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An exact expression for the single-particle reduced density matrix of a translationally invariant system
of bosons is obtained, as an average of a functional of the density and current operators. An
approximation scheme, based on small fluctuations in density and current, is used in its lowest order,
to approximate the single-particle reduced density matrix and the condensate density by a functional of
the structure factor, which is a measurable quantity. This is done for the ground state and for finite
temperatures. The resulting expressions for the condensate density are discussed. For the ideal gas the
result is correct below the condensation temperature. For the case of an interacting liquid, Bose-Einstein
condensation exists, in the ground states for two- and three-dimensional systems, and for finite
temperatures it does exist only in three dimensions. The present experimental knowledge of the
structure factor enables only a crude estimate of the condensed fraction which is found to be 0.1-0.2.

I. INTRODUCTION

The idea that the A phase transition occurring
in liquid He* at the A temperature is a Bose-
Einstein condensation modified by the interaction
between particles, was first suggested by London.*
The condensate density had been calculated, and
it played a dominant role in certain approximations
that stress the single-particle aspect.’”® These
approximations seem, however, to be unsatisfacto-
ry at liquid-He densities. On the other hand, in
other approximations that give a fairly good agree-
ment with experiment for the ground-state and
excitation spectrum of the system, such as the
Feynman,® the Pityevski,” and the Feynman-
Cohen® theories, the condensate does not play any
role at all, and no way of calculating it is sug-
gested. The reason for this is that the above theo-
ries stress the idea of collective excitations,
while the condensate is easily expressible only
in single-particle language.

The aim of this paper is twofold: to express
the single-particle reduced density matrix, and
hence the condensate density, in terms of col-
lective coordinates, and to express the above
quantities in terms of measurable quantities. In
Sec. II, a formal identity is derived, expressing
the single-particle reduced density matrix as an
average of a function of the density and current
operators. An approximation scheme, based on
the idea of expanding the physical quantities of
interest in terms of density and current fluctua-
tions, and which was previously used in deriving
the excitation spectrum,® is used in Sec. III in its
lowest order to obtain an approximation of the
ground -state single-particle reduced density ma-
trix and condensate density as functionals of the
ground -state structure factor. In Sec. IV, the

same is done for finite but low temperatures, and
the results are discussed.

II. FORMAL IDENTITY

It is known that all the information about oc-
cupation numbers of the single-particle states
can be derived from the single-particle reduced
density matrix

FE) =@'E)yE +T), (1)

where (---) denotes either ground-state or thermal
average, according to whether we are interested
in ground-state or finite-temperature properties.
Next, we express f(?) in terms of current and
density operators in order to be able to use some
convenient approximations derived for the opera-

tors and for the ground state.®~!! For simplicity
we choose T =(x,0,0),'? so that
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We define
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Differentiation of Eq. (3) with respect to x’ gives
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Rearranging this, and using the relation y(r)[1/
p()]y' (F) =1,'® where p(F) is the density operator,
one obtains

Am(?'){i— g—;zp*(F')ﬁ(f')‘?lr,—)]A"G'). (5)
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Using the relation
AOG')=PG'); (6)

one obtains
X Y(T’) ‘%r,ﬂ}p(?')>. ()

Using the notation of Ref. 9, one defines

)=J(T) +3ivp(T), (8)

where J(r) is the current-density operator. Equa-
tion (7) thus becomes

@)= <exp[ (ai +irt (r')—(lx—)ﬂ p(T’ )> 9)

where I'*' (') denotes the x component of the
vector I'' (¥’). Equation (9) represents f(T) ex-
actly in terms of an average of a function of cur-
rent and density operators.

III. GROUND-STATE APPROXIMATION

We now employ an approximation scheme that
was previously used to obtain the excitation spec-
trum of an interacting Bose liquid by approximat-
ing f(r) by a functional of the structure factor.

In order to clarify matters, we briefly discuss
the first step of this scheme. The system under
consideration is a system of N bosons interacting
via a two-body potential and contained in a huge
box of volume V and periodic boundary conditions.
The operators

rl= N1 fr*(r)e“q T dy (10)

and
b=z | p®e T aty (a1

form a complete set of operators in the sense that
any operator that commutes with all of them must
be a ¢ number.

Consider the algebra obeyed by these operators:

[pes 0,]=0, (12)
[Ti*, p,)==-N"Y?p 0, ,, (13)
[Tif, T4t | =N"Y2(q,Tit, - p,T31,), (14)

where the indices ¢ and j denote Cartesian com-
J

ponents of a vector. Consider also the relation
=T, -qgp_,. (15)

The assumption that the fluctuations of density
and current are small enables one to replace the
commutation relations in Eqgs. (12)-(14) by ap-
proximate ones,

[Py P, =0, (127)
[r3t, Pp)==Pidq _p, (13%)
[Ff,T,TZT]=0- (14").

Hence, in this approximation one can write for
q#0

et =g, (16)

pe==(n +n_), amn
where the n’s obey Bose commutation relations

[, 0,1 = [nd, n}] =0,

(75 M= 8-

Obviously, the i and 1" are not to be confused
with particle destruction and creation operators.
If the Hamiltonian is expanded, in the same spirit,
to second order in the density fluctuations, and
Egs. (16) and (17) are used, it is easily seen that
the ground state is the vacuum of excitations given
by the condition

(18)

2, [0)=0 (19)
for all ¢g. Here the o, are defined by the relations

n=u.al+v,0_, (20)
and

ul-v2=1, (21)

which, together with the requirement that %, and
v, be real and that they depend only on the absolute
value of g, implies that the a’s also obey the Bose
commutation relations. It is easily verified® that

u,=3(V§, +1/V§), (22)
v, =3(VS, -1/V§,), (23)

where S, is the ground-state structure factor. I
now introduce a further approximation, also used
in deriving the Feynman spectrum: 1 replace
1/p(r) by 1/p, where 5 is the average density.
The approximate expression for f(r) now becomes,
according to the identity proved in the Appendix,

fE) = <exp( . f TR Z g.m; e du e““”*"“)>p(r +r’)>

x
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(24)
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Expressing nand 1" in terms of @ and o', one obtains for the ground-state single-particle reduced density

matrix

f®)=(0 lexp(% \/VN 3 w0l (eH TG _ghd" ) oy g (enREF _ guileF )>
q

(p—ﬂzw +v )e‘F""'r (af+a_ )IO). (25)
»#0
Using the fact that all the terms in the sum over ¢ in (25) commute, we find
- 1 N - - ;
f(@) =[H exp (ﬁv—zuqvq(Z -2cosq r)>:| (p -— E (u,+v, Jeip F+ ’)
q=0
x| [exp( B ppa,(emiP T _glipt r"))>’ a;] |0). (26)

Using this result, as well as Egs. (22) and (23),

we get

16 =5 (e 3 %55
x<1 _§Z (s, - 1)@ —e"5'7)>. @7)

p=0

Taking this last equation at » - «, we get the fol-
lowing result for the density of the condensate

o
§z_:l>] (1 _ﬁ 3 (s,-1)>.
p#0

(28)

— 1
p[exp(ﬁ Z
q=0

IV. LOW-TEMPERATURE APPROXIMATION

We now turn to the case of a finite temperature

and assume that the Hamiltonian of the system may

be written as

H=Y" w,afa,. (29)

q#0

J

.
Obviously, the Hamiltonian (29), describing a sys-
tem of noninteracting excitations, may be used
only at very low temperatures. When evaluating
f() for finite temperatures, we must replace the
ground -state averages in Eq. (25) by thermal
averages.

The following useful relat1ons may easily be
proved'*:

- Bw
(e 0y = exp ro L), (30)

R 1+e—8w 1’
@ ma menp (o e ) e, ()

1+e” Bw - Bw
<eyaT+50a>=exp(%-y61 _ee— Bw>1 —e” Bw (32)
where in Egs. (30)-(32), (- --) denotes the thermal
average with respect to the Hamiltonian
h=wa'a (33)

and [a,a']=1. Using Egs. (27)-(29), one obtains
for finite temperature

oo f 1 S2-1 *,Q 2 (Sp=1)(1=e™P"7) (S, +1)(1 —e=iP"7)
f(r)=p eXP[N 45, (1 - cosq r)( R )]( NZ ’2(1 oo » 2(6&%6_1) )

a=0

The condensate density is now given by

— 1 SZ-1 2

o =p {€Xp N_ 4S 1+eﬂwq
q=0 a

A few points should be noted regarding Egs. (28)
and (35). First, S, appearing in both expressions
is the ground-state structure factor. This is due
to the assumption that at very low temperatures
the Hamiltonian has the same expansion to second
order in density fluctuations as when the ground
state i5 considered; i.e., we assume no tempera-
ture-dependent renormalization. Hence, the g,

(34)

D045

S,-1) Sp+1 |
e B‘“p)+2(e5“’0—1)>}' (35)

and y, needed to diagonalize the Hamiltonian are
the same as for the ground state. Using Eq. (28)
for the ideal gas, where S, is known to be 1 for
g#0, one obtains the correct result for the zero-
temperature n,, namely, n,=p. Moreover, on
close inspection of Eq. (35), we see that we obtain
the correct result for all temperatures below the
condensation temperature. Studying Eqs. (28)-(35)
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for the interacting liquid and assuming S, to be
linear in |g| for small |g|, we obtain the Bose-
Einstein condensate (BEC) in the ground state only
for the three-dimensional and two-dimensional
cases. At finite temperatures one obtains, using
the Feynman spectrum for small q, BEC only in
three dimensions.'s''® It is also interesting to
note that when (1/N)3, ., [(SZ -1)/4S,] is small,
the relation between n, and the S,’s obtained by
expanding the exponential to first order in (1/N)
XY e =0l (SZ —1)/4S,] agrees with the results pre-
viously obtained by various model calculations

and lowest-order approximations.®*:'” We believe
(28) to be valid beyond the region of applicability
of the previously mentioned model calculations,

as is the case of the Feynman spectrum with re-
spect to the model spectra. Corrections to the
above approximation involving the Feynman-Cohen
approximation will be dealt with in future work.
These corrections will serve also to obtain a better
understanding of the region of validity of Eqs. (28)
and (35). Although the existing data for S, enables
us to get only a crude estimate of n,/p, which in
the ground state is found to be 0.1-0.2, the re-
sult is much closer to the approximate result of
Ref. 2 than the result one would obtain by expand-
ing the exponential to first order in (1/N)}, .,
x[(SZ-1)/4S,], which is 0.4-0.5.

It is interesting to compare the results of this
paper with the results of other theories developed
for the analysis of real He*. Two approaches were
used to obtain n,/p. The essence of the first ap-
proach is to approximate the ground state by a
Jastrow wave function, and to calculate the single-
particle reduced density matrix directly. The
last step is carried out by noting the formal re-
semblance of this problem and the problem of the
statistical mechanics of a classical liquid in the
canonical ensemble.?''®"2! The results for n,/p
in the ground state range from 0.08 to 0.25. The
second approach, initiated by Hohenberg and Platz-
man®? and developed by others,?® suggests a direct
way of measuring n,, using neutron diffraction at
high momenta. Recent experiments®? give a value
of 0.024 +0.01 for n,/p. The reason for the dis-
crepancy between the results of the two approaches
might be, as already pointed out,?® that the experi-
ments mentioned were carried out at 7=1.2°K
and not at T=0°K.
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APPENDIX

In this appendix we prove that

exp [a (38; + 0(’6))]
=Ax[:exp(f e Oo(x") dx')] exp (‘1 %) ’

(A1)

where O(x) is an operator depending on the param-
eter x (such as a field or density operator), « is

a ¢ number, and Ax means anti-x ordering. Let
|n, (x,0)) be a state depending on the parameter

x, and let us define

|n(x, @) = exp ,:a(g% +0(x)>] In(x,0)),  (A2)
so that

= Inx, o) = ( — +o(x)) In(x, @) . (A3)
Defining

l¢(x, @) = exp (—a%) In(x, a)) (A4)
we obtain

5% [¢(x, a))=exp (—a —:;)O(x) exp (a 5%) lo(x, a))

=0(x - a)|¢(x, @), (A5)

because exp(a 8/6x) translates x to x +a.
The solution of Eq. (A5) is

[o(x, @)y=v exp(foa O(x - a’) da’)l¢(x, 0)),

(A8)

where Vv denotes « ordering. Finally, after using
the definition of |¢) and changing the variable of
integration, we get '

[n(x, @))

=Ax [exp ([H : O(x’) dx')] exp a%) [n(x,0)),

(AT)
so that (A1) is established.
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