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Description of n-level systems in cooperative behavior
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A number of n-level systems behaving cooperatively is described by a boson-type second-quantization
formalism which has both computational and conceptual utility, and leads naturally to a classical
analog. The theory is compared arith that for toro-level systems and illustrated by the consideration of
coupling to general-type fields. Spontaneous emission at all transition frequencies is examined, with both
quantum-mechanical and classical results explicitly exhibited.

The properties of macroscopic matter bear, in
most instances, little resemblance to the proper-
ties of its microscopic constituents. There exist,
however, cases in which a collection of atomic
systems exhibits on a macroscopic scale certain
significant properties exhibited by the individual
atomic systems on a microscopic scale. Such a
collection constitutes, for instance, the matter of
lasers or masers in which the pertinent atomic
systems (henceforth referred to as "molecules")
are characterized by several levels; both the mac-
roscopic system and its microscopic constituents
exhibit the same (relevant) resonant frequencies,
have an oscillating dipole moment associated with
these frequencies, and may be regarded as non-
linear oscillators. An important characteristic
of this collection is the fact that degrees of free-
dom can be chosen so that the excitation of only a
few (out of a macroscopic number} accounts for
the significant macroscopic properties. Further-
more, these few degrees of freedom may be de-
scribed to a good approximation classically under
many conditions of interest. Aside from the ob-
vious advantages of such a description for a mac-
roscopic sample, the similarity between the mac-
roscopic and microscopic properties may be used
to obtain a "classical analog" for one or more
molecules. It is the purpose of the present paper
to develop such a description for a collection of
identical n-level molecules and briefly illustrate
its usefulness both computationally and conceptual-
ly.

Consider N n-level molecules, each with energy
levels her, , i = 1, 2, . . . , n (spaced so that no two
transition frequencies are the same) and corre-
sponding states ~P,), that are coupled to other sys-
tems in an identical manner. (The N molecules
under consideration may, of course, be part of a
larger group of molecules in a given experimental
situation. ) We introduce the formalism of second
quantization for bosons, ' using the Pock repre-
sentation and the Heisenberg picture. %'e asso-
ciate with the collection of molecules the operator

and the state vectors ~n, ~ ~ ~ n, ~ n„), where

a, (0)~n, "s,. "n„)=n,". ~s," s,.-l".s„)

and

a&t(0))n n n ) =(n +1) (n ~ n +1 n )

the n, ' s being non-negative integers. The a, ' s
obey the commutation relationships

[a, (f), a~t(t)] =f„,
all other commutators vanishing. With each pair
of levels, we associate a (dimensionless} "dipole
moment" operator described by the three com-
ponents

d('&= —,
'

(a,at+a~ta~),

d
gg

= —( 2 x }(agag —a; a~ ) ~
(2)—

1g~) = g (a) a) —al a.) .(3)

(4a)

(4b)

(4c)

The Hamiltonian of the unperturbed (or free) col-
lection of e-level systems is given by

+0 = g ff(d;a, a, .

The dynamical variables a, and a~~ are the well-
known annihilation and creation operators associat-
ed with a harmonic oscillator of (angular) fre-
quency &cr„and (freely) oscillate, in the Heisenberg
picture, with this frequency. It follows that dI'~»

and d(,'&~ oscillate with frequency v, —v, , while d(',~

is constant.
%e assume that the molecules couple to other

systems (beginning at t =0) through their collective
dipole moment, linearly, and that the direct cou-
pling between them is negligible compared to the
indirect coupling through the other systems. The
total Hamiltonian is then given by
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(m)y (m)d(m) +II0 ~ ~ ij gy ij
lS fgj

(6)

where E+z) and &, refer to the other systems.
Equations (3)-(6) imply that the dynamical variable
K, defined by

cule is maximized. (It is also the only specializa-
tion that mill allow application of the formalism to
a single molecule. ) All states

~ ) under considera-
tion will henceforth satisfy the relationship'

a~a]

is a constant of motion. From the viewpoint of
second quantization (in which the molecules are
the bosons) —to which we refer as viewpoint 1—K
is the number operator Op(g~g), ~ a,nd can have only
one eigenvalue, N. If, however, me ignore the
origin of the formalism [Eq. (1)] and consider the
system to be described by Eqs. (3)-(6)—to which
we refer as Viewpoint 2—then the eigenvalues of
K can have any non-negative integral value. It is
instructive to examine the above description for
the special case of a collection of two-level sys-
tems, with levels labeled 1 and 2.

As first observed by Schminger, '

where / represents the three (dimensionless)
components of angular momentum satisfying the
commutation rules [I„I,] =il„etc. Furthermore,
we obtain

P, + 122+ P, =—,'K{2K+1),

which shows that the eigenvalues of K are equal to
twice the quantum numbers I of the total angular
momentum. If we assume Viewpoint 2, and re-
strict the initial states under consideration to
eigenstates of K with eigenvalues that have the
same parity as N and are no larger than N, the
present formalism reduces to the well-known
description of a collectio'n of N two-level systems
(all exposed to the same perturbation) by means
of a single angular-momentum system for mhich
I (i) is a measure of the collective dipole moment, "
(ii) may assume all non-negative values in integral
steps with maximum value ,N, and (iii) —is equiva-
lent to the "cooperation number" in Dicke's theory
of "superradiance". ' viewpoint 3, (with the above
restriction of initial states) can therefore be con-
sidered a generalization of this description to one
for a collection of n-level systems, with the eigen-
values of —,'K being a generalization of /.

In the following discussion we assume Viewpoint
1, which appears as a special ease in the frame-
work of Viewpoint 2. This specialization may be
regarded (in the framework of Viewpoint 3) as the
one for which the similarity of behavior among the
molecules (or their "cooperation" ) is greatest,
and the qualitative similarity between the behavior
of the macroscopic sample and the individual mole-

Equations (3)-(6) and (10) are sufficient to de-
scribe the molecular behavior (once the systems
to which the collection is coupled are specified,
of course). Note that the description utilizes a
small number of degrees of freedom, those of n
harmonic oscillators. The qualitative similarity
of the macroscopic and microscopic systems is
exhibited analytically by the fact that N occurs
only in Eq. (10), somewhat as a normalization con-
stant. This equation, homever, has more meaning
than a normalization relati. onship, and it is this
additional meaning that must indicate any qualita-
tive difference in behavior that may exist for dif-
ferent values of ¹ In particular, Eq. (10) implies

a", (I) ~ ~ a', ~(t). . a"„~(t)~)=0 for gr~&N. (11)

The proof is given in the Appendix.
The quantum-mechanical formalism of Eqs. (3)-

(6) and (10) will be applied to a specific example
later. Meanwhile me want to set up a classical de-
scription for the same collection of N n-level sys-
tems. The technique for transforming a classical
description to a quantum-mechanical description
is almost as old as quantum mechanics, and con-
sists of changing c-number dynamical variables in-
to q-number dynamical variables, with appropriate
nonvanishing commutation relationships. It is
reasonable to reverse this procedure in order to
convert a quantum-mechanical description into a
classical description, but in order to be able to
do so, the q -number dynamical variables must
have c-number analogs. Thus, n &n rnatriees that
would ordinarily be used to describe an n-level
system (of arbitrary spacing) have no direct c-
number analogs. The harmonic oscillator vari-
ables, however, which we have introduced through
boson second quantization, do have such analogs,
namely, the corresponding classical harmonic
oscillator variables. " %'e therefore replace the
quantum-mechanical a, 's and a~'s by the corre-
sponding variables for n classical harmonic oscil-
lators. " Equations (3)-{6)remain formally un-
changed in the classical description, except that
the commutator bracket of Eq. (3) must now be
interpreted as i times the Poisson bracket, and
Eq. (10) becomes a straightforward normalization
relationship. The classical equations of motion
derived from the Hamiltonian by means of Poisson
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brackets are formally identical to the Heisenberg
equations of motion derived by means of commu-
tator brackets. "

It is instructive to see how the transformation
from a quantum-meehanieal description to a clas-
sical description corresponds to letting 5 appx oaeh
zero, that is, taking the classical limit of &e
quantum-mechanical desex iption. Where the com-
mutator of variables that become |." numbers in
such a transforxnation is proportional to h, the
correspondence is obvious. In the present in-
stance, where 5 is introduced for dimensional
reasons, and the commutator does not contain h
explicitly, one may look at the expression for the
oscillator enex gies 5cojaj~aj Fox a given energy,
the a,.a,.'s must become infinite as 5 vanishes.
Thus, as 5 becomes very small, the number asso-
ciated with a, become very large, so that a diffex-
ence of unity between a,.a, and a,. a, is relatively
negligible, and may be ignored. We refer to the
system specified by the classical description of
our collection of molecules as the classical analog.

The classical analog of a single molecule (j))'=1)
exhibits certain important properties of the mole-
cule. Consider a SchrMinger-picture description
of the molecule, iP) =Q,cj(t)j4),), where the c, 's
are superposition constants. If the E,j's in Eq. (6)
are classical variables, then, as can be shown
easily, Schrodinger's equation leads to the same
equations of motion for the cj s as those obtained
in the present formalisxn for the a, 's. The expec-
tation value of the dipole moxnent of a single mole-
cule (in suitable units) is an expression in terms
of the c,'s identical to that given by Eqs. (4) in
terms of the a, 's. Since in the usual semiclassical
analysis where account is taken of the mutual in-

' teraction between the quantum-mechanical system
and the classical field, "the quantum-mechanical
dipole moment (obtained from Schrodinger's equa-
tion) is replaced by its expectation value, this ex-
pectation value is just the dipole moment of the
classical analog. Such a semiclassical analysis
may, therefore, be regarded as an implicit re-
placement of the quantum-mechanical molecule by
its classical analog. However, whereas a semi-
classical analysis consists of a combination of
classical theory and quantum theory with an ad hoc
prescription for combining the two (the replace-
ment of the quantum-mechanical dipole moment by
its expectation value), use of the classical analog
makes possible a complete, self-consistent, dy-
namical theory —starting with a Hamiltonian, for
instance —in terms of c numbers. "

We illustrate the above formalism —both quan-
tum-mechanical and elassieal —by considex ing a
collection of n-level systems for which all possible
transitions couple to fields. These fields are

where 5(j~~ and 5(j~~~ are the annihilation and crea-
tion operators, respectively, for the 0th mode of
the ijth field (and transform into classical vari-
ables similarly to a, ' and a, , respectively). It is
convenient to use the "reduced" variables A j, Bk'~,-
defined by

iru;t -I (ij) fj(ij)& itu t-
k k

with &u(~'j) being the frequency of the (free) kth mo«
of the ijth field. (In the absence of coupling, the
reduced variables are constant. ) The equations of
motion for the molecules become

2-I/2 g(jk) f~ ~ 8(kj)
k&j k&j

(14a)

e(ij (f) = —f y ij)B(ij)(t)e '(~~ ~ij)' . (14b)
1 (j&)

The equation of motion for each field depends only
on the variables of the coupled pair of harmonic
oscillators, and is similar to that treated in Ref.
(7). Neglect of radiative frequency shifts and ap-
proximation based on the dense spacing of modes
yields'

Q(jf)~ Q(jj) +2 ~I2~
0 jJ j j s

-Lv[r(i j)(~ )]2p(i j)( ) (15b)

p 'j (co,j) being the density of modes at ~,j of the
ij field, and [y('j)(w, j)]' being the average of
[) j(,'j)] over all modes of the ij field with frequency

quite general; they may be electxomagnetic fields
or acoustic fields (lattice vibrations). Their es-
sential characteristic is the fact that each field
consists of a large number of denumerable modes
with a range of frequencies that are closely spaced
about the pertinent transition frequency. Such
fields coupled to a collection of two-level systems
have been considered previously. For simplicity,
we set yj(j2) =y() =0 in Eq. (6). The field coupled to
a given transition will be labeled by the corre-
sponding indices, and fields coupled to different
transitions will be considered independent. (The
various fields may be different sets of modes —or
spectral regions —of ihe same field. ) We take
a&j& aj for j&i, and set (d, j= le, —vjl. Using the
"rotating-wave" approximation, ' we can write in
Eq. (6),

(1)y'(i)d(i) 2-sj2 V (ij)(I)(jj)s st + f)(jj)tots )Yjy jg jy ~ ~k k j J k j
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near &&, 8~ is obtained from 8" by re-
placing B,"l(t) with B~'~l(0), and represents the
free-field value of 8'~ . Substitution from Eq.
(15a) into Eq. (14a) gives a set of equations for
the (collective) molecular variables only, since
8''~l is prescribed. Equations (14) and (15) are
valid both classically and quantum mechanically.
[Note that, quantum mechanically, 8~'~l commutes
with the (equal time) molecular variables, and
8~,'~l does not. ]

We consider the ease in which the fields are ini-
tially unexcited, and enquire about the time de-
velopment of the occupation number expectation
values &A, A, &. The initial condition with respect
to the fields implies 9&0~~=0, classically, and

8i,'~&~& =
& ~8&,

'~'t =0, quantum mechanically. Equa-
tions (14) and (15) then yield

where the summation is over k only, n, -=A~~A. „A.
is equal to 1 quantum mechanically and to 0 clas-
sically, and the expectation-value brackets are
dropped classically. For N= 1, Eqs. (16) assume
a much simpler form quantum mechanically,
since, from Eq. (11), &n,. n, & vanishes, and only
the linear terms remain. If the occupation num-
bers are initially well defined, Eqs. (16) yield,
quantum mechanically, for N& 1, the (second-
order) perturbation-theory relationship

Equations (1V) describe spontaneous emission (or
relaxation, for an acoustic field). They also ex-
hibit the physical meaning of o,~ as the spontaneous
emission rate —or spontaneous transition-prob-
ability rate —of a molecule from an upper occupied
level (the 0th) into a lower unoccupied level (the
ith). Equations (16) do not constitute a set of dif-
ferential equations for the quantum-mechanical
&n,.&'s, since, in general, &n, n, &x&n~&&n, &. Only
for the case K =1 (in which the nonlinear terms
vanish) do we obtain such a set, the solution of
which, for two levels, yields the same result of
exponential decay as the %eisskopf-%igner theory'4
(in which only two levels are considered). It is
interesting to note that only the linear terms of
Eqs. (16) and (1V) are contained in quantum-me-
chanical rate equations; the bi1,inear terms de-
scribe coopeI ative —or coher ent —effects that are
ignored in such equations.

The details of the solution of Eqs. (16) are be-
yond the scope of the p1esent dlscuss1on. How-
ever, a few additional remarks about these equa-
tions are in order. A method for the exact solution
of the quantum-mechanical version can be set up
along the lines used in solving an angular-mo-
mentum coupled-moments equation in Ref. 7. This
method requires a separate calculation for each
N, and becomes increasingly complicated as N
increases. In their classical version (which de-
scribes the classical analog coupled to a classical
field) Eqs. (16) provide a set of nonlinear dif-
ferential equations for the occupation numbers n&.

Likewise, if we apPzoxippg gtg in the quantum-
mechanical version by setting &n, n, &= &n, & &n, &,
we obtain a somewhat different set of nonlinear
equations, to which we may refer as the semi-
quantum-mechanical approximation' (since the
nonvanishing value of A, comes from commutators).
These two sets differ significantly only when n„
for j& k, is not larger than unity. It is reasonable
to conclude that as far as spontaneous emission
is concerned the classical-analog behavior ap-
proximates that of the quantum-mechanical sys-
tem when n, is larger than unity, a conclusion
consistent with a more detailed examination of
spontaneous emission from two-level systems in
Ref. 7. One may also argue that a large value
of &8( ) ls associated with high quantum numbers
of the jth harmonic oscillator, and justifies clas-
sical treatment according to the correspondence
principle. The joining of the quantum-mechanical
perturbation-theory solution (in the region where
the classical solution is invalid) to the classical
solution (in the region where it becomes valid)
constitutes another method of approximation. Sta-
tistical properties of the quantum-mechanical
solution ean be retained in this method. '

The special case of a collection of three-level
systems emitting spontaneously has been discussed
in the literature. "'" In Ref. 15, a group-theo-
retical treatment [utilizing SU(3) group properties]
yields a result equivalent to the specialization of
Eqs. (1V) to three levels. The authors, however
use this result to produce one that is, essentially,
a differential equation for &n, & obtained by spe-
cializing Eqs. (16) to three levels and replacing
&n~n, & by (n~& &n, & (thus making the semi-quantum-
mechanical approximation), without noting the ap-
pl oximation involved. In Ref. 16, the interaction
between a three-level system and a radiation field
is analyzed by semiclassical theory. The result-
ing equations —as is to be expected —are equivalent
to the classical version of Eqs. (16) specialized to
the three-level case.

Equations (14) and (15) are applicable to inter-
actions with excited fields also, of course, and
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may be used to obtain information about dipole
moments as well as occupation numbers (or ener-
gies). Further study along these lines will not
only yield additional information about a collection
of n-level systems interacting cooperatively with
fields, but will exhibit explicitly the difference
between the quantum-mechanical and classical re-
sults, and indicate the extent of the usefulness of
the classical analog.

APPENDIX

Consider the vector

[1)=-a (t) "a&~(t) a""(t)lo),

where

so that

K[1]=a, " „"(K- g r)10)=0,

(1[K[»=0.

Now, (1[K[1) consists of a sum of terms, each
one of which is the norm of a vector; each term
must therefore vanish. For a suitable choice of
r, 's, one of these terms will be the norm of the
vector

[2)—= a~+& ' af& ' a+n [0),

r] =N,

and [0) is a vector satisfying the relationship

where the p, 's are an arbitrary set of numbers
satisfying

K(t)[0)—= g at(t)a&(t)[0) =N[0) . QPq =N+ 1.

The commutation relationship of Eq. (3) yields

[x,a,"".a„"]= (Pv,) a," "g"
Since any vector on the left side of Eq. (11) can be
written as a product of a, 's operating on [2), Eq.
(11) is proved.
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