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The laser heating of plasma electrons in a uniform static magnetic field via the inverse bremsstrahlung

process is considered. A kinetic equation is derived, and the change in kinetic energy of the electrons is

calculated. For laser radiation propagating parallel to the magnetic field and incident on cold electrons,

it is found that multiphoton processes are dominant when the laser frequency is near the electron

cyclotron frequency. The multiphoton absorption coefficient is found to decrease as the laser frequency

approaches the electron cyclotron frequency. The presence of the magnetic field reduces the intensity

threshold above which multiphoton absorption occurs.

I. INTRODUCTION II. SOLUTION TO THE SCHRODINGER EQUATION

There has been recent interest in using CO, laser
radiation to heat plasma in (9-pinch or solenoidal
magnetic fields. ' ' Since the laser frequency is
much greater than the electron cyclotron frequency
in these experiments, the magnetic field probably
has little effect on the rate of absorption of laser
energy by the electrons, but has a major effect
on particle confinement and gas breakdown thresh-
olds. ' However, a resonance condition, where
the laser frequency is equal to the electron cyclo-
tron frequency, may be approached by increasing
the magnetic field strength or by using longer-
wavelength lasers. Intense submillimeter lasers
are becoming available, ' and it is important to
consider the cyclotron resonance absorption of
this radiation.

The inverse bremsstrahlung process is believed
to play a' role in the heating of a plasma by laser
radiation. ' During this process, a plasma electron
gains energy from the eleetromagnetie field of the
laser beam by absorbing laser photons during a
collision with a nucleus. %e consider here the
inverse bremsstrahlung absorption of laser radia-
tion, and include the effects of a strong magnetic
field.

The laser beam is treated as a classical plane
electromagnetic wave in the dipole appxoximation.
The plasma electrons are described by the solution
to the Schrodinger equation for an electron in the
laser field and a uniform static magnetic field.
The scattering of electrons by nuclei, which are
assumed to be uncorrelated and fixed in space,
is treated using first-order perturbation theory. ' '
The transition probabilities are used to write a
kinetic equation for the electrons. For the case
of laser radiation propagating parallel to the
magnetic field and incident on cold electrons, the
absorption coefficient is found to decrease as the
laser frequency approaches the electron cyclotron
frequency.

We let, the magnetic field be in the + z direction.
The spatial dependence of the electromagnetic field
of the laser beam is neglected (dipole approxima-
tion). The vector potential of the laser and mag-
netic fields is taken to be

A(y, I) =A(t) By e„—

where B is the magnetic field strength and A(t)
represents the field of the laser beam. The solu-
tion to the time-dependent Schrodinger equation
is"

q =e p(x-iB„t/I) exp(ip ~ x/0)
/' t

x exp(-(i/Rnlllj f il{t'(di')B„({(, (((

where E„=S&,( n')+, n=0, 1, 2, . . . ,

p=(&. , e(t), p. ),
&(t) =

I p - (e/c)A(t) I'- [p*-G(t)j'.
H ($) =(m(e /wg)' '(2"nl) ' 'e t 'H„(t),
$ =(m(u, /5)'~' y —(m(u, n) '~'[p, —G(t)j.

Here (e, =1e1B/mc is the cyclotron frequency,
P„and P, are constants of the motion, n is the
Landau level, and H„(() is the harmonic-os-
cillator wave function. The real functions of time
G(t) and Q(t) are determined by the equation"

G(t) +i@(t)=(e(d, /c) dt' [A, (t ') —iA, (t')j

x exp[i(e, (t —t')j,
(2)

where A„(t) and A„(t) are components of A(t)
For later use, we consider here some properties

of the wave function (1). The orthonormality re-
lation is

d'xy+y, = 2~ '~ p,.-p„& p„-p„&„,„, ,

10



1864 JOHN F. SE E LY 10

where unit normalization volume is assumed. The
average value of the energy of the electron. is

'2

d'x/*2m ' —. V- —A y, t
z c

=H„+(2 )
' (0 ——A,) ~

(Q
——A„)

+ pg- —A

Since Eq. (3}does not contain P„ the system is
degenerate with respect to P, . The degeneracy
is given by

(xxp)- I dp, p 2=me. yxxx,

which is the same degeneracy that would occur
if only the magnetic field were present. "

III. TRANSITION PROBABILITY

Treating the nuclear potential V(x) as a per-
turbation, the probability amplitude for the transi-
tion from state 1 with quantum numbers Py Py„
n, to state 2 with quantum numbers p~, p„, n, is

r/2
a(l-2) = —(i/tt) d'xdtggV(x)(l), . (5)

-r/2

We write the Coulomb potential in the form

V(x) =-4wZe'if' g q 'exp[iq. (x+x, )/0],

where x is the position of the nucleus. Substi-
tuting Eqs. (1) and (6) into Eq. (5) and performing
the integration over x and z, we obtain:

&/2
a(1-2) =2tZe'(2wÃ}H P q 'exp(iq x„/N)5(P„-p„—q, ) 6(p„-p„—q, ) dtexp[i(E„-E„)t/ttJ

-&/2 2 j.
q

&exP
2

dt' A, -A, I t (7)

where

t, =(m(o, /n)'t'y —(m&u, s) '~'[p(, —G(t)J,
i=1 or 2

p =(q,'+ q', }/2 ms(u, ,

y =tan '(q, /q. ),
(10)

(8)

I(t) =H(n„n, )j(n„n„p)
x exp[iq„(P„+P„—2G)/2mb(22, ],

where

H(n„n, ) =(- 1}HHe'tH2 HH)e,

j'(n n p) =(n I n () e (tHp( 2+HH& i 2

"2FH(- ni —n.; —1/p),

i(i)= f dxexP(ie, p/2)8„((, )H„((,) .

lntegrals similar to the one in Eq. (8) have been
considered by several authors. ~ The result is

and, F,(-n„—n„1/p) is th—e hypergeometric
function. The integration over t in Eq. (7) may
be performed after expanding the factors that
are periodic in time in the Fourier series

p, (e)e " exp * J di (=H
——A,)'

iq„G ieq dt' A
mk(g), met

Then Eq. (7}may be written

a(1-2) =2iZe'(2')' g q 'exp(iq x„/S)6(P„-P„—q, )6(P, -P„— q} (H„n)a&2( „n„n)p
I OC2

x exp "( '* '*' Q F,(q}&(E„+P'„/2m —E —P' /2m-sa~) .
C g «OO

(12)

Equation (12) is now squared to obtain the transition probability per unit time. We assume that
the nuclei are randomly distributed in space. Then the sums over the positions of the uncorrelated nuclei

IS

g g exp[i(q ~ X„-q x())/tt] =N, 6;;. ,
a g

where N& is the ion density. The transition probability per unit time, summed over the nuclei, is
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Ia(l-2) I'/T = g T(s, 1-2),
S

T(s, 1-2)=4Z'e'N& (2')' g q, 'I J(n» n„p 0)
I' IE,(q,)I'5(E„+p'„/2m-E„, -p'„/2 m-sh'(d),

where q, =(p, —p„, Z„,p„-p„) and p, is given by
Eq. (10) with q~ instead of q. From the 6 function
of Eq. (13), we see that transitions are induced
between Landau levels n, and n„with the absorp-
tion (s &0) or emission (s&0) of Is I photons.

mm 00

S stp

T (s, 1 -2)[N, (1) —N, (2)J . (15)

We now take the classical limit of Eq. (15) by
letting

IV. KINETIC EQUATION
and

S-0 (16}

The change in N, (2), the number of electrons
in state 2, may be written schematically as in
Fig. 1, Eq. (14), where the second sum is o2/er

the quantum numbers of state 1. As in Ref. 9,
we convert the schematic equation (14) to a
mathematical equation by substituting the transi-
tion probability (13). For example, the second
term in Eq. (14) becomes

such that

S(v, (n+ —;)-—,'mv~~ . (18)

Taking into account the degeneracy in P, given by
Eq. (4), the sum over the quantum numbers of
state 1 is

T(-s, 1-2)N, (1)[1-N,(2}J,

where N, (1}is the square of the matrix element
of the fermion destruction operator and [1—N, (2}J
is the square of the matrix element of the fermion
creation operator. These factors appear in the
transition probability when the electrons are
treated using second-quantized theory rather than
the first-quantized theory used in Sec. III." From
Eq. (13), it may be shown that T(s, 1-2) = T(- s,
2-1). Thus Eq. (14) may be written

n=p PS

Letting the sums over n and P, become integrals
and using dn =(m/S(2), ) v2 dv2, we obtain in the
classical limit

A Maxwel;ian distribution is assumed for the
electrons. The classical limit of Eq. (15) is

sf =4Z'e'N, N, '(m/2veT)' 'J 4', [exp( mv', /222) —exp( -ms', /22T)]-
& Q (IJ(n„n., p.) I')c.L.~.' Q I&.(q.)I'5(&-sg~),

Oy ~ 220

s&p

(19)

where f, (v) is the electron distribution function,
the subscript C.L. indicates that the classical
limits (16)-(18) are to be taken in the brackets,
and the change in kinetic energy of the electrons
is

1 10= gmv2 —gmv~ .

Equation (19) is the kinetic equation for the elec-
tro'ns.

V. HEATING RATE

The sums and integrals in the kinetic equation
(19) are in general difficult to evaluate. However,
Eq. (19) takes a simpler form for the special case
of circularly polarized laser radiation propagating
parallel to the magnetic field. Then the Fourier
coefficients E, are Bessel functions.

We assume the right-hand circularly polarized
plane wave

a Ne(&)

I

FIG. 1. Change in N~(2),
the number of electrons in
state 2.
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A(t) =(cE,/&u}(e, cos&ut+e, sin&et) .
From Eq. (2), G(t) =-eEO+, (cos"t)/u&(&u —e, ).
Using Eq. (11), the square of the Fourier coeffi-
cient is found to be

In the limit of low temperature, the Maxwellian
distribution (m/2vkT}"'exp(-mv'/2kT) reduces
to the 6 function 6(v). Using this 6 function to
evaluate the integration over velocity, Eq. (23)
becomes

IF.(q.) I'= ld. ('/g )I,
where J, is the Bessel function and

A. =eE,q»/m(~ —&u, ) .

(2o)

(21)

; "' =2Z&s'N, N.~ g ( IZ(0, ~, p, ) I')c.,
x q, '6(mv,'/2 —eE,q»/m(' —&o, )),

The field parameter ~ depends on the laser field
strength Eo, the laser frequency ~, and the elec-
tron cyclotron frequency ~, . The case ~,« ~
is essentially the problem considered in a previous
paper. ' We consider here only the case ~, -(d.
Then ~»Sco and the argument of the Bessel func-
tion is large.

For large values of argument, the Bessel func-
tion is small except when the order s is equal to
the argument. The sum over s in Eq. (19) may
be written approximately

IZ,(X/Sue) I'6(Q-ske) = s[6(Q —A)+6(Q+X)].

Ao

The factor & may be verified by integrating both
sides of the equation over Q. The kinetic equation
(19) becomes

=2Z'e4N, N. nP(m/2skT)' 'exp(-mv', /2kT}

(24}

where q, =(p„,q„,p„) and p, is givenby Eq. (10)
with q, instead of q. Using, FO(0, —n„' —1/p, ) =1
and Eq. (9}, we write

IJ(0, n„p,)l'=(n, !) 'e "p,"'. (25)

g [l~(0, ~, p.) I'}c..=2(2s)-"Z 6..~ .,
P2

In the classical limits n, -~ and p, -~, it may
be shown that I J(0, n„p,) I' is nonzero only for
n, = p, . From Eq. (18) and the definition p, =(P',,
+q', )/2mS&u, , this implies that the only terms in
the sum over q„which contribute to Eq. (24) are
those for which m'v2'y =q„. There are two such
terms corresponding to q„=+mv». Using Stirling's
approximation for the factorial in Eq. (25), we
find IZ(0, n„p,) I'=(2v} 't'when n, = p, . Sub-
stituting

v cls, + po
a„

x[(e't'r —1)6(Q —a)+(e " —1)6(Q+&)].

(22)
The first & function corresponds to the absorption
and the second to the emission of A./geo photons.
Since ~»S~, only multiphoton'processes are
significant. We assume that the electron tem-
perature is low. Then kT« ~ and the emission
term in Eq. (22) is negligible compared to the
absorption term. Equation (22) becomes

4(2
y

into Eq. (24), we obtain

'f'("') =2Z' 'N N
roc

0

The change in average kinetic energy of the elec-
trons is found by substituting Eq. (26} into

et
.' ' =2Z's'N N a(m/2vkT)3'e

d(e) d, mv', Sf, (v)
dt 2 2 &t

(27)

x d vj Jn„n„po
Cy

x exp(-mv', /2kT)6(Q —'). (23)
I

Choosing the coordinate axes so that v2~ = v, sin6)»
we write the 6 function appearing in Eq. (26) in
the form"

&
mv,' eE, v2sin6I, ~ —cu,

& &
2eE, sin8,6v~+6 v2—

Substituting Eq. (26) into Eq (27), the .change in
average kinetic energy of the electrons may be
written in the form

d(e)
dt =~o~efr y

where 60 is the oscillatory energy of the electron
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found from Eq. (3),

Eo'e 8 0/2m(IA1 l4~ )

and the effective collision frequency v,ff is

v,ff = 8w'N& N, Z'em
~
~ —&u, I '/8 ', . (28)

The effective collision frequency is propor-
tional to &, '. The absorption coefficient given
by I '(d (e)/dt), where I is the laser intensity,
is proportional to

~
&u —&u,~. Thus the absorption

coefficient decreases as the laser frequency
approaches the electron cyclotron frequency.
This is because the oscillatory energy of the
electrons is high, and the frequency of collisions
between high-energy electrons and nuclei is small.

We note that Eq. (28) does not contain a Coulomb
logarithm term which appears in other classical"
and quantum-mechanical' calculations. The
Coulomb logarithm normally enters because an
integral over impact parameter is divergent and
must be cut off. However, the sums and integrals
leading to Eq. (28) are convergent, and so no cut-
off need be assumed.

From Eq. (28), the number of photons absorbed
by a coM electron during a collision with a nucleus

eE,v~/(~ —u&, )
NEO

(29)

where v~ is the velocity of the electron perpen-
dicular to the laser beam. Using Eqs. (20) and

(13), it may be shown that the transition probability
is zero when vj =0. Most photons are absorbed
by electrons whose paths are nearly perpendicular
to the direction of propagation of the laser radia-

tion. Setting &mv ~ =SR+ in Eq. (29), we find

[2e'E ',/m((u —(u, )' j

Thus the number of photons absorbed is approxi-
mately equal to e,/n(u, the ratio of electron os-
cillatory energy to photon energy. Upon compari-
son with a previous calculation in which no mag-
netic field was assumed, we find that Eq. (30) is
larger by a factor of (1-e, /&u) '. Thus the
presence of the magnetic field reduces the laser
intensity threshold above which multiphoton pro-
cesses occur by a factor of (1-&u, /&u)'.

The above analysis of multiphoton cyclotron
resonance absorption is valid for oscillatory
energy e, greater than the photon energy S~ but
less than the electron rest energy mc'. This
corresponds to laser intensities of

5 x 10 N(e —&u~) &&I &&4x 10 '(u —e~)

where ~ and u, are in units of 10 Hz, and I is
in units of W/cm'. Absorption far from resonance
(~,«&o) is essentially the problem considered in
a previous paper. e

It has been shown that the inverse bremsstrahlung
absorption coefficient decreases as the laser fre-
quency co approaches the cyclotron frequency ~, .
Thus inverse bremsstrahlung absorption may be
insignificant compared to other effects, such as
the cyclotron damping which occurs when +- (d,
=—k V,„. Investigations, which take into account
the strong field of intense laser radiation, of other
resonant processes such as cyclotron damping
are needed.
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