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A simple model for an interacting liquid of particles lacking an axis of rotational symmetry is pro-

posed. The four order parameters necessary to describe an ordered phase are identified. An ensemble

of such particles is described by a mean field theory. A phase diagram showing both uniaxial and

biaxial phases results. The model predicts a phase diagram similar to that of the phenomenological

model of Alben.

The molecules which compose typical nematic
liquid crystals do not have an axis of rotational
symmetry, nor are the interparticle forces be-
tween these molecules expected to have the high

symmetry associated with rotationally symmetric
particles. This raises the question of whether
any vestige of the lower molecular symmetry is
present in ordinary nematic liquid crystals and
the possibility of biaxial liquid crystals in which

the molecular asymmetry becomes manifest. '
These problems have been discussed previously
in the literature: Alben, McColl, and Shih' (AMS)
have proposed a new subsidiary order parameter
for uniaxial liquid crystals; Freiser' has discussed
a generalization of the Maier-Saupe theory in-
volving an order parameter of biaxial character;
Alben' has discussed the corresponding Landau

theory; and Shih and Alben' have considered the
discrete-orientation model (along the lines of the
Zwanzig' model) corresponding to the Freiser
model.

A Maier-Saupe treatment of the AMS ordering
has not been given heretofore; the subsidiary
order parameter seems to play no role in the work
of Freiser' or Alben. ' The present work proposes
a generalization of the Maier-Saupe theory which

contains this order parameter, as well as the
phase transition discussed by Freiser and by Al-
ben. As in the work of Shih and Alben, four in-
dependent order parameters appear. A form for
the orientation-dependent part of the interparticle
potential will be chosen which has the symmetry
appropriate to the interaction between a pair of

rectangular blocks. This potential will be treated
in a mean-field approximation, leading to a set of
coupled integral equations. These equations will
be solved numerically, resulting in a phase diagram
similar to that discussed by Alben, and in a pre-
diction for the temperature and shape dependence
of the AMS order parameter. Close attention will
be paid to the role of molecular symmetry, and to
the physical idea that the predictions of theory

should be independent of the coordinate system
used.

I. ORDER PARAMETERS

V(8o) =AP, (8,~) = ~A[3(n, n,')' —1], (2)

where 8„. is the angle between the principal axis
n, of molecule i and the principal axis n, of mole-
cule j, and A is a constant representing a config-
urational average of the radial dependence of the
interaction.

The orientation of a general object can be speci-
fied by the three Euler angles' (P, 8, Q) referenced
to an arbitrary laboratory frame. Likewise, the
distribution of orientations in an ensemble can be
described by a distribution function f (P, 8, Q),
which is proportional to the number of molecules
having orientation within the solid angle d~
= sin8d8d(J(dg of the orientation ((J(, 8, Q) and nor-
malized to unity. All the required ensemble
averages can be calculated from the distribution
function

(( t(, ((0() )J f f(0+=,0),
xF{p, 6, Q) sined&dg dg.

Note that by definition of f, (1) = 1.
Rather than deal with an object of arbitrary

shape, we will restrict our attention in what fol-
lows to molecules with the symmetry of a rectan-

The Maier-Saupe theory introduces one order
parameter,

S =(P,(8)),

where 0 is the angle between the ordering axis of
the liquid crystal and the principal molecular
axis, I', is the second Legendre polynomial, and

the angular brackets indicate an ensemble average.
The orientation-dependent potential of interacting
particles is assumed to have the form
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gular parallelopiped: three mutually orthogonal
mirror planes with inversion symmetry through
their intersection. Then all distribution functions
and functions entering into. the definitions or order
parameters must be invariant under the three
transformations

4'- 4'+&

g- p+w,

0-w —0, Q-w —g

(4)

The smallest set of functions which contains P,
and which is closed under arbitrary rotations
through the three Euler angles contains no less
than 25 functions' (as compared with just five
spherical harmonics for l =2); however, with this
assumption of symmetry the set is reduced to
nine, consisting of the four functions

E,= —,'(3 cos'0 —1),

E, = sin'0 cos2$,
(5)

3=&E,&, T=&E.&,

U=&E,&, V =&Eg.
(6)

The order parameter S is identical to Maier and
Saupe's S; the order parameter T is that intro-
duced by Freiser (Q») and used by Alben; the
order parameter U was called 3D in AMS; and V
is new. The order parameters are bounded above
by unity, and take on this value for certain per-
fectly ordered ensembles.

II. MODEL INTERACTION

A generalization of the interaction (1) appropriate
to these biaxial objects is

V =a + ,'P[3(n n,')' —1] +-2y[(n, n,')' —(n n,')']

+ 25[(n, .n,')'+(n3 ns)' —(n, .n~~)' —(n, n,')'] .
('7)

This is the general form which is quadratic in the

E, = sin'0 cos2$,

F,= —,'(1+cos'0) cos2$ cos2$ —cos0sin2$ sin2$

and the functions which can be derived from these
by making the replacement

Q~ P+ —,'v or g- P+-,'w.

In what follows we shall assume that by appropriate
choice of axes the latter five functions can be
eliminated from consideration. This is not obvi-
ous but will be motivated below by reference to a
model. Thus we shall attempt to write all inter-
actions and distributions functions in terms of the
four basis functions (5), and describe the ordered
state by the four order parameters

relative direction cosines, invariant under axis
reversal, and symmetric under interchange of the
primed and unprimed coordinates. It is readily
written in terms of the four basis functions as

V = ~ +PE, (0) +y[E,(0, y) +E,(0, y)] + 5E,(y, 0, y) . (8)

The functions E, and I", appear with the same co-
efficients as a consequence of the symmetry be-
tween primed and unprimed frames.

This interaction will be treated in the mean-field
approximation in the present work. As a first'
step we shall perform an average of the interpar-
ticle potential over positions, while maintaining the
orientations of the particles fixed. Then the co-
efficients e, P, y, and 5, which are in principle
dependent on interparticle distance and possibly
also on the direction of the vector connecting par-
ticle centers, become constants and will be re-
garded as such in what follows. The potential V
is then to be interpreted as the average potential
a particular molecule of orientation (n,', n,', n,')
would see if a,ll of its neighbors always had the
orientation (n„n„n~). The coefficients implicitly
depend on the density of the liquid, which will be
held constant.

As an aid to visualization of this interaction a
parametrization of the coefficients u, P, y, 5 will
be introduced. If we were to construct a theory
for the gas of hard rectangular blocks (of dimen-
sion LxBx W) along the lines of Onsager's theory"
for the gas of hard rods, in place of (8) would ap-
pear the mutually excluded volume of a pair of
these rectangular blocks of differing orientations,
such that the axes of one could be transformed
into the axes of the other by the Euler angle trans-
formation (((I, 6, P). Rather than considering this
function in its full generality, consider just the
values it takes on when the principal axes of the
two blocks are coincident. As Shih and Alben have
observed, there are six distinct ways of doing
this. These are summarized in Table I, which
also gives the mutually excluded volume and a
description of these six orientations in terms of
a particular choice of Euler angles, in which P
and P are rotations about the longest (L) axis,
and 8 is a rotation about the shortest (W) axis.
Now we can parametrize the interaction V by
choosing the coefficients a, P, y, 5 so that it fits
the excluded volumes of a pair of blocks of a
certain shape and size (L, B, W) for the six orien-
tations of Table I. This gives

3a = 2(L+W)(W +B)(B+L) + 8WLB,

3P = —2B(W'+L ) —2W(L'+B ) +L(W'+B )+ 8WBL,

y = 2 (L' —BW)(B—W), (8)
5 = —L(W B)' . -
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TABLE I. Relative orientation of two blocks. Block 1 has the orientation {W,B,L) = g, y, z).
The table gives the six special orientations of block 2 for which the principal axes are aligned
with the coordinate axes.

Mutually excluded volume
Euler angle description

8

W

B
W

L
B
L

B
W

L

L
B

L
L
B
Bb

W

SWBL
2L (6'+B )2

2W (L +B)'
(a'+B)(B +L) g. +W)
(W+B)(B +L )(L +W)
2B (L +W)2

0
0.'

0
0
90'
90'

0
0

90'
90
90'
90'

0
(90 -~')

0
90'
0
90'

'The angl, e u is arbitrary.
These two configurations are physically equivalent; this forces the coefficient of F2 and

F 3 in Eq. (8) to be the same.

This choice for V is not the most accurate fit
(for all angles) to the excluded volume, but is a
reasonable qualitative version of that function
which in particular respects the symmetry of the
blocks (i.e., if B=W, the blocks are effectively
rods and the coefficients y and 5 vanish). It gives
a parametrization to the coefficients of Eq. (8)
which will hopefully guide the reader (as it did
the author) to the physical significance of various
choices. It is apparent, for example, that no
better fit to the excluded volume could be obtained

by introducing the additional five functions which

were dropped from (4): for this case at least,
there was a choice of principal axes which made
the simple form (8) feasible.

Despite first appearances, the parametrization
does not restrict us to a special subset of the

(n, P, y, 5) space. For a given combination of
values for P, y, and 5, define tan(p+ v) = ——,'5/y
and tan(v —p) = —,5/P. Then

L' = ——,
'
p[(tang, +tanv)(1+tang tanv)],

B= Ltanp, , W = Ltanv
(10)

is a set (L, B, W) which gives P, y, and 5. Since n
plays no role in the theory to be presented, this
demonstrates that the parametrization is an ade-
quate representation of the interaction (8). . The
parametrization also has the advantage of elimi-
nating the arbitrariness of choice of axis for the
Euler angles: there are six such choices for which

all the rotations are made about the principal
axes of the block, giving rise to six physically
equivalent sets of parameters (n, p, p, 5). The six
sets can be derived from Eq. (9) by letting L, B,
and Wbe the six permutations of a set of three
values.

This arbitrariness of axis choice has conse-
quences for the order parameters also. A given
uniaxial phase can be given several alternate and

equivalent descriptions: a phase with the L axes

preferentially aligned along the z axis (of the ex-
ternal reference frame) with a slight tendency
for the B axes to align along the x axis (S large
and positive, U small and positive for the Euler
angles used in Table I) can also be described as
a phase with the B axes all nearly perpendicular
to the z axis, and with a considerable tendency
for the L axis to align along the z axis (which in

terms of a different set of Euler angles for which

0 is the angle between the B axis and z gives S
large and negative and U large and positive). The
transformation of the basis functions under change
of axis choice is readily worked out, with the re-
sult that corresponding to the transformation
(L,B, W) —(B, L, W) are

E, F3 —2E, a,nd E, E, +2E3;

and that (L, B, W) —(L, W, B) gives F,—F, and

E3 E3 These imply simi lar transformations
among the order parameters.

Both for the cases of flat plates (L =B&W) and

long rods (L& B= W) an ordering of Maier-Saupe
type is expected to occur; however, in the former
case it is expected that all the "W" axes will be
approximately parallel, whereas in the latter case
it is an ordering of the "L"axes that is involved.
Thus it is necessary to consider at least two dis-
tinct axis choices to discuss the general block
and recover these two asymptotic limits in a
straightforward way. Since Shih and Alben have
shown that a competition between rodlike and

platelike ordering is an important feature in the
phase diagram, it is important that the transfor-
mations that the coefficients of (8) undergo in a
change of axis choice be considered. Study of the
dependence of (n, P, Z, 5) on (L, B, W) as given by
(9) shows that there is a "dual" relation such that
if (L, B, W) gives (n, P, y, 5), then' (W, LW/B, L)
gives L 'W 'B' (n, P, y, 5). This implies a rela-
tionship between the thermodynamic functions of
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rods (L&B=W) and plates (L=B&W) which will
enable us to limit our discussion in what follows
to just one of the two cases. Furthermore, we
can identify the "self-dual" class of blocks with
dimensions (L, (LW)'~', W): for this case the coeffi-
cients of the interaction are the same no matter
whether P and Q represent rotations about the
shortest or longest axis. Then if there is a com-
petition between rodlike and platelike ordering,
the dividing line between the two phases must be
B= (LW)'

III. MEAN FIELD THEORY

f (g, 8, Q) = C exp[-W(g, 8, Q)/t], (13)

where C is a constant which is determined by the
condition that f be normalized to unity, and t is
the absolute temperature measured in energy
units.

The coefficients of Ware determined by the self-
consistency condition that the mean field be the
ensemble average of the interaction (7) in which
the neighboring molecules take up orientations
with the probability given by the distribution func-
tion (1). In calculating these averages it is found
that only the order parameters (6) enter. Ex-
plicitly,

A given particle will be subject to forces due
to the orientations Of its neighbors. " We will
assume that these forces can be represented as
an internal field, and that this internal field by
proper choice of reference frame can be written
in the form

W=wE, (8)+xE2(8; Q)+yE~(8, g)+zE4(g, 8, Q),

(12)

where the angles are measured with respect to
some fixed external reference frame. Given a
field of this form, the orientation distribution
function is found immediately to be

(14), one must be nonzero when the other is.
We can obtain an indication of the location of the

phase transition from the linear approximation to
these equations. If all order parameters are
small, the distribution function is approximately

f =(Sv') '[1 —W(Q, 8, P)/t], (15)

and the equations for the order parameters become
S=5w/t, T=~»x/t, U=~»y/t, and V=5z/t. Ref-
erence to (14}shows that the variables S and U
are not coupled to the variables T and V, so that
the secular equation immediately factors into a
pair of quadratic equations, which prove to be
identically the same. The root of this quadratic
corresponding to the higher temperature is

t+=~[-P —5+(P —2P5+5'+~y )' 2] (16)

—= t Jtf (&u) lnf(&u) day+ 2(wS+xT+yU+zV),

(17)

This can be interpreted as the lowest temperature
to which the isotropic phase can be supercooled:
it is the limit of stability. Experience with the
Maier-Saupe model leads us to expect that in gen-
eral a reversible first-order phase transition will
occur at a temperature somewhat above t*. The
ordered phase formed might be either uniaxial
or biaxial, since the T, V part of the secular equa-
tion has the same stability limit as the S, U part.
The nonlinearity of the integral equations coupl'es
the S, Upart to the T, V part, and, as we shall
see below, tends to suppress the biaxial phase.

If the expression for t* is written in terms of
the L, B, W parameters, it proves to be invariant
under permutations of (L, B, W), thus confirming
that the set of Euler angles chosen has no effect
on the predictions of the model, which is a wel-
come result from the physical standpoint.

The free energy of an equilibrium phase may be
calculated as

w =PS+yU, y=yS++5U,

x=&PT+yV, z =yT+5V .
(14) where &o is a shorthand for (P, 8, Q) and

The mean field theory thus leads to a set of four
integral equations, namely the definitions (6) cal-
culated with the distribution function (13}, into
which (11) and (14) have been substituted. In Secs.
IV and V some numerical techniques for finding
solutions to these equations will be discussed. It
is evident at the outset that three distinct classes
of solution are available: (i) all order parameters
vanish; (ii) T and V vanish but S and Udo not;
and (iii) no order parameter vanishes. These are
the i: otropic, uniaxial, and biaxial phases, re-
spectively. Because S and U are coupled in Eq.

du& =sin8dgd8dg.

The most stable phase at a given temperature is
that with the smallest free energy. This function
can be extended to a function of w, x, y, and z
alone (and defined for all values of these parame-
ters) by substitution for f, S, T, U, and V from
Eqs. (11)-(13); this function is extremal for the
equilibrium phase (i.e., SE/&w =0, etc ) Howeve. r.,
this does not imply that the combination of
(w, x, y, z) which gives the smallest free energy
is necessarily the equilibrium combination; there
are in fact nonphysical extrema for large values
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of (w, x, yz).

IV. UNIAXIAL PHASE

In this case where x=z =T=V =0, there are
three coupled integral equations to be solved for
S and U as a function of t:

2 'Il 1

C '=n' d d cos6 8,
0 0

2 fl'

C 'S =4m dg d(cos0)F, (6)f(0, P),
0 0

(18)

2 'Il' j.

C 'U=4s ~ d(cos&}F,(&, g)f(&, g),
0 0

where f =exp[ (wF, +-yF, )/t] is the distribution
function with another normalization, and w and y
are related to S and U by Eq. (14). These equa-
tions were solved numerically by expanding f in
a powers series in yF, /t (of which the first 16
terms were kept) and performing the integrals
over g (analytically) and cosa (numerically) term
by term. Since the dependence of C ' on y is ex-
plicitly known, it is not necessary to consider the
integral for U, which can be reconstructed from
the identity

taC '
8$

(19)

On performing the P integration in the other two

integrals, half of the terms vanish (odd order in

cosP) and there results expressions for S and U

in the form of a ratio of polynomials of eighth de-
gree. A consistent combination of w, y, S, and U

were found by iteration of this process.
The numerical integration was performed as a

200-point trapezoidal rule. A simple test is avail-
able to check the accuracy of this integration: a
solution for (L, B, W) should generate a corre-
sponding solution for (B, L, W) through the trans-
formations (11), but discreteness errors will be
specific to a certain axis choice and will not re-
produce under change of axis choice. It is quite
important that the calculations pass this test, for
otherwise we would have to suspect that the nu-
merical approximations were inadvertently break-
ing the symmetry of the interaction, which could
lead to incorrect conclusions concerning relative
stability of the various ordered phases. Several
cases were checked, and it was found that the
transformed solutions of the integral equations
(18) were also solutions to good accuracy (I/o).

Figure 1 shows the dependence of S and U on t
for three special choices of particle shape (that is,
three choices of the parameters L, B, Wwhich

V. BIAXIAL PHASE

For this case where none of the order parame-
ters vanish, we have five integrals equations. The
distribution function no longer has a rotational
'symmetry; integrations must be performed over
all three coordinates (g, 8, P). It is desirable to
do as many of these integrals analytically as pos-
sible. The strategy that was adopted was to ex-
pand the distribution function in powers of (x/t ),
(y/t), and (z/t) and do the integrals over both

g and Q analytically. The strategy is similar to
that used for the uniaxial phase. The algebra is

J.O

0.8

0.6

0.4

u

0.2

0 20 40

FIG. 1. t dependence of the order parameters in the
uniaxial phase. The calculated values for S and U are
given for L=10, W=1, and the three cases B=1, 2,
and 3. For B=1, the molecules are rotationally sym-
metric and U vanishes. As B increases, so does U;
and the discontinuity in S decreases as B approaches
(L~)i /2 3.162.

specify the interaction). We find that the auxiliary
order parameter U is small but comparable in
size to what AMS find for P-azoxyanisole. ' The
phase transition to the isotropic phase is first
order in each case and located close to the high-
temperature ends of the curves. The magnitude
of the order parameter S at the phase transition
decreases as B approaches the "self-dual" case
B= (WL}'t'.

Figure 2 is a phase diagram showing how the
temperature at which the phase transition occurs
depends on B for fixed L =10, W=1. The stability
limit for the isotropic phase [t * as given by (16)]
as well as the results of the equations (18) are both
shown; they are found to be closely similar. The
tendency for the transition temperature to increase
with B is due simply to the fact that the blocks are
physically larger.
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considerably more complicated, however, for now
the unnormalized distribution f [=exp(-W/t)] is

f =e ' g (xF,)"(yF )'(zF, ) (zF, )"
ktj k5$05

( t)-k-r-m-n
X

k fl fmfn f
(2o)

=e " j ' xsin'8' win'8'
k, f em en

x [—,'z(1+cos'8)] (z cos8)"C(k+m, n)

where the function I"
4 has been subdivided into +,

= —,'(1+cos'8)cos2gcos2$ and F, = —cos&sin2 g
xsin2$. As before T, U, and V can be found from
the series for C ', so that only the integrals for
C ' and C 'S need be considered, and the analytic
integrations over Q and g can be performed imme-
diately

4= fJ d4dgf

odd vanish. There are still many nonvanishing
terms: e.g., there are 39 terms for which the ex-
ponent of t ' is less than or equal to 6.

The interaction we have chosen is an idealization
which we are treating in a mean-field approxima-
tion. Under these circumstances it may not be
too important that the solutions be accurate, so
long as the symmetry of the phase and the topology
of the phase boundary is not seriously distorted.
In particular, it might well be sufficient to trun-
cate the series (21}at some low order in t '. Al-
ben, in considering a similar expansion, observed
that it is necessary to keep terms through t ' to
develop the phenomenology of the phase diagram
fully; therefore the 39 terms were kept.

Each term of (21) is a product of x, y, and z
raised to various powers, a combinatorial coeffi-
cient, and a function of 6. For a given value of
w, corresponding series

C '= 4sln8d8,
p

(22)

(
f)-k-I-m-n

x C(l+m, n)
k fl fmfn! (21)

(C 'S) = CF,(8) sin8 d8
Qp

where

2r
C(p, q) = ) dp sin'2p cos 2Q .

Jp
(22)

All terms of (21) for which k+m, l+m, or n is

5

B
~~IO BIAXI

3

2 -
UNIAXIA

(RODS

io 20 40

FIG. 2. Phase diagram for blocks of varying breadth.
For the case L=10, W =1, and variable B, the locus of
the first-order transitions between the isotropic and
uniaxial phases is given as a solid line; and the loci of
the second-order transitions between uniaxial and bi-
axial phases are given as dashed lines. Also shown is
the stability limit of the isotropic phase (dotted line) as
given by Eq. P6). The phases for B &10 2 are related
to the phases B &10 by the "dual" transformation.

were constructed by 50-point numerical integra-
tions over the 78 integrands. Each is a 39-term
series, each term of which is a product of x, y,
and z raised to various powers and a coefficient
which depends on w. From these series the quanti-
ties S=(C 'S)/C ', T=(dC '/dx}/C ', U=(dC '/
dy)/C ', and V= (dC '/dz)/C ' could be deter-
mined for any given x, y, z. A search for combi-
nations of S, T, U, and V consistent with w, x, y,
z [in the sense that Eq. (14) was satisfied] was then
made by an iterative technique. Such solutions
could be found for sufficiently low temperature for
all non-uniaxial (L&B&W) cases tried. The ap-
proximate location of the phase boundary is indi-
cated in Fig. 2. The phase transition. appeared to
be second order. Just as Alben suggested, the
biaxial phase separates the two uniaxial phases,
and comes to meet the isotropic phase for blocks
which meet the "self-dual" condition B'= LS'.

Table II gives some examples of the behavior of
the order parameters S, T, U, and V in a biaxial
phase. It is seen that the order parameters T
and U are small; the primary role in determining
the coupling energies is played by S, which speci-
fies the orientation of a molecular principal axis,
and V, which is sensitive to the alignments of all
the principal axes. Most of the cases given actual-
ly lie quite close to the phase boundary (as shown
in Fig. 2); this is merely a consequence of the
author's preoccupation with the location of the
phase boundary and his disinclination to put too
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TABLE II. Some typical biaxial phases. In each case W=1.

F /Nt

100
4

10
10
10

10

10
2
1.7
2.5
3

101/2

0.000 17
0.0325
0.0252
0.1238
0.2380
0.2670
0.2709
0.2726
0.2381
0.3226
0.419
0.4540
0.4733

0.8772
0.9030
0.0856
0.3030
0.4896
0.5491
0.5572
0.5607
0.4647
0.6297
0.8179
0.8862
0.9239

0.188
0.172
0.967
0.901
0.779
0.752
0.748
0.747
0.758
0.630
0.452
0.363
0.292

0.228
0.221
0.002
0.009
0.043
0.021
0.015
0.004
0.069
0.089
0..068
0.029
0.018

0.144
0.139
O.004
0.021
0.063
0.065
0.066
0.066
0.078
0.112
0.128
0.122
0.114

0.100
0.100
0.100
0.100
0.150
0.060
0.040
0.010
0.230
0.148
0.060
0.020
0.01

—0.0233
-0.0163

' -21.58
-3.070
—0.8996
-0.6251
-0.5928
-0.5816
-1.007
—0.3459
-0.0635
—0.0226
-0.0026

much effort into the description of a phase that
may never be discovered.

VI. SUMMARY

A simple model for an interacting liquid of biaxial
particles has been proposed. The approximate
order parameters have been identified, and the
equations resulting from a mean-field treatment
have been solved. It has been shown that differing
choice of axes in the definitions of the Euler angles
can lead to differing descriptions of the ordered
phases but that these are physically equivalent.
A phase diagram showing both uniaxial and biaxial
phases has been exhibited; and the temperature
dependence of the order parameters for typical
examples has been shown.

The model makes no claim to realism in regard
to the details of angular dependence of the inter-
particle potential; however, it does have symme-
try less than uniaxial, and can claim to have a
sort of generality; it has the lowest symmetry
consistent with that of the rectangular block parti-

cles considered. Less symmetric particles would
lead to a still more asymmetric interaction, more
order parameters, and more integral equations.
This generalization might be of interest in three
respects: .(i) it would afford a more nearly quanti-
tative description of a real liquid crystal; (ii) it
might be necessary in order to describe biaxial
phases of lower or special symmetry (just as a
generalization is required to describe enantio-
morphic particles and their corresponding choles-
teric phases); and (iii) it might lead to an altera-
tion or obliteration of Alben's critical point. In
each case an objection can be raised: (i}there is
no real system for which we have a good model of
the interparticle interaction, nor many for which
the mean-field theory can be trusted"; (ii) it
should be possible to judge the possible symme-
tries of a phase on general principles; detailed
study of these can await the discovery of a biaxial
liquid crystal; and (iii} it would surely be more
fruitful to study the Alben critical point in terms
of the competing modes of breaking the symmetry
of the isotropic phase.
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