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The desirability of considering "dressed" rather than "bare" states of atoms in strong
electromagnetic fields has been noted by others. It is suggested here that such a treatment
is conveniently carried out by performing a unitary transformation of the Hamiltonian so
that the "dressed" states in the new basis are precisely the "bare" states of the usual basis.
A perturbative method for constructing such a transformation, closely related to a procedure
described by Heitler, is proposed. The method is applied through second order to a two-
level atom model, and it is verified that the transformation makes the dressed ground atomic
state stable, and the excited state unstable with the proper decay probability; furthermore,
the energies of the two states are renormalized by the correct amounts. The method is then
compared with the "nonperturbative" momentum-translation approximation, and shown to
contain already in first order the entire operator content of that approximation, but to yield
different transition probabilities. Fina1ly, the transformation method is applied through
second order to the standard scalar-field model and shown to produce the usual dressing
transformation, mass renormalization, and induced nucleon-nucleon potential of that model,
a result which tends to substantiate the hypothesis that the transformation produces the
correct dressed states of a physical system.

I. INTRODUCTION

The availability of lasers of steadily increasing
power has led, for both fundamental and practical
reasons, to much interestinthe study of atoms and
molecules in intense electromagnetic fieMs. ' "The-
oretical considerations of this problem have taken
the form both of evaluation of higher-order terms
in perturbation theory"'" """and attempts
to develop nonperturbative approximation tech-
niques. "'"'" ""Calculations have been car-
ried out both in semiclassical' ' ' '
and full quantum-electrodynamica12"""'" mod-
els. One feature common to the majo1. ity of these
studies, though, is that they attempt to calculate
by some method or other the transition probabil-
ities induced by the electromagnetic interaction
between those states of the atom which are deter-
mined in the absence of the interaction.

However, it is well known from experience with
quantum field theories that interactions between
fields serve not only to 1nduee trans1t1ons but also
to alter the properties of particles of each field,
even in the absence of particles of any of the other
fields —e.g., in quantum electrodynamics renor-
malizations of the electron's mass and gyromag-
netic ratio occur even in the absence of "physical"
(cf. below} photons. " Furthermore, the state rep-
resenting a "physical" electron —i.e., the electron
as actually observed in the laboratory —can be
thought of within the context of a perturbation-the-
ory calculation as consisting of the "bare" elec-
tron, obtained in the theory of the noninteracting

electron field, "dressed" by a cloud of virtual par-
ticles consisting of both "bare" photons and "bare"
electron-positron pairs.

In the same way, an atom described by a Schro-
dinger equation containing interparticle potentisls
is a bare atom which, when it interacts with the
electromagnetic field, is dressed by that field.
Only-states of the dressed atom are observabl,
and therefore calculations of transition probabil-
ities should properly be made for dressed-atom
states rather than bare-atom states. The desir-
ability of formulating the theory in terms of
dressed- rather than bare-atom states has been
urged even for weak-field situat1ons. ' lt seems
reasonable to suppose that use of the dressed-
rather than bare-atom states becomes increasingly
important for the case of an atom interacting with
increasingly strong electromagnetic fieMs. ""

A major problem in carrying out such a formula-
tion is the difficulty of properly identifying the
dressed states of the system. This is a nontrivial
matter even for the states of the dressed atom in
the absence of any photons, and it becomes more
challenging still for the ease of a dressed atom in
a strong electromagnetic (photon} field. A large
part of the difficulty could be eliminated by simply
transforming the Hamiltonian for the interacting
atom and electromagnetic field to a new basis in
such a way that the bare states of the old (usual}
basis become the dressed states of the new basis.
Identification of the physical states of the system
then becomes a straightforward matter, and the
computational problem is primarily that of deter-
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mining the transformed Hamiltonian.
An explicit perturbative procedure for calculating

the required unitary transformation and the trans-
formed Hamiltonian, closely related to one previ-
ously described by Heitler, "is proposed here.
The basic idea. motivating the particular choice
given for the unitary transformation is that it maps
the eigenstates of the total Hamiltonian onto the
eigenstates of the noninteracting Hamiltonian in a
natural way so that in the new basis the ground-
atomic-state vector of the transformed Hamiltonian
is precisely the bare-ground-state vector of the
original basis. Because of the "naturalness" of the
transformation, it is then conjectured that in the
transformed basis the excited states of the physical
dressed atom and the states of the dressed atom
with physical" photons present are also repre-
sented by the appropriate bare-state vectors of the
original basis. Some support for this conjecture
is obtained by applying the described procedure
through second order to a model consisting of a
two-level atom interacting with a denumerable dis-
crete set of photon modes, with both rotating and
counter-rotating terms present in each mode, 'and

with one. mode resonant with the (bare) atomic-
transition frequency. It is found that the hypothesis
that the dressed-state vectors for the transformed
basis are the bare-state vectors of the original
basis leads to the following conclusions:

(i) In the absence of photons the ground state is
stable, and the excited state is unstable with the
expected decay rate.

(ii) Both states undergo the expected energy re-
normalizations in second order.

(iii) Both states experience second-order energy
shifts (in opposite directions) in the presence of an
electromagnetic field, the shift due to a. particular
mode being proportional to the number of photons
present in that mode.

Conclusions (i) and (ii) indicate that in the trans-
formed basis the physical atomic states are cor-
rectly represented by the bare-state vectors, at
least through second order in the interaction.

A description of the procedure for calculating
the unitary transformation of the Hamiltonian and
a comparison with Heitler's method are given in
See. II, and application of the procedure to a two-
level atom is given in Sec. III. The paper con-
cludes with a discussion section in which the meth-
od described here is compared with another well-
known technique of atomic physics and is also ap-
plied to a standard particle-theory model. t

II. UNITARY TRANSFORMATION

Let Hp be the Hamiltonian for the noninteraeting
atom and electromagnetic field, and A, H~ the in-

teraction Hamiltonian. The total Hamiltonian H

is then given by

H=Hp+ AH~.

Assume (by putting the system in a box if neces-
sary, with an appropriate limit to be taken later)
that both H and Hp have purely discrete spectra,
with

H In& =e, In&.

Let In&&'l be an orthonormal enumeration of the
eigenstates of Hp chosen so that,

In& = In)"',
X~p

and define the unitary transformation U by

(2)

UH U 'I n&&'& =e-„In&&'&,

so that UHU ' and Hp commute. Put

UHU =H +D,

(4)

(5)

[H„D]=o,
lim U= I (identity),
X.~ p

lim a=0.
X.~ p

We attempt a perturbative solution of Eqs.
(5)-(8}by assuming"

(8)

(I)

(8)

with

[H„D„]=o,

with

K= P X"K„=K'. (12}
n=1

Substituting these expressions into Eq. (5), ex-
panding the exponentials, and equating coefficients
of like powers of X (which hereafter will be set
equal to 1) on the two sides of the equation leads
to the infinite set of equations,

D, = i[K„H,]+H„
D2 = i [K2, Ho] + (i /2! )[K~, [K~, Ho] ] +i [K„H&],

(13}

(14}

(If H, has degenerate eigenvalues Uis not uniquely
defined by these requirements. %e shall later
make it unique by a requirement of "simplicity. ")
Equations (2) and (3) imply



1948 C. ALTON COULTER 10

D = i[K, H ] + (i /2! )[K„[K,H ) ]
+ (i '/2! )[K„[K„H,] ]

+ (i''/3! )[K„[K„[K„H,] ]]+i[K„H,]
+ (i '/2! )[K„[K„H,] ], (15)

D. = g —,P "' g IK&, [ . , [K&,H.) ")]
m=1 jl jpN

( j + ~ ~ ~ +j =f1)m

m=1 Jl j
(j + ~ ~ ~ +j =f1 g)Bl

Equation (13) is now to be used for the simulta-
neous determination of D, and K„Eq. (14) for the
simultaneous determination of D, and K,, etc.
These determinations will be made as follows. By
Eq. (10), D, must commute with Ho. By an earlier
assumption, H~ can be expressed as a discrete
sum of products of creation and annihilation oper-
ators, or as a discrete sum of products of creation
and annihilation operators and of atomic-state
raising and lowering operators, for the two com-
ponents of the system. The sum of those terms in
HI which individually commute with Ho will con-
stitute D„ the remainder of the terms in HI must
be canceled by the commutator i[K„H,), and K,
will be chosen to be the simplest operator for
which the commutator can produce the desired
cancellation. In practice this means K, will be i
times the sum of the noncommuting terms for HI,
with an appropriate energy denominator inserted
in each term. With this choice for K„ the second
and third terms on the right-hand side of the ex-
pression for D, are determined. D, is now taken
to be the part of these two terms which commutes
with H„and K, to be the simplest operator such
that i[K„H,] cancels the remainder —i.e., K, is i
times the noncommuting part of (i '/2! )[K„[K„H,] ]
+i[K„H~], with an appropriate energy denominator
inserted in each term. The process is continued
to higher-order equations in the obvious way. It is
easy to see that this construction process automat-
ically makes each K„Hermitian.

Note that a procedure has been introduced for
eliminating the ambiguity in the definition of Uby
making the most obvious —and the "minimal"—
choice for K„ in each order of perturbation
theory. An additional point in the definition of the
transformation which should be considered is the
indicated manner of initially dividing the total

D(t) = U '(t)HI(t)U(t) —i U (i)U(t),

where, as usual,

H (t) eiHotH c-iHot

(5' )

and where the dot above the last U(t) indicates
time differentiation. D(t) is to satisfy the require-
ment that it commute with Ho and U(t) the require-
ment that it have no nonzero matrix elements be-
tween degenerate eigenstates of H, except those

Hamiltonian into H, and HI, a matter obviously in-
fluencing the form of the final result. It is as-
sumed here that electromagnetic interactions are
treated in the Coulomb gauge, a gauge having the
best group-theoretical basis ' and the fewest math-
ematical anomalies (indefinite Hilbert-space met-
ric, etc. ). In the Coulomb gauge the electromag-
netic interaction is composed of two parts, an
instantaneous Coulomb interaction between the
charge densities of the charged fields in question
and an interaction of the transverse part of the
current vector of each charged field with the trans-
verse electromagnetic field. The kinetic energy
(including free electromagnetic field energy) and
Coulomb interaction parts of the total Hamiltonian
comprise an operator which is mathematically
reasonably well defined and which leads to no
dressing phenomena in the normal sense; this
part of the Hamiltonian is chosen as Ho. The
transverse-current-transverse-electromagnetic-
field part of the Hamiltonian, however, leads to
dressing phenomena and to such well-known patho-
logical behavior as divergences, the necessity for
scaling coupling constants in the infinite-volume
limit, etc. ; this part of the Hamiltonian is chosen
as HI, More generally, one can say that H, con-
sists of those terms of the Hamiltonian describing
kinetic energies of, and instantaneous potential in-
teractions between, fields, while HI consists of
those terms containing direct field-field interac-
tions described in coordinate space by expressions
involving products of three or more field operators
evaluated at the same space-time point. This pre-
scription is adequate to determine H, and HI for
most theories of current interest, and will be seen
to lead to reasonable results —at least through
second order —in the two examples treated here.

Heitler" has described a canonical transforma-
tion whose purpose is identical to that o'f the trans-
formation given above, to obtain a new Hamiltonian
which generates the dynamics of the dressed par-
ticles of the system. His description is formulated
in the interaction picture, and in terms of our no-
tation can be stated as follows: A time-dependent
unitary operator U(t) and a time-dependent Hermi-
tian operator D(t) are to be determined by the
equation
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"diagonal with respect to all variables" —i.e., con-
necting a given eigenstate of H, to itself. It is as-
sumed that if these conditions are satisfied then
D(t) will be the operator generating the interac-
tion-picture time development of the dressed phys-
ical states.

To obtain a solution of Eq. (5') Heitler expands
D(t) and U(t) in perturbation series,

U=1+ g A. "U„. (11' )

Since U(t) itself rather than an exponentiated anti-
Hermitian operator (as in the transformation pre-
sented here) is being expanded, unitarity is no

longer automatic, and therefore a set of subsidiary
conditions

U, + U~ =0,

U +U~=U2
2 2

U +U~=U, U +U U, —U, ,

(12' )

must be added to the above perturbation expansion
of U(f) to insure unitarity. When Eqs. (9') and

{11') are substituted into Eq. (5' ) and coefficients
of like powers of A, set equal to zero, one obtains
the infinite sequence of equations

D, (t) = H~(t) —i U, (t), (15' )

D, (f) = H~{f)U, (t) —U, (f)D, (f) —i U (t}, (14' )

D, (f) = H, (f) U, (f) —U, (t)D, (t}—U, (t}D,(t) —i U, (t),

(15' )

According to Heitler, these equations are to be
solved for the U„(t) and D„(t), subject to the above-
stated restrictions [the D„(t) commute with H„ the

U„(t) satisfy the unitarity conditions (12') and have

no nonzero matrix elements between degenerate
eigenstates except those diagonal in all

variables]�.

It is obvious that Heitler's transformation is
very close in both intent and effect to the transfor-
mation described here. However, Heitler's pre-
scription for the unique determination of the

U„—that they have no nonvanishing matrix elements
between degenerate eigenstates of 8, except those
diagonal ln all variables —cannot be applied ln gen-
eral because it is inconsistent with the unitarity
conditions (12') in many cases of interest For .ex-
ample, if two distinct degenerate eigenstates of
H, are both connected via II, to one or more 0,
eigenstates with which they are nondegenerate, as
in the case of a hydrogen atom interacting with the
electromagnetic field, then it is seen that U2 will

in general have a nonzero matrix element between
these two distinct degenerate eigenstates; and by
the second of the unitarity conditions (12'), U,
must also have such a nonzero matrix element.
This is contrary to Heitler's condition for the de-
termination of U, . (For comparison it should be
observed that the method described here for con-
structing the K„ insures that K will have no non-
zero matrix elements between distinct degenerate
eigenstates of H, but makes no assertions about
Uin this regard. )

If one were to alter Heitler's criterion for the
determination of the U„by requiring that they have
no nonzero matrix elements between distinct de-
generate eigenstates of H, except those required
by unitarity, his transformation definition would

become self-consistent in general and probably
equivalent to the one given here. Since the crite-
rion in this form is awkward, and the unitarity
conditions in any ease a nuisance, we shall avoid
these problems altogether by utilizing the trans-
formation as described in Eqs. (9)-(16)and the
discussion immediately following. %e shall end
our consideration of Heitler's method with two
final comments regarding the relationship between
his treatment and the present one: (i) Heitler
states that when the Hamiltonian contains a Cou-
lomb interaction term then this term should be a
part of HI, while it has been argued here that such
a term induces no dressing phenomena and is
properly a part of II,. Apart from the question of
principle involved there is also a somewhat prac-
tical matter here, for Heitler's procedure would

necessitate the description of all physical states,
including bound atomic states, in terms of kinet-
ic-energy eigenstates —an inconvenient procedure
whose physical significance is not clear. (ii)
Heitler makes no application of his method (though

he states the desirability of doing so) to the case
of principal interest here, the interaction of an
atom with the electromagnetic field.

%e now turn our attention to this case of in-
terest.

nI. APPLICATION TO A TWO-LEVEL ATOM

The two-level atom has been a popular model
for use in testing various ealeulational techniques"
because its simplicity eliminates both the tedious-
ness of calculation and the complexity of inter-
pretation of results encountered in more realistic
models. A two-level atom is (for obvious reasons)
conveniently described by using a set of three op-
erators R~, B, having angular momentum commu-
tation relations

[R„R ]= 2„R[ „RR~]=+ ~R,
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with the requirement that R, have eigenvalues a .
In terms of these operators and a set of creation
and annihilation operators uk~ and ak for the photon
modes, one may write the Hamiltonian to be stud-
ied as

H=to R + g &u ata + g g (a +at)(R +R, ),
k k

(18)

where ~0 is the bare-atom transition energy and
the &uo are the bare-photon energies (5=1). It will
be assumed that one photon mode, the lth, has a
bare energy equal to the bare-atom transition en-
ergy,

QPt = (00.

The third term on the right in (18) arises from a
product of three field operators evaluated at the
same space-time point and is, of course, H~.
Note that it contains counter-rotating wave terms
for all modes. Note also that the dipole approxi-
mation is not used in (18). It is a straightforward

matter to verify that in realistic situations, such
as bound-bound transitions in hydrogen, one has

(20)

provided the mode coupling constants are calcu-
lated exactly rather than in the dipole approxima-
tion; the validity of (20) will thus also be assumed
in the present calculation. The existence of two
polarization states for the photon has been ignored,
since it adds nothing of interest to the calculation
for this simple model.

We shall now use the method described in Sec.
II to calculate K„D„E2, and D, . The determina-
tion of Dy is obvious, since precisely two terms
in H, commute with H„:

D, =g, (R+a, +R a,). (21)

Then by inserting appropriate energy denominators
in the remainder of the terms in HI and multiplying
by i one obtains

K, =i g ' (a~R, —a~~R )+i g ~ (aoR —aJR, ).
~k —~0 (Ok+ 600

From the explicit form (22) for K, one now calculates

i'
—,[K„[K„H,]]+i[K„Hz]=2R, P ~ ' (a„"a,+atza, )+ P ~ ' (a~tatz+a~az)

(22)

0 k k~t j 0 k

k j~t 0 k k j 0+ k

(dk —4P0 (dk + 4)0

According to the prescription of Sec. II, the sum of the terms commuting with H, makes up D,:
2 2 2 2

k~t (dk 47
k

(dk+CO k (dk CO
k

CO +Co
(24)

and the remaining terms in (23) when multiplied by i and supplied with appropriate energy denominators
become E2:

(25)

K, =R, i+ ( }( } (a„a, —a, a~)+z g (a~ z
—a, a, )

Ek't

k~t k 0 k k

y ~z z &g (zoo ~o)(&a zoy)
q z

. (zoz —~o)(~p+ ~g)

The important quantity for dynamics is the Hamiltonian H' =H, +D in the new basis, which to second or-
der is now seen to be

2 2
H'=H, +D, +D, =&u,R, + g &u~aJa~+g, (R,a, +R a, }— g ' R, R — g ' R R,

(dk —4)0 (a)k+ CO

2 2

3 ~ ~ k k ~ + ~ k k

(26}
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g 2 ga2Q'+ =—
(dp —COp EtPI + (00 y P P

(28)

have been introduced. The energy spread in
~
2)

is then

&E= [4g2g+ ( —n, + a +g', /2(uo)']'~'.

In addition, one notes that D, contains a term
yielding the known result '" that the ground- and
excited-state energies of the physical atom are
shifted (in this case in opposite directions) by the
presence of an electromagnetic field, with the part
of the shift due to a given mode of the field being
proportional to the number of photons present in
that mode. It is the existence of such terms that

suggests the importance of considering dx essed
rather than bare states in the case of atoms in

relatively strong electromagnetic fields. This

According to the ideas of Sec. II, the bare states
of the original basis will be assumed to represent
the dressed states of the new basis, and their
time evolution will be governed (to second order)
by (26). Let

~
1) and

~
2) denote the product of the

bare-atom ground and excited states with the pho-
ton vacuum in the original basis. Then

I 1), I 2), &3 I 1),a,' ) 2), . . . , should represent the

physical ground atomic state, excited atomic
state, ground atomic state with one photon present
in mode k, excited atomic state with one photon
present in mode k, . . . , in the basis in which II' is
the Hamiltonian. Let us note the reasonableness
of this interpretation by observing the following
points:

(a) ~
1) is stable under H', with no "virtual"

non-energy-conserving transitions induced. How-

ever,
~
2) is unstable, as one would expect, with

a nonzero probability of decaying to s~t
( 1). The

transition matrix element between
~
2) and at,

~
1)

is g&, to second order. This agrees with the low-
est-order transition matrix element ( 1 ( a,HI ~

2)
of the usual theory.

(b) Under H' the ground atomic state
~
1) has an

energy shifted from the bare-atom value by the
amount -Q, g', /(~~+ &a,), and the excited atomic
state has its energy shifted from the bare-atom
value by the amount -Q~„&g~/(v~ —&uo). These
energy renormalizations are of a well-known

form, "but are here finite [by (2O)] because thedi-
pole approximation has not been used. In addition,
the excited state

~
2) has an energy "spread" due

to its instability; it is, in fact, a linear combina-
tion of two eigenstates of 0' having energies

E~ = 2((do+ Q~+(X -g ( /2&do)

k [g g + g ( —cp p + Q +g ) /2 (Oo) ]

where for convenience the abbreviations

term is also responsible for the qualification

( "moderately strong") on field strength in the title
of this paper, since when the number of photons
present in the field is sufficiently great this "sec-
ond-order" energy shift can become large; in this
ease higher-order eorreetions to H', which have
not been explicitly calculated here for this model,
are required for an accurate description of the
problem.

The implications of (26) discussed under points
(a) and (b) above tend to justify the supposition
that under the transformation described in Sec. II
the Hamiltonian is transformed to a new basis in
which the physical atomic states —with or without
photons present —are properly represented by the
bare states of the original basis, at least through
second order. The possibility that this might be
true for higher orders as well remains a question
for future investigations, both theoretical and ex-
perimental.

In concluding the discussion of this model, two
additional comments need to be made. The first
is that the absence of two-photon-creation and two-
photon-annihilation terms in D, is a peculiarity of
the two-level-atom model used; such terms are
present in the case of a general atom, to be dis-
cussed in a later paper. The second comment is
that Hamiltonians of the form (18) are frequently
used to describe a system of identical two-level
atoms, " in which case 8, has eigenvalues
—J, —J+1, . . . , J for some integer or half integer
J& ~. For this case D„K„and D, retain exactly
the forms given here, but E, acquires additional
terms containing the operators 8', and H' (which

are zero for the case of a single two-level atom).

IV. DISCUSSION

The method described in Sec. II is perturbative
in nature, and consequently suffers from the usual
shortcomings of perturbation expansions —primar-
ily the difficulty of calculating higher-order terms.
Considerable work has been devoted recently to
calculations of transition rates of atoms in intense
electromagnetic fields by, so-called "nonperturba-
tive" approximations, and partieulax ly by use of
the "momentum-translation approximation" (whose
validity has, however, recently been ques-
tioned —see below). ' "'"'"'" It is therefore of
some interest to compare the method described
here with the momentum-translation approxima-
tion, to which one may expect it to be somewhat
related because both deal with unitary transforma-
tions (but in opposite directions) between the
states of Hp and H.

The momentum-translation approximation ap-
pears in both semiclassical (external electromag-
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netic field' ")and quantum-mechanical (quantized
electromagnetic field" ) versions, and in both cases
is usually concerned with an electromagnetic wave
of a single nonresonant frequency interacting with
the atom. In fact, a criterion usually stated for
the validity of the method6" is

fd/(0O ((1,
where co is the electromagnetic field frequency and

a&, a typical atomic transition frequency. A com-
parison between the present method and the semi-
classical version of the momentum-translation
approximation will be given here. The comparison
with the quantum-mechanical version is easily
carried out and leads to similar conclusions.

Suppose, then, that the system to be considered
consists of an atom with bare Hamiltonian H, with
eigenstates I i&,

H, li&=E, li&,

and that the interaction Hamiltonian is (g= c = 1)

H, =-(e/m)A p, (33)

where A is the vector potential for an external
electromagnetic field in the Coulomb-Lorentz
gauge (A, =O, V A=O). One can then formally ap-
ply the methods of Sec. II to calculate

~ I

.) (i I [- (e/m )A .p] I j &
&

.
I

f f

(~, »,)

D, =g.g I && I[-(e/ )A p]l j&&jl. (34)
4, j

(g. -g )

One follows the standard technique of replacing
(i/m)p in (33) by [x, Ho] to obtain

A;=-e Q Q li&&~lx'Alj)(j I

f,j

~ ~ I.&(il[g, A] xl j&&.
l ( )

C~; »,)

Now one of the basic assumptions of the momen-
tum-translation approximation is precisely that
the coefficients in the second summation in (35)
can be neglected compared to those in the first
summation. "A second basic assumption of the
usual form of the approximation, implicit both in
the inequality (30) and in all applications of the
method, is that matrix elements of III between
eigenstates of Ho with the same energy are negli-
gible. Et follows that to the accuracy appropriate
to the momentum-translation approximation

(36)

(37)K, =-ex A,

and therefore the transformation U~ from the
eigenstates of Ho to those of H is, to lowest order
in the interaction,

pf -kg~ Sex A (38)

The right-hand side of (38) is precisely the unitary
transformation of the momentum-translation ap-
proximation, and (36) shows that in the limit in
which this transformation is valid the correction

between these dressed states are then induced only
by the D„(to which, howeverK, , contributes for
n ~ 3). Transition probabilities calculated by the
two methods mill therefore bear little resemblance
to each other in general.

One is thus led by this comparison to two inter-
esting conclusions about the momentum-translation
approximation: (i) Far from being "nonperturba-
tive, " it can in fact be thought of (though not
originally derived this way) as a rather restrictive
case of a first-order perturbation result, and (ii)
the "transition matrix elements" calculated in this
approximation may have little relation to multi-
photon atomic transition probabilities as observed
in the laboratory. " Correspondingly, it seems
possible that it is not necessary to be overly
apologetic concerning the perturbative nature of
the method of Sec. II of the present paper.

It should be commented that application of the
method of Sec. II through second order to a real-
istic Hamiltonian for a three-dimensional atom or
molecule is straightforward and has been carried
out, though the results naturally are of a much
more complex form than those for the two-level
atom treated in See. III. The calculation for this
general ease mill be presented in a subsequent
paper.

Finally, the obvious remark will be made that
the method of See, II is applicable to a much wider
array of quantum systems than just that of an atom
or molecule interacti. ng with the electromagnetic

to the Hamiltonian of corresponding order, D„ is
negligible. Thus, from a formal standpoint, the
lowest-order terms obtained by the method of Sec.
II already encompass the entirety of the usual op-
erator structure of the momentum-translation ap-
proximation.

However, from the standpoint of physical inter-
pretation the techniques and predictions of the mo-
mentum-translation approximation and those of
Sec. II are quite different. According to the view-
point adopted in the momentum translation approx-
imation, e ' ~ generates transition probabilities
(between states of the bare atom) whose calculation
is the primary goal of the method. According to
the viewpoint adopted in this paper, e' j serves
only to dress the states of the atom"; transitions
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field; it can be used in any problem involving the interaction of two or more quantum fields. For instance,
for the well-known scalar-field model'4 with

Ho=~0 dpi' pg p + dkm ka~ ka k,

& =, .~. f ~5 f~ -l,i, s'(P+k)4(5)I (k) '(-k)j,

and the standard (anti) commutation relations for the fields, one obtains by the methods of Sec. lf

D, =O,

&, =
2, ...

fdic

f, . „- „,0'(i+kN(i)[~(k)-~'(-K)l,

&k If (k') I' „-~t(-)~(-)
(2w)' 2(u'(lt)

dk k'
+

2 ~ d5 di J 2
- 0'(i'RN'ti)0(5)0(i R).

(39)

(40)

(41)

(42)

(42)

One immediately sees that e ' i is the dressing
operator, "' the first term in D2 the mass-renor-
malization operator, and the second term in D,
the induced nucleon-nucleon potential term of the
"canonical" scalar-field theory. These results
suggest the possibility that the method of Sec. II
may lead to the correct formulation of the dynam-
ics of the physical dressed states for a variety of
physical system.
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