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Fluorescence correlation spectroscopy is a promising technique for the study of chemical kinetics and
diffusion processes in small, well-defined sample volumes. Laser-induced fluorescence is used as a
specific highly sensitive probe of concentration, permitting the analysis of the characteristic time
dependence of spontaneous concentration fluctuations. We present here a quantitative analysis of the
statistical and systematic errors inherent in such an experiment. Theoretical expressions are derived for
the signal-to-noise ratio for various operational definitions of the photocount correlation signal. It is
shown that the critical parameter governing the statistical accuracy of the experiment is not the total
number of photocounts per correlation time, but (when background fluorescence is negligible) the
photocounts per correlation time, per fluorescent molecule, a parameter independent of the number of
fluorescent molecules in the sample volume. Comparisons are made with parallel results for laser-light

scattering experiments derived by other authors. Finally, we consider the effects of background
fluorescence, photolysis, and other deviations from ideality.

I. INTRODUCTION
Fluorescence correlation spectroscopy (FCS)! ™2
shows great promise as a tool for the study of
chemical kinetics and iz situ diffusion processes.
It is one of a general class of proposed concentra-
tion correlation spectroscopy techniques.? The
common basis of these techniques is the use of
specific physical probes as continuous monitors
of the concentrations of specific chemical com-
ponents in small well-defined sample volumes.
Autocorrelation functions of the monitor signals
are used to characterize the time dependence of
spontaneous fluctuations of the number of mole-
cules in the sample volume. An effective concen-
tration monitor should be specific and highly sensi-
tive. Fluorescence scores high in both regards and
was used by Magde, Elson, and Webb''? to study
the thermodynamic fluctuations about equilibrium,
due to chemical reaction and diffusion, in solu-
tions of ethidium bromide and DNA. FCS has also
been applied to studies of membrane structure,?
via measurements of diffusion coefficients of fluo-
rescent probes incorporated into lipid bilayer
membranes. Molecular number fluctuations can
also be studied by Rayleigh light scattering,®~8
resonance Raman scattering, and with monitors
of such properties as conductivity® and optical ab-
sorption and rotation.

In the typical FCS experiment, a small sample
volume is illuminated with cw laser radiation.
This can be a closed volume, perhaps a single
living cell, or an open volume, defined, in part,
by the laser beam itself. After appropriate optical
filtering to eliminate incident laser light, the emit-
ted fluorescence is detected by a photomultiplier
tube, and analyzed with an analog photocurrent or
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digital photocount correlator.

The instantaneous fluorescence is a chaotic
Gaussian field. The power spectrum is sufficiently
broad, however, (Aw ~10'* sec™!), that field cor-
relations persist only over immeasurably short
times (~107'* sec). Thus, for a fixed concentration
of fluorescent molecules, the fluorescence intensity
integrated over any practical measuring interval is
constant and directly proportional to that concen-
tration. While there are no spatial field correla-
tions, the fluorescence intensity, due to the nature
of the number fluctuation phenomenon itself, is co-
herent over the full 47 sr of emission. Thus the
well-designed FCS experiment collects the fluores-
cence over as large a solid angle as possible. Fig-
ure 1 reproduces the schematic of the optical ap-
paratus of the pioneering FCS experiment of
Magde, Elson, and Webb.?

FCS experiments are difficult in practice, be-
cause the fluorescence fluctuations are small rel-
ative to the average intensity. To achieve adequate
signal-to-noise ratios, Magde, Elson, and Webb'?
needed data integration times of many hours. It is
the purpose of this paper to calculate theoretical
expressions for the photocount correlation signal-
to-noise ratio for the fluorescence experiment,
and, in so doing, gain further insight into the pro-
cesses involved and develop general guidelines for
the achievement of optimal experimental results.
We will thus be able to see the manner in which
such related parameters as laser intensity, beam
diameter, sample volume, concentration of mole-
cules, number of molecules, and fluorescence pho-
ton counting rate affect the statistical accuracy of
the experiment. In the appropriate limits (see Sec.
OIC), it is expected that the results of this paper
can be applied to other types of number fluctuation
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FIG. 1. Schematic of the optical apparatus for an FCS
experiment, reproduced from Ref. 3. The symbols are:
F, colored filter; SF, spatial filter; L, lens; MON,
laser intensity monitor; PM, photomultiplier. The
sample cell and the parabolic fluorescence-collecting
mirror are also shown.

experiments as well.

Comparisons are made with parallel results,
derived elsewhere,’®"!* for the optical fields of
laser light-scattering experiments. In these light-
scattering experiments, the intensity fluctuations
are not due to number fluctuations, but arise as
a result of fluctuations in the relative phases, at
the detector, of the light from different scattering
centers.

II. DEFINITIONS

The most efficient way to characterize the time
dependence of optical intensity fluctuations is with
digital photocount autocorrelation. We will re-
strict ourselves to “full” or “unclipped” correla-
tion in which one determines experimental esti-
mates of the twofold correlation function,

G(7) = @0)n(7). )

Here n(t) is the number of detected photons or
photocounts in a counting interval centered at time
¢ and the angular brackets indicate an ensemble or
infinite-run time average. A “signal,” in this ex-
periment, is appropriately defined as the correla-
tion level above the accidental correlation back-
ground,

S(1)=G(7) = (n)?; )
and the signal-to-noise ratio has the form
S/N= S(T)/{var[§(7)]}‘/2, 3)

where S$(7) is the experimental estimate of S(7) and
var[3(7)] is its variance.

An experiment consists of a series of N consecu-
tive counting intervals of period T. We assume
throughout that T is adjusted to be much less than
the correlation time. The jth interval centered at
jT is characterized by the number of photocounts
n(jT). With such a counting scheme, one can com-
pute the experimental estimates of G(7),

N
GmT)=N" 3" nGTInGT +mT), (4)

i=1

for a series of different delay times, {mT}, simul-
taneously. There are several possible operational
definitions of S(7). We consider three below:

i) $DmT)=6mT) -6MT). (5)

We choose here a value of M >m so that G(MT)
~(n)?. At the same time, we require N > M.

(i) S49mT)=GimT) - @), (6)
where
N
A=N"? Z n@iT) (7

i=1

is the experimental estimate of (n).
(iii) SYDmT)=GnT) - (n)?. (8)

The variance of the form (i) is a good measure
of the relative scatter of different points on the
measured correlation function. More than any
other, this form tells us how good the data “look.”
Form (ii) requires the auxiliary measurement of
the quantity #. This gives, as we shall see, a de-
crease in the signal variance. One can measure 7,
not (n), but form (iii) is included for the purpose of
discussion. One might think that, given the exact
value of (n), form (iii) would give the best results.
This is not the case, however. For the intensity
statistics we consider below, the variance of
§4iD(mT) can be several orders of magnitude lar-
ger than those of $¥(m T) and $4D(nT).

III. CALCULATING SIGNAL VARIANCE

There are three basic steps in the calculation of
var[S(mT)]. First, var[S(mT)] is written in terms
of photocount correlation functions. Next, the pho-
tocount correlation functions are written in terms
of correlation functions of the detected light inten-
sity. These procedures are considered below in a
fashion similar to the treatment of Ref. 11. Final-
ly, these intensity correlation functions are evalu-
ated for the particular field statistics of interest.

A. Photocount correlation functions

For each of the three definitions of S(m7T), a
stochastic variable x(f) can be defined to transform
the variance to the form

var[S(mT)] =var(N'1 ZN: x (iT)) . (9)

i=1

Thus we have!® -
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var[S(mT)]=N"? Z (x(iT)x(jT))-N‘z( > (x(iT)))z
i.j i

N var[x 42N 3 [0)x(eT)) - (o]
x[1-EN"']. (10)

For forms (i) and (iii), we have directly

var[§D(mT)]= var(N'1 i n(GT)GT +mT)

i=1

—n(z‘T+MT)]>, 1)
so that
xDET)=nGT)RGT +mT) -n(GT + MT)]; (12)
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and

var[g(iii)(mT)] =var[é(mT)], (13)
so that

KD T) =nGTmGET +mT). (14)

For form (ii), keeping terms to first order in
(n)-1,

var[$4Dm T)] = var[G(mT) - 2(n)2], (15)
so that
KDET) =n(ET)[n(ET +mT) - 2(n)]. (16)

Thus, for example, combining Egs. (10) and (12),
we get

var[$D(m T)] =N~ {(n2(0m2(m T)) + (n*(Om*MT)) - 2(n?0)n (m T)n (MT)) - [(n(O)n(m T)) ~ O

+ON-! }il {mOm(m T (kT (T +mT)) + (n Q) (MT)n(ET)n (kT + MT))
- (O (m T (kT (kT +MT)) = (n(On(MT)n(kT)n (kT +mT)) - [(n(On(n T)) - (n)?}},

where we have taken N to be sufficiently large that
the end effects (expressed in the factor [1 - ZN"'])
are negligible.

B. Intensity correlation functions

The development up to this point has been suffi -
ciently general that it holds for any periodically
sampled stationary random variable. We must now
relate the photocount autocorrelation functions of
the above expressions to the correlation functions
of I(f), the detected light intensity integrated in
space and time over the counting interval centered
at time . We can do this by using the fact that the
factorial moments of =,

Fn)=nl/a-1)1, (18)
are proportional to the ordinary moments of I,
Fi()=<1") 19)

(see Ref. 16, for example), where, for simplicity
and without loss of generality, we have set the
proportionality constant to unity. Thus, for ex-
ample,

GmT)=(nOn(mT))=(10)(mT)), (20)

(n(0)[n(0) ~1]n(m T)[n(mnT) -1]) = A*(0)[*(mT)),
(21)
(n(0)[n(0) = 1]n(mT)) = (1*(0)I(mT)), (22)

so that

am

(n*(Om*(mT)) = (I*(0)1*(mT)) +(1*(0)(m.T))
+{I0)I3(mT)) +I0)(mT)). (23)
Similarly,
nOmmTIn(RT (kT +mT))
= (I0)(mT)I(RT)I(ET +mT))
+6,, ,(IO)(mT)I2mT)). (24)

C. Fluorescence intensity statistics

For a large number of fluorescent molecules, as
a direct consequence of the central limit theorem,

81(¢)=1(t) - (1) (25)
is a real Gaussian variable. Defining

A1) =(81(0)81(1))/((8I)?%), (26)
we have

1Oy =(I°[1 + B (D], @7

S(7) = (n)*Bf (1), (28)
where

B=((81)*)/(1) (29)

is the normalized variance of I. For an open sam-
ple volume defined within a much larger total vol-
ume, it is clear that®'®

B=3"", (30)

where J is the average number of fluorescent
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molecules in the sample volume (e.g., within the
1/¢€? points of the Gaussian intensity profile of a
focused laser beam). For an evenly illuminated
closed system, with number fluctuations arising
from spontaneous chemical transformations be-
tween a fluorescent and nonfluorescent state,

B=pR*, (31)

where p is the average fraction of potentially fluo-
J

rescent molecules in the nonfluorescent state.
These expressions for 8 are derived assuming that
the background or “blank” fluorescence is negligi-
ble. The effects of blank fluorescence and other
deviations from ideality are discussed in Sec. VIII.

In a Gaussian process, all second- and higher-
order correlation functions can be expressed as
sums of products of the first-order function. For
example,

(61(t,)01(t,)81(t;) 61(L,)) = <61(t1)g}(t2)><61(t3)61 (84)) + (01(2,) 61(t5)) (61(22) 61(2,)) + (BI(¢,) 51(2,)) (01(£,) 81(t5))
= <1>4B[f(lt2 ‘tll)f(|t4"tal)+f(|ta‘tl')f(lt4-tzl)+f(|t4—t1|)f(|t3—t2|)] . (32)

Thus the field statistics are completely deter-
mined with a specified (I), B, and f(7).

The results below were calculated for an expo-
nential signal, i.e.,

flr)=e T, (33)

but are expected to be qualitatively correct for
other forms as well. One would have an exponen-

J

r
tial function, for example, with a chemical reac-
tion in a closed uniformly illuminated volume.

IV. RESULTS

Combining Egs. (3), (10), (12), (14), (16), (28),
and (33), applying the properties illustrated by
Egs. (19) and (32), it is straightforward (but tedi-
ous) to show that for the first two forms of S(7),
denoted, respectively, by ¢ =1 or ii,

var[S@mT)]= ({n}“ﬁzN' -

L(L+e2TT)1+6, ;+e2T"T) +2m(1 _e—zrr)e—zrmr)

+2(n AN 1+6, ,+e 2T T) + (n)®N"'(1 +5, , +Be”TmT), (34)

where

6, ;=1 fora=i

=0 for a=ii.

(35)

Here again, B is the normalized variance of the fluorescence intensity and I' is the decay rate (inverse
correlation time) of the assumed exponential correlation function. [See Egs. (29) and (33).] Thus, with

B <1, in the limit I'T <1,

(S/NM@D= (n)BNTT)V2e~ T (0?1 +5,,, + (1 +2mTT)e 2™ T)+2TT(n)B(1 +5, , +e 2T T + (1 +5, )TT} V2.

(36)
Similarly,
var[$U00n T)]=2(n)*BN" 1 +3e™TT)(1 e TT) 1 +{(n)*"@N"'(1 - 2T 7)*
X [(1 +e—21"mT)(1 +e—21"T) +2m(1 _e—er)e—Zl'mT]}
+2(n)°N7 2+ B(L +4e~Tm T+ 2TmT) ] + (n)?N~(1 + B~ T"7), @7
and, with 8 <1, in the limit I'T <1, (§>(ii) B (n)B(NTT)"? . @)
. N/, oo (2(n)*B+4TTn)B+TT)V?’
(§)(ul) _ (n}B(NI‘T)‘/ze‘ TmT (38) o o
N/,, ~(B8(n)YB+4TT(n)+TT)V?" (%) = (s<n>z,<3n+>f§£\;lﬂ<g T2 (41)
m—0

For ease of comparison, we summarize these
results in the limit of zero delay time (mI'T —0):

S\ _ (n)B(NTT)V? o
(X’) " (3(n)*F+6TT(n)B+2IT)V?’ (39)

m—>0

V. DISCUSSION

We see directly from Eq. (36) that, for all com-
binations of counting rates and delay times,
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(8/N)0> (s/N)W) (42)

Thus, as anticipated, the auxiliary measurement
of # has provided an increase in the signal-to-
noise ratio. This advantage of $49(mT) is rela-
tively small, but not insignificant: To achieve the
same statistical accuracy, measurements of
S®(nT) need experimental run times 50-100%
longer.

For (n) sufficiently small, the variance of all
three forms is dominated by the (xz)? terms and

(S/N),,~NY?(nyBe~TmT 43)

This is the so-called Poisson noise limit, the
limit in which the variance of S(»T) is dominated
by the statistical noise of the detection process.
Note, howevér, that “sufficiently small” has a dif-
ferent meaning for (S/N)f,i,‘” than it has for forms
(i) and (ii). In 'case (iii) we require (n) <1, while
in (i) and (ii) we only need (n) <p™!.

The major contribution to var[G(mT)] is the un-
certainty of the background. Thus while the vari-
ance of a single point of the measured correla-
tion function (var[S% 1V (mT)]=var[G(mT)]) can be
quite large, the relative scatter between different
points (var[$D(mT)]=var[G(mT) - G(MT)]) will be
substantially smaller, as will the variance of a
signal [form (ii)], which takes advantage of the
strong correlation between G(mT) - G(mT) and
()% - (n)®. In the calculation of the variances of
forms (i) and (ii), terms of order of (n)*B and
(n)?, which (for (z)>1) dominate the variance of
S T), cancel out exactly to zero. As a re-
sult, for (ny>1, (S/N)¥ and (S/N)i? are greater
than (S/N)i) by a factor of ~BY2'to ~(n)"2, which-
ever is smaller.

In the signal-to-noise ratio of forms (i) and (ii),
(n) and B appear only as the product (n)8. This is
undoubtedly the most important result of this pa-
per. This means, recalling Egs. (30) and (31),
that the critical parameter in the fluorescence
correlation experiment is not the total counting
rate, but the counting rate per fluorescent mole-
cule, a quantity independent of the total number of
molecules (see Sec. VIII, however). This predict-
ed independence of signal-to-noise ratio from the
sample concentration has been observed® in analog
photocurrent correlation experiments. Similarly,
it is not the total incident laser power that is im-
portant, but the incident power per unit area.
When (n)B=1, we are well within the optimal high-
counting-rate limit, where the noise is due solely
to the stochastic nature of the intensity fluctua-
tions, and for forms (i) and (ii) [see Eqs. (39) and
(40)],

(S/N), o~ (NTT)V2, (44)
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The factor NI'T is the ratio of the total experiment
run time (NT) to the correlation time of the fluo-
rescence intensity (I'"').

VI. VARIANCE OF [

The principal goal of the calculations for laser
light-scattering experiments’®~!* was the deter-
mination of the variance of I', the experimental
estimate of I, determined with an appropriate
least-squares data analysis (see also Ref. 17).
That has not been the case in this paper, inasmuch
as an exponential signal is not as universally ap-
plicable in fluorescence correlation experiments
as it is for laser light scattering. An exponential
f(7) was chosen here mainly for computational con-
venience. Nevertheless, it is worthwhile here to
examine varl' in the low-counting-rate limit to de-
fine explicitly the parameter of merit governing
the success of the experiment as a whole.

We consider a two-parameter least-squares fit
with I and C defined to have the values that mini-
mize the sum 3", [S(mT) - Ce™'™T|?w,,, where

W, [varS(mT)]™ (45)

are appropriately chosen weight factors. varT,
in general, is a function not only of var[S(nT)],
but covar[$(mT), S(m'T)] as well.** Assuming in-
dependent signal errors,

covar[S(mT), Stm’'T)]=var[S(mT)]6 (46)

an assumption valid only in the low-counting-rate
limit, we have, adapting Eq. (36) of Ref. 11,

(varII:‘)17 z " {[((m r7)%,, - ((mT),, )%

<z [G).I1 @
where

m.m’ >

In the low-counting-rate limit, with
((S/N)IDP = N(n)* e~ 7, (49)
with a large number of correlation channels, so

that,

IT ) gmIT)e * 7= fwg(x)e_z"dx, (50)

we find

Thus, the critical parameter is (n)B/I'T, the num-
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ber of photocounts per fluorescent molecule per
correlation time.

VII. COMPARISON WITH LIGHT SCATTERING

It is of some interest to compare the results
calculated here with parallel results derived for
the optical fields of laser light-scattering experi-
ments. We first consider (S/N)9), the signal-to-
noise ratio with a Gaussian optical field, the field
characteristic of an important class of “homodyne”
scattering experiments. (Note that here the field
is Gaussian distributed. For the FCS experiment
we considered a Gaussian-distributed intensity.)
The signal now has the form

S9(7) = (ny?*.(A4) [gD(1) |2, (52)
where
Wy = (EX0)E (7))
g (T)———————<]Es|2> (53)

is the normalized first-order correlation function
of the scattered field and f,(4), the normalized
variance of the intensity, is a function of the de-
gree of spatial coherence of the field across the
detection area A.'®% Signal-to-noise calculations
have been performed for detection areas much less
than a coherence area A, in which case, fc(A) =1.
Choosing [g®(7) [2=e~T", with $‘P(nT) in a form
closely analogous to form (ii) of this paper, we
have [Ref. 11, Eq. (22)]

($/N)© = (n)(NTT)"2e~TmT
x{(n)*[1 +8e~T"T — (5 +2m T T)e ™" 7]
+2TT(n)(1 +e ™ T)2+ TT(1 +e~TmT)}-V/2
(54)
and

(n)(NI‘T)l/z

S ©)
(Kf)m_.o= @(n)?+8TT(n) +2r7T)"? (55)

Equations (54) and (55) are remarkably similar in
form to Egs. (36) and (40), only now, instead of a
factor of (n)B, we have just (n). This shows that
the fluorescence correlation experiment can, in
principle, be just as fast and efficient as the more
conventional laser light-scattering experiment, but
the photocount counting rate must be larger by the
factor B71.

For a large detection area, the integrated inten-
sity of the scattered field Is(t) is the sum of many
independent contributions from each of the different
coherence areas, and

fA)cl/R,, (56)

where

9, =A/A, (57)

is the number of coherence areas present. For

9, >>1, by the central limit theorem, 6/(¢) is
Gaussian distributed, exactly analogous to the fluo-
rescence statistics considered above. Thus the
results and conclusions established above for FCS
can be adapted and applied to this case as well.
Whereas for FCS the critical parameter was shown
to be the photocounts/molecule/correlation time,
we now have (n)/%,I'T, the photocounts/coherence
area/correlation time, a factor independent of the
number of coherence areas. Adapting Forrester’s
description'® of a coherence area, we can formu-
late a general parameter of merit: the number of
photocounts/“degree of freedom.”

The same analogy can be extended to “hetero-
dyne” light-scattering experiments as well. In
this technique, the scattered field E (¢) is mixed
at the detector with a large constant component of
coherent reflected laser light, E (¢). The total in-
tensity (for A <A_) has the form

It =E®+E)|?, (58)
so that, if |E,|*> |E () |?,
I(t)~ |E, |*+2 Re[EX(H)E(t)] . (59)

Thus, if E(¢) is a complex Gaussian variable,
8I,(t) =2 Re[EX(t)E(t)] is still another real Gaus-
sian variable, exactly analogous to Eq. (25). The
analogy is complete, with the following equivalent
factors:

(D — g1, (60)
B—=2(|E |/ {Ip=2(ny/{ny, (61)
(n)B—2(n,). (62)

Thus, the above results can also be applied to the
heterodyne spectroscopy technique. Signal-to-
noise calculations have been performed? for the
heterodyne experiment, but only in the low-count-
ing-rate ({(n ) <<1) limit.

VIII. PRACTICAL CONSIDERATIONS

The general approach to a successful FCS ex-
periment is to maximize (n)B within the limits im-
posed by such effects as background or “blank”
fluorescence, systematic fluctuations, photolysis,
and photon counting deadtimes. We can charac-
terize the intensity of the constant background
fluorescence as that of an equivalent number of
fluorescent molecules, J’. Similarly, the sys-
tematic fluctuations, principally those from in-
cident laser fluctuations, can be characterized by
their normalized variance p’. Equation (30) now
takes the form
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B=3/@+3')?, (63)

where 9 again is the number of fluorescent mole-
cules of interest. Thus

)BR/ (@ +N’) (64)

is not strictly independent of 91, making it advan-
tageous to have M >JN’. I can be adjusted by vary-
ing the concentration and/or sample volume, under
the-constraint that 8 be much greater than g’. Oth-
erwise, the number fluctuations of interest will be
obscured by the systematic effects. For a fixed
U, Bis at its maximum value of (491’)"' when 3
equals 9U’. If this isn’t much greater than §’, the
experiment is in trouble.

(n)B can be increased by increasing the laser
intensity, but only to a limited extent. At high in-
tensities, laser-induced photochemistry can make
measurements impossible. If ()82 1, there is no
need to increase the intensity further. The ratio of
the quantum efficiencies of fluorescence and photo-
lysis determines whether a sufficiently high count-
ing rate can be obtained.

If it is possible to do so, it is often advantageous
to adjust the correlation time (I'"') of the experi-
ment. A chemical relaxation time can be changed,
for example, by changing the sample concentra-
tion or viscosity. In a diffusion experiment one can
adjust the viscosity or the laser beam diameter.
What is optimal depends upon the interrelationships
between the different parameters of a particular
experiment. For example, if the counting rate ¢
=(n)/T and B are held constant, and T is scaled so
that y=I'T remains fixed, (S/N)i2; is a maximum
when

2=2c%R3%. (65)

In a diffusion experiment,? however, the correla-
tion time equivalent to I'"! is proportional to the
square of the beam diameter. Therefore, if the
total laser power is kept constant, the number of
photocounts/molecule/correlation time is indepen-
dent of the beam diameter. It is thus advantageous
in this case to go to as small a beam diameter (as
short a correlation time) as possible.

In the best-designed experiment, 3’ will still
have a value of many thousands. Thus even at its
maximum of (491’)"!, Bis extremely small, as we
have assumed throughout our calculations. This
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necessitates extremely high counting rates, so that
detection dead times can become important.
Therefore, our principal concern is how these
dead times affect the form of the signal S(7). For
a constant intensity, the single interval counting
distribution is normally Poisson. The presence

of a dead time 7, after each detected photon pro-
duces the following modification®*:

(’?_‘" e""%)_’: e”'[1 +n(l —n+1)(7p/T) + 6(75/T)?],
(66)

where T again is the width of the counting interval.
Keeping first-order terms, we can extend this to
the two-interval photocount probability distribu-
tion function:

pons )= (B2 2 ez o)

x[1+(;—°>[n1(11 —n, +1)
snlly=my 1)), (67

where the angular brackets signify an averaging
over the joint distribution p(/,, ;). Then

(ny,ny)= Z plny,mo)nn,
"l '"2
= (1112> - (TD/T) (11(12)2 +12(11)2> N (68)
so that with
) 13(7)) = A(1)I*0))

=1+ B[1+2f(N]} (69)

and
(ny={)[1 - (1p/TIDA +P], (70)
S(7) = (n)*(1 = 275(n)/T)Bf(7) . (71)

Thus, to first order, the net effect is just a de-

crease in the apparent value of B.
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