the atomic g factor perpen-
dicular to the direction of the rf field is effectively
modified to the form' ' '

g, =g, z, ((u,!(u),

where g, is the g factor in the absence of the rf
field and J (u, /m) is the pth order Bessel function
of the first kind.

Generally, the level crossing can be considered
a special case of the level anticrossing, at which
the energy separations between associated energy
levels are zero, so that in any analysis it is suf-

where

&= ln&&s I+ II&&I I, q=l -&. (18)

The shift of the anticrossing point by the rf field
is associated with the diagonal elements of R, and
its magnitude 4(d is given by

=R„—R (19)

The energy separation between anticrossing levels
is given by the off-diagonal element, i.e. , 2 IR,, I

(see Fig. 2). In terms of these matrix elements,
the transition probability P„between the states

I a& and
I b) is given by

P 2 IR~ I'
r'+4 IR„I'+(F, E. R,.+R„—)' '— (20)

where I' is the natural width of the states Ia& and

I 5&. Thus, if R„has a, nonzero value at E~ —E
= 6&, we have a level anticrossing; hence the mul-
tiphoton transition between the states la& and Ib)
is allowed.

0-

CC
LLIz

(b)

FIG. 2. Energy diagram showing the relation of ele-
ments of the matrix R with the shift and energy separa-
tion of the level anticrossing; the energy levels are
modified by the rf field from (a) in the case ~& ——0 to (b).

E, = '(E, +E —),
and P and Q are the projection operators defined by
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Q ~
= 44/~ sln8 y (21)

%e have calculated A„and ~~ to the lowest or-
der of the rf-field amplitude (d, at or near (d, =p,
where the states I —,n) and I+, n —p) are degene-
rate in the absence of the rf field.

Q. Tile cQ88 Qpo=(d. In tllis case tile states I-, n)
and I+, n —1) are coupled only by the rf photon in
the g, mode, as shown in the Feynman diagram of
Fig. 3(a). With Eqs. (12)-(14) and (16), R„and
6(d to the lowest order of (d, can be calculated as

~„=~, we have another level crossing; i.e., the
three-photon transition between I , n) —and I+,n-3)
becomes forbidden. In this case, it is important
to notice that all four elementary processes are al-
lowed; hence such a level crossing should be
called a "crossing of the second kind. " It is be-
lieved that crossings of the second kind do not
exist for spin--,' systems. " The crossing at cos8
= —,

' corresponds to the Haroehe-like resonance ob-
served by Tsukada et gl. ,

"and its shift A& ean be
calculated as

s(o = ((u', /16(o) sin'8. n(u = (3(o2/32(u) sin'8. (26)

R„=-(co', /6~) sin8cos8,

and the shift ~(d becomes

a(u = ((u', /6(u) sin'8.

(23)

(24)

The level crossing at 8=0 and 8=-,'m correspond to,
the parametric resonance and Haroche resonance,
respectively. This level crossing should be called
a crossing of the first kind", "since all of the
elementary processes with a two-photon transition
become forbidden.

e. The case ~, =3+. In this case, the transition
between states I-, n) and I+, n —3) has four ele-
mentary processes as shown in Fig. 3(c). The ma-
trix elements R,~ for these elementary processes
are

R",'= (1/2(u')(-,'&u, )' sin8cos'8

From Eg. (21) we see that the level crossing oc-
curs at 8=0, which gives rise to the parametric
resonance. When 8=2m, Eq. (22) gives the Bloch-
Siegert effect by the counter-rotating rf field,
which might be.encountered in the ordinary magne-
tic resonance experiment.

b. The case no=2&. In this case, the transition
between the states I-, n) and I +n —2) has two
elementary processes as shown in Fig. 3(b). The
off-diagonal elements of 8 for these two elemen-
tary processes, i.e. , R' and g', have the same
value, and the sum becomes

d. The cgse e, =4'. In this case the transition
between I-, &) and I+, n -4) has eight elementary
processes, and the sum of g„ for these processes
and the shift ~~ becomes

R„=-(&u', /576&v') sin 8cos 8(4 cos'8-1),

d(u = ((u', /15(u) sin'8. (3o)

I+,n-Q

At sin8= ~ or uII 2'& we have a level crossing of
the second kind, at which all eight elementary pro-
cesses of the four-photon transition are allowed.

From the above analysis, we ean expect gene-
ralized expressions for g„and ~& to the lowest
order in (d„ for the case where the n-photon pro-
cess is important.

ob ab y

R~4,' = —(1/4(u') (~(u, )' sins 8. (26)

The sum of A,~ for all elementary processes be-
comes

R„=g R~',~ = (1/4aP) (-,'&u, )' sin 8 (9 cos'8 —1) .

(27)

At 8=0, each elementary process is forbidden as
seen in Egs. (26) and (17), and we have again the
level crossing of the first kind. At cos8= —,

' or

FIG. 3. Feynman diagrams for (a) the single-photon
transition, (b) bvo elementary processes of the bvo-
photon transition, and (c) four elementary processes of
the three-photon transition.
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For &u, =2k&v (k o 2), we expect

R„= C-, (&u', "/&u" ') cos 8 sin 8(4k' cos'8 —2')

&&(4k'cos'8 —4') ~ ~ [4k'cos 8 —(2k —2)'], or

1 3 2k —1
2k+1' 2k+1 ' ' ' ' 24+1

(crossing of the second kind),

mt, /&@= 1, 3, . . . , 2k —1.

(39)

(40)

k40q
2

2 (4k' —1)u)
(32)

where C, is a constant depending on the integral
number k. Equation (32) holds for k=1. The con-
ditions under which R„becomes zero, i.e., the
level crossing occurs, are

cos8= 0, sin8=0 (crossing of the first kind),

(33)

cos 8 = 1/k, 2/k, . . . , (k —1)/k

(crossing of the second kind), (34)

or

(o„/(o = 2, 4, . . . sl 2k —2 . (35)

For ~, = (2k+1)~ (k~ 1), we expect

R„=C„'(&u", "/~") sin 8[(2k +1)'cos'8 —1)

x((2k+ I)' cos'8 —3] [(2k+ 1)' cos'8

—(2k —1)'], (36)

(2k + I ) (u',

16k(k + I)&u
(37)

cos 8=0 (crossing of the first kind), (36)
I

where C,' is a constant. The conditions under which
R„becomes zero are

Equations (36) and (37) do not hold for the case
~, = ~ and Eq. (32) does not hold for the case ~
=2&v. Instead, we have to use Eqs. (21)-(23). The
reason why these general expressions do not hold
for the cases coo =(d and cop =2& might be because
all modes of rf photons do not contribute simul-
taneously to R„or Aced in these cases.

It is important to note that the condition nec-
essary for a level crossing of the second kind to
occur is that &u, ~/~ ha. s a.n integral value, a,s seen
in Eqs. (35) and (40). Furthermore, for the n-
photon process, R„ is proportional to cu", as seen
in Eqs. (31) and (36), but the shift n&u of the anti-
crossing or crossing by the rf field is proportional
to u', from Eqs. (32) and (37), to the lowest order

(d1 ~

III. NUMERICAL CALCULATION OF ENERGIES
OF THE COUPLED SYSTEM

In the preceding section we have shown with per-
turbation theory that the level crossing of the sec-
ond kind exists in the coupled atom-rf-field sys-
tem. In order to understand the behavior of the
crossing of the second kind in a strong rf field,
for which the lowest-order perturbation theory is
no longer valid, we have numerically calculated
the energies of the coupled system in such a strong
rf field. Particular attention is given to the amount
of the shifts of the crossing points by the rf field
and their directions in (&u~~, &u~) space.

In terms of the eigenstates I+, n& of K„Eq. (2)
can be written in matrix form as

I+, n —1& I-, n —1& I+, n& I-, n& I+, n+1& I-, n'+1&

X—ncdI =

I+, n -1&

I+, n&

1
2 (dp —(d

1-p(dp —CO

1
p Goo

A

1-ao

B A
(41)

I+, n+1) ~

, n +1& ~-
B A 1

~(dp + CO

1
-zCOo+CO
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where

A = —,'&u, sine= u, (u~/4(uo,

a= —,'~, cose= ~,~~~/4~„ (42)

ENERGY/Q
Qii=p. p

and I is the unit matrix. The matrix in Eq. (41)
corresponds to the Floquet Hamiltonian studied in
detail by Shirley' if we set 8=-2n, i.e., B=O. From
the argument in the preceding section, the vari-
ables u11 and & are expected to be more conven-
ient for expressing the position of the level cross-
ings rather than the variables u, and g.

Machine calculation of energies of the coupled
system was carried out by diagonalizing the ma-
trix in Eq. (41) numerica'lly with the Householder
method. As an approximate expression of the in-
finite matrix in Eq. (41), we used the 40 X40 ma-
trix in the present calculation, and obtained two

eigenvalues centered among 40 eigenvalues. Thus,
the results correspond to the tenth-order approxi-
mation with respect to &, in the perturbation theo-
ry. We estimated that the error in the present
calculation was less than 0.01 jp, using the fact
that the difference between the nth and (n —2)th
eigenvalues is w for any value of (d, .

Figure 4 shows the numerically calculated en-
ergies in the case where u11 =0, as a function of
+, or ~„while w, is varied from zero to Scan as
a parameter. There are of course, other energy
levels which behave in the same manner as those
in Fig. 4 but are centered at the vertical values
+1,+2, . . . . As seen in Fig. 4, the level crossings

at +0=2n —1become anticrossings when &, is in-
creased. The crossings at cg, =0 and co, =2n~ are
not, however, removed: They are only shifted to-
ward ~~=0. In the more precise calculation, we
confirmed that the value of +, /&u which the cross-
ing point at cu, = 2nco reached at co =0 coincided
with the sth root of J,(&u, /ur) =0, where J,(&u, /&g) is
the zeroth-order Bessel function.

Similar results for cases m1)
= v and +11=2m are

respectively shown in Figs. 5 and 6. From these
results, we see that the level crossing of the sec-
ond kind takes place if the condition ~(, =n(d is sat-
isfied, even for a large value of ~, for which the
lowest-order perturbation theory presented in the
preceding section is no longer valid. All of the
crossings of the second kind are shifted toward u&
=0 with a constant value of co11, as +, is increased.
We have found that the first crossing at co~=2&2
or +, =3+ in Fig. 5 enters +,=0 at the value of
e, /&u given by the first root of J,(+,/ru), and gen-
erally the nth crossing enters at the value of &u, /~
given by the nth root. Similarly, for (d)~

= 2', the
values of &u, /&u at which the crossings enter a&, =0
are given by the roots of J,(+,/+) =0. These facts
are closely related to previous works by Pegg and

Series, "and Yabuzaki et gl. ,
"who have shown that

the component of the atomic g factor perpendicular
to the direction of the rf field is modified by the
rf field, as shown in Eq (15), if t.he condition ~,

~

=n~ is satisfied. In the present calculation, we
were able to confirm that the gradient of the energy
level with respect to v, at (e~, =nv, +~=0) coin-
cided with ~Z„(&u,/v) within an error of about 10 '.

05 0
ENERGYI G)

1.0 . 1 0

0.5

-0.5

ENERGY/(d
Jl

0.5-
ENERGY/(A)

1.0-

2 10

-as-

0.5
4 Qg

G3

FIG. 4. Numerically calculated energies of the coupled
atom-rf-field system as a function of ~j, in the case

)1
0 f/~ is treated as a parameter.

0-

FIG. 5. Same as for Fig. 4, but with ~)1=co.
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IV. EXPERIMENTAL RESULTS AND

COMPARISON WlTH THEORY

In order to understand the existence of the level
crossing of the second kind when the condition &,

~

ENERGYI Q

0.5-
Qll~ 2+

As an example of the case of ~~, &n(d, we show in

Fig. 7 the energies of the coupled system in the
case of &(, =0.9&. This figure apparently indicates
that, if the condition w~, =n& is not satisfied, all
level crossings for w, =0 become anticrossings;
hence all multiphoton transitions are allowed.

It should be emphasized that, as seen in Figs. 5

and 6, the crossing of the second kind in the case
of (d, I

=m~ shifts along the line of ~~~ =na; i.e., the
value of ~

(~
at the crossing is not varied by the

amplitude of the rf field. The amount of the shift
of each level crossing calculated here is to be de-
scribed later in order to compare it with the ex-
perimental results.

Figure 8 represents the energy separation, as
a function of +,/&u, between anticrossing levels in
the case of (d~~ =neo. This energy separation is
equivalent to the coupling energy between the atom
and the rf field and is concerned with the probabili-
ty for the multiphoton transition by the relation of
Eq. (20). As seen in Fig. 8, the energy separation
at the anticrossing point which is mainly related to
the n-photon processes is approximately propor-
tional to aP, for a low value o$ &„as one might ex-
pect from Eqs. (21) and (36). Furthermore, we
see in Fig. 10 a saturation effect for a large value
Of (d1.

ENERGY'(I43 Qil=0. 9Q

05

FIG. 7. Same as for Fig. 4, but with co
~~

——0.9~.

=g~ is satisfied, and to study quantitatively the
shifts of the level crossing and anticrossing due to
the rf field, an optical-pumping experiment was
carried out with cesium vapor.

The directions of the static and rf fields are the
same as those in Fig. 1. The optical system in
the present experiment was a standard one, which
was comprised of the following apparatus: a light
source producing an intense collimated beam of
resonance radiation of cesium, a circular polariz-
er, an absorption cell containing cesium vapor to
be optically pumped, and a solar cell to monitor
the transmission of the light beam. The absorp-
tion cell was placed in two sets of Helmholtz coils
to produce the magnetic fields Ej), and 8 ~, and the
rf field was applied by an rf coil wound around the
absorption cell. The circularly polarized reso-
nRnce rRdlRtlon wRS Rppl)ed to the Rbsorptlon cell
in the direction of the z axis, i.e. , perpendicular
to the fields 8

~,
and H, (see Fig. l). The light

beam transmitted through the absorption cell was
di tected by a solar cell, and the dc component of
the output was amplified and displayed on an X-7
recorder, while II~ was swept from zero. In this
experimental arrangement, the multiphoton transi-
tion appears as an intensity change of the trans-
mitted light.

-0.5 ~

ENERGY/Q

0.5-

1.0

O

N

0,2nd 1,2nd
n4

0

FIG. 6. Same as for Fig. 4, but with a
~~
=2~.

FIG. 8. Energy separation between antierossing levels
as a function of ~&/~. The symbol u~~/~ =p, "1st" and
"2nd" represent the qth level antierossing for the ease
Gv

i)
=ply.
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Figure 9 shows a typical example of the recorder
traces, in which ll)p/(0 is varied as a parameter and

co, is kept constant. In Fig. S, V„which is propor-
tional to cu„represents the voltage applied to the
rf coil. In these recorder traces, we see that the
four-photon transition becomes forbidden if u&~/&u

=0 or &u,
, ~/&v =2, and the three-photon transition be-

comes forbidden if &u, ~/&u= l. These results might
be sufficient to show that level crossing of the sec-
ond kind takes place if the condition +~~ =n~ is sat-
isfied, just as predicted by our theory.

Figure 10 shows the recorder traces when ~~ is
varied and re~~ is set to u&, while V, (or &u, ) is varied
as a parameter. The resonances in these recorder
traces are due to two- and four-photon transitions,
and the resonance due to the three-photon transi-
tion cannot be seen for any value of &,. We see in
Fig. 10 that the resonance lines shift toward co~
=0 as cu, is increased. But we could not determine
the values of u, at which the anticrossing points
enter u, =0 because of the broadening of the reso-
nance lines. In the above experimental arrange-
ment, the level crossing cannot actually be ob-
served; hence its shifts by the rf field cannot be
obtained. However, if the circularly polarized
resonance radiation is applied along the direction
of H(( instead of along that of H~, we can observe a
resonance which is an interference phenomenon
between crossing energy levels. Such a resonance
has actually been observed by Tsukada et al."

A RB. '=0. 0 4'
UNrT &, lt 3& Vi=2volt

~
0.81

oa3 1
100 i

1.05

1.75

186

1.98

210
2.21

233

ARB.
UNIT

'3 2
43i
43

0

The shifts of the anticrossing obtained in the
present experiment and of the crossing obtained by
Tsukada et al. are shown in Figs. 11 and 12, for
the cases u(~ = co and I) =2(cp In these figures,
(A, n) and (C, n') represent the shifts of the nth an-
ticrossing point and the n'th crossing point, re-
spectively, and j, , represents the qth root of
Z~(~,/~) =0. The solid lines are the theoretical re-
sults obtained by numerical calculation in the pre-
ceding section. We see good agreement between

4.
As

Qx
4)

3
2Q

FIG. 10. Recorder traces showing multiphoton transi-
tions for the case cu

((
-—cu. The rf-field amplitude ~& (V&

in volts) is varied as a parameter. The resonances from
left to right are due to the four-photon and two-photon
transitions.

3 2 1

0 Q&

0 1 2 3 jg4 5 6 7jig 8

FIG. 9. Typical recorder traces showing the multi-
photon transitions. ~ ~)/~ is treated as a parameter;
V& represents the voltage applied to the rf coil and is
proportional to u&.

FIG. 11. Shifts of the nth anticrossing point Q, n) and
the n'th crossing point (C, n') in the case of ~

~~

—-~. En-
circled points are experimental results and solid lines
are theoretical ones.
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O (dt
0 1 '2 3 l 5 j2,l 6 7 sj229u

FIG. 12. Same as for Fig. 11, but with co
~~
=2~.

experimental results and the theory. The shifts
of crossing and anticrossing points when &~) =0 are
not shown here, but in this case too we obtained
good agreement between the experimental results
and the theory.

V. CONCLUSION

We have analyzed and numerically calculated the
energies of the coupled atom-rf-field system for
the case in which the oscillating rf field is oriented
in an arbitrary direction with respect to the direc-
tion of the static magnetic field and the rf field
amplitude is large. We have found that there ex-
ists a level crossing of the second kind when the
condition e(~ =n+ is satisfied, where n is an inte-

ger. At the level crossing each elementary pro-
cess of the multiphoton transition is allowed, but
the sum of the elementary processes becomes
forbidden. Furthermore, it has been found that,
as the amplitude of the rf field is increased, the
crossing of the second kind shifts toward (&u~, =nw,
a~ = 0) a,nd it does not shift toward (go = 0 or ((A)~~

=0, ~, =0). The value of ~, which the crossing
point reaches at the position (~,~=n~, ~, =0) is
determined by the root of Z„(e,/&u) =0. Consequent-
ly, it can be considered that the modification of
atomic g factor derived by Pegg and Series" and
Yabuzaki e$ gI,."is due to the shifts of the level
crossing of the second kind by the rf field.

The existence of the crossing of the second kind
has been verified by an optical-pumping experi-
ment with cesium vapor. The shifts of the level
crossing and anticrossing by the rf field have been
compared with the results of the present experi-
ment and of the experiment by Tsukada et al. ,

"
and good agreement has been found.

As we have treated a quite general case, the
results obtained here might be applicable to the
explanation of various phenomena associated with
the interaction between a spin--,' particle and an
oscillating rf field.
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