
PHYSICAL REVIE% A VOLU'ME 10, NUMBER 5 NOVEMBER 1974

Elementary excitations in superfluity liqmfi helium based on the Bogoliubov-Zubarev
formalism

A. K. Rajagopa1 and G. S. Grcst
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

(Received 30 November 1973; revised manuscript received 24 January 1974)

The Bogoliubov-Zubarev (BZ) formulation of the superfluid Bose liquid in terms of density as a
collective variable leads to a non-Hermitian Hamiltonian (H») for describing the elementary

excitations. An appropriate mathematical framework for dealing with non-Hermitian operators is here

employed for the first time to develop schemes for studying the elementary excitations of the Bose

liquid. The energies of the ground and the first excited states associated with H» in "perturbation"

theory are derived. A consistent scattering theory appropriate to H» is also given from which the

two-roton scattering amplitude in the leading order of "perturbation" theory is explicitly deduced. A
finite-temperature Green's-function theory is also presented. These results are shown to be equivalent to
those based on the Sunakawa Hamiltonian. Results for the energy spectrum are also shown to be

equivalent with those evaluated by means of a variation-perturbation procedure based on the method of
correlated basis functions in the uniform limit.

I. INTRODUCTION

In 1941, with remarkable insight, Landau' pro-
posed the now well-known excitation spectrum of
superfluid liquid helium as a microscopic explana-
tion of the two-fluid model. ' The experimental ob-
servations' are in qualitative agreement with Lan-
dau's conjecture for all momenta up to the roton
region, while for larger momenta the spectrum
flattens out into a plateau region as was proposed
by Pitaevskii, instead of following a free-parti-
cle-like spectrum. Also, it was found that there
are two branches in the spectrum of excitations. '
There are several first-principles microscopic
theories all of whose aim is to dexg~e the Landau

spectrum; they may broadly be classified into two

types. One, which employs a particle description,
was initiated by Bogoliubov' in 1947. This theory
was based on a weakly interacting system of Bose
particles as a model for the liquid and deduced
essentially the Landau spectrum by assuming that
there is a finite fraction of the atoms in the zero
momentum condensate. The second class of theo-
ries employs a collective description of the fluid,
using density as a variable. Here, we may divide
such theories into two subclasses. Feynman and
Cohen' in 1956 suggested a variational procedure
for computing the Landau spectrum, which brought
forth important ideas about the structure of the
wave function for a strongly, correlated system
such as liquid helium. This led to the concept of
"back flow" as a physical description of the spec-
trum near the roton region, even though the actual
comparison with the experimental result near this
region is not satisfactory. The principles of the
Feynman-Cohen theory have culminated into a very
sophisticated formalism pioneered by Feenberg, '

known as the "correlated-basis-function" approach.
The other subclass of theories is a field theory
which employs density as a collective variable to
describe a liquid; such a theory was first advanced

by Bogoliubov and Zubarev' (BZ) in 1955. This
theory obtained the same spectrum as was derived
by Bogoliubov before, ' but without the appearance
of the number of atoms in the zero momentum con-
densate in the expression for the Landau spectrum.
But the unpalatable feature of this theory (which

perhaps also explains why not much development
in this direction took place) is that it led to a non-
Hermitian Hamiltonian for describing the collective
excitations of the system. This work is, however,
remarkable in that the associated wave function in
this description was shown by these authors to
have the same appearance as Feynman-Cohen's
variational wave function. Also, they explained
how to reconcile the result that the single-particle
spectrum' and the density-fluctuation spectrum'
could be the same for long wavelengths. Later,
Gavoret and Nozieres' proved that the one-particle
spectrum and the density-fluctuation spectrum for
a superfluid liquid are identical to all orders in
perturbation theory, in the long-wavelength limit.

While all these theories are in qualitative agree-
ment with the experimental spectrum up to the
roton region, ' none of them could explain the pla-
teau region and the second branch, until 1970 when
Ruvalds and Zawadowski" advanced an ingenious
explanation involving two-roton bound states. In
the Feynman language, for momenta larger than
the roton momentum, multiple-roton excitations
ought to become an important process; Ruvalds
and Zawadowski gave a procedure to deal with such
processes, including final-state interactions.

The first attempt at connecting the various dif-
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ferent approaches to the theory of a many-boson
system was made in particular for a charged Bose
gas. Brueckner" evaluated the ground-state ener-
gy through second order by summing one- and two-
ring diagrams in the Bogoliubov occupation-num-
ber representation. ' Lee" showed this to be equiv-
alent to that obtained by the method of correlated
basis functions (CBF) in the uniform limit. ' This
fact is remarkable in that the CBF result, which
relies on a variational description of the ground
state in the Bijl-Dingle-Jastrow (BDJ) type wave
function, is thus non-field-theoretic in approach
while the occupation number. representation is
field theoretic in nature. While the CBF result is
valid in the uniform limit (the radial distribution
function at the origin is not far from unity), the
other result is valid in the weak-coupling limit.
By calculating the leading order corrections to the
variational energy by a perturbation theory which
takes into account the three phonon contributions
absent in the BDJ wave functions, ' Lee' has ex-
tended this analysis to other many-boson systems.

Connections with the collective-variable approach
of Bogoliubov and Zubarev' to the CBF results was
first considered by Berdahl and Lee. '4 They ex-
plicitly showed the equivalence of the second-order
corrections to the ground-state energy obtained by
BZ' with the results obtained from a variational
perturbation formalism in the uniform limit. They
also compared the wave functions obtained from
these two methods, but since they did not take into
account the non-Hermiticity of the BZ Hamilto-
nian, the connection seems less than satisfying.
Lee" has also considered the extension of the BZ
formalism to the energy spectrum for elementary
excitations. He has, by an incorrect formalism,
attempted to calculate the second-order correc-
tions to the Bogoliubov excitation spectrum. He
does write what seems to be the correct second-
order energy shift but its derivation is incorrect
as shown here. Using this energy shift, he has
shown that the results agree completely with a
CBF variational-perturbation theory in the uniform
limit. Thus with our demonstration of the connec-
tion of the Sunakawa results to those of BZ, we
deduce their equivalence to the CBF theories.

It should be noted that all previous attempts to
show equivalence between various theories have
been concerned with calculating the ground and
first excited states through second order in per-
turbation theory. In view of the recent discussion
of the existence of the bound-roton pairs by Ru-
valds and Zawadowski, ' it is important to consider
also the equivalence of the two-roton scattering
amplitude, calculated by the use of different for-
malisms. This has in fact been done in this paper
for the BZ and Sunakawa Hamiltonians.

Our concern in the present paper is to develop a
practical mathematical procedure for dealing with
the Bogoliubov- Zubarev Hamiltonian. The reasons
for this are best explained by reviewing briefly
the theories of superfluid liquid helium, using the
collective description. The Bogoliubov and Zuba-
rev' paper contains many new concepts, both math-
ematical and physical. The idea of using density
as a variable for describing the superfluid is very
physical but this means in mathematical terms
the introduction of a "wave functional" of density.
Chan and & alatin" published an account of how one
can deal with such new functionals. The origin of
the non-Hermitian nature of the Hamiltonian was
explained by Bogoliubov and Zubarev as due to
their not employing a variable canonically conju-
gate to density. This immediately raised the ques-
tion whether one could introduce such a canonical-
ly conjugate variable or whether one should refor-
mulate the collective-variable approach differently.
Hiroike" reformulated the BZ approach and suc-
cessfully obtained a Hermitian Hamiltonian which
contained an infinite series of interaction terms in
contrast to the BZ Hamiltonian and with an arbi-
trary cutoff wave-vector to ensure conservation
of particle density. A more successful approach
was proposed by Sunakawa and co-workers" who
sought a canonical conjugate variable to density.
This formulation also led to a Hermitian Hamil-
tonian but with an infinite series of interaction
terms. It turns out that the conjugate variable is
the "velocity operator" for the fluid' but the math-
ematical existence of such an operator has been
seriously questioned by many. See, for instance,
a recent discussion of this aspect by Kobe and
Coomer. " In the more recent works, Sunakawa
uses a projection operator to derive the Hamil-
tonian in terms of the density and the velocity
operators. The success of the Sunakawa theory
(S) is that by using a model for the potential of
interaction between two helium atoms, the spec-
trum of the excitations in liquid helium has been
numerically computed and seems to be in fair
agreement with the experimental results including
the multibranch spectrum. Similar numerical
agreement with experimental results is obtained
also by the Feenberg school. Moreover, the theo-
ry of two-roton scattering amplitude based on the
S formalism has been developed by Rajagopal,
Bagchi, and Ruvalds" and they find some evidence
for the attractive two-roton interaction postulated
by Ruvalds and Zawadowski" earlier as a mech-
anism to explain the spectrum beyond the roton
momentum region. Straley" has recently reviewed
many of these theories and concluded that the BZ
approach is perhaps the best collective-variable
approach but pointed out that there seems to be no
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available mathematical method of dealing with the
non-Hermitian Hamiltonian. He argued that the
BZ theory is similar in some respects to the Dy-
son theory" of spin-wave interactions in the theo-
ry of the Heisenberg ferromagnet, where also a
non-Hermitian Hamiltonian plays a significant role.
We may add here in this connection that a Hermi-
tian Hamiltonian was derived by Holstein and
Primakoff' which contained an infinite series of
interactions. In a sense, the S theory parallels
that of Holstein-Primakoff theory while the BZ
formalism parallels Dyson's. Dyson developed a
mathematical method for dealing with his non-
Hermitian Hamiltonian by introducing an indefinite
metric. An essentially similar method is em-
ployed in the present paper, except that it has a
simpler structure because of the nature of the BZ
Hamiltonian.

Berdahl" has developed another collective-vari-
able theory employing density as a variable but
phase as its conjugate. He has shown that in par-
ticular there are two equivalent combinations of
these, one leading to the non-Hermitian Hamilto-
nian. The latter, he finds is identical to the S Ham-
iltonian, since the gradient of the phase operator
turns out to be velocity operator of S. We may also
point out that the density and phase operators lead-
ing to a Hermitian Hamiltonian was developed
earlier by Nishiyama. ' Berdahl related the two
Hamiltonians by a canonical, nonunitary trans-
formation, which he finds to be the "weight fac-
tor" derived, by Chan and Palatin' required to
make Qz Hermitian. Using his Hermitian Hamil-
tonian, which is also an infinite series, Berdahl
proved through second order that the ground-state
energy of the system is identical to those obtained
by BZ, CBF, and Bogoliubov's original formula-
tion. ' We may remark here that the Hermitian
formulation leads to apparent divergences in all
orders of perturbation theory whereas no such di-
vergences appear in our approach presented in this
paper.

The method employed in the present paper exists
in the mathematical literature' and has been for-
mally employed on two occasions that we know of
in many-body physics. ' ' We give an outline of
the. formalism in Sec. II and develop "perturbation"
theory appropriate to H». We compute the ground-
state energy and the spectrum of the one excitation
up to "second order. " The latter was computed by
BZ' and more recently again by Berdahl and Lee'~;
the former by Lee." Lee used a trick employed

by BZ and we show how this works only for the
ground state and not for the excited states. Our
results for the ground state agree with the BZ
method' and disagree with Lee' s" for the first
excited state. In Sec. III we develop an appropriate
scattering theory and deduce from it to leading
order, the roton-roton scattering amplitude, as
this quantity is of importance in any theory of
superfluid liquid helium. In Sec. 9, a finite-tem-
perature theory is outlined. Lee in Refs. 14 and
15 tried to relate the BZ results with the correlat-
ed-basis-function (CBF) approach, and similar
results based on other theories, by comparing
only the ground- and excited-state energies. In
Sec. V we compare our results with those obtained
in the S formalism. Section UI contains explicit
proofs of the equivalence of both the energy spec-
trum and the scattering amplitude. In Sec. VII we
discuss the relationship with CBF results. We
summarize our results in Sec. VIII. In an Appen-
dix, a formal attempt to relate the S approach and
the BZ approach is outlined, which may elucidate
some of the features of the two theories.

II. METHOD OF ANALYSIS FOR THE SPECTRUM OF Hgz

Following Berdahl and Lee,"we write jI~z in the
following form:

a,z =a, +a, .

Here

H, =Es, + Q Es (k) b~ b~, (2a)

E', =-'(N-l}pV(k =0) -— E (k)
(

4p s
Z, (2wP'

(2b)

ff'k' 4m p V(k)
2m' '

k
(2c)

in their notation. p =N/0, the number density, and

V@) is the Fourier transform of the interatomic
(He') potential. A~ is the lowest-order approxima-
tion to the experimentally measured structure fac-
tor S(jk)." The b~, bt, are operators obeying the
usual boson commutation rules. The interacting
part of H&z, namely, &„ is written in a more sym-
metric form than those given elsewhere, and is
non-Hermitian:

H, = Q &p,, k, , g, -, Iy,'l(k, k,k, )b~,b,,b,,+PP(k,k,k, )b~,b„b„+yelp,kP, )b~~ b ~ b ~ +ygl(k, k,k, )bt~ bt, b, ,],&is&2.~3
(kg 's ~0)
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with

yi'&(k, k,k, ) = (yX, Z, X, )-"g (k, k, )(~„+1)(~, +1)~, ,
s (x23)

(3a)

y~'&(k, k,k, ) = (V~„~„~„)-'l'g (k, ~ k, )(~„-1)(~„-1)~„,
p(&23)

[P(123) here stands for the three cyclic permutation of (k„k„k,)]

(3b)

1fz&(k,k k ) (yg g g )
~ 2f(k k )(g +1)(g +1)A~ +[(k, k )A (g +1)+(k~ k~)Aq (Aq +1)](Xq 1)l

and

=symmetric in (k„k,), (3c)

yP(k, k k~2)=—+A& A& X~ ) '~2[(k 'k )(Xz —1)(hz -1)kz, +[(k, 'k )Az (Xz —1)+ (k 'k, )A& (Az —1)](Az +1)].

=symmetric in (k„k,). (3d)

Note that this Hamiltonian is complete and does
not contain higher-order interaction terms in con-
trast to the Sunakawa" theory.

An outline of the derivation of this Hamiltonian
is not given here as they may be found in the re-
cent papers of Straley" and Berdahl and Lee.'
The latter authors calculated the ground-state en-
ergy and Lee" calculated the energy of the first
excited state of H» up to second order in H„ in
perturbation theory, by a procedure outlined origi-
nally by Bogoliubov and Zubarev. ' This procedure
is questionable in view of the non-Hermitian char-
acter of H„and so we here give a formulation
appropriate to this problem. The basis for this
formulation may be found in Ref. 26 (to which the
reader is referred to for details), and we quote
here only the relevant parts of the formal theory.
One may also refer to Schwinger" for an applica-
tion of this to quantum mechanics in general. Ac-
cording to this, if the eigenfunctions of H» and

H~z are "simple, " i.e., obey the equations

H» I4) E I4'), or equivalently, (4 IHstz =(4IE~,

(4)

(4 IH» =(4IE*, or equivalently, Hstz I4) =EI4p),

(the star denoting complex conjugate) and if the
ranges of (H» -E) and (Hstz -E) are closed, then,
the set of eigenvalues E„E2, . . . of Hgz are also
the eigenvalues of H~~z and the corresponding eigen-
functions I4',), I4,), . . . and (4, I, (4, I, . . . of H»
together form a biorthogonal, complete set, i.e.,
&4.14'.) =6..., 1 =g. I4'.) &4.1, and &4'.14.& =6...,
1 =Q„ IC„)(4„I. This is a simpler version of the
general theory of non-Hermitian operators, which (0Ik, k,', Io) =6„„., (7a)

seemed to us to suffice for our purposes. We
assume that the ranges of (H» -E) and (Hstz-E)
are closed and also seek only "simple" eigenfunc-
tions as above. These assumptions seem reason-
able to us, as they parallel closely the theory of
the Hermitian operators. Moreover, based on
these assumptions, we develop a method of com-
puting the eigenvalues of both Hgz and H~~ which
we will show explicitly to be equal, confirming
Post facto the correctness of the assumption.
Also, the eigenvalues then admit of the usual in-
terpretation of being "energy eigenvalues. "

We thus see that a complete theory can be devel-
oped either by using I4) and H» in conjunction
with (4I, or by using I4) and H» in conjunction
with (O'I This aspect also leads to a consistent
definition of the Heisenberg representation for op-
erators acting in the appropriate spaces. We shall
make use of this in Sec. IV for developing a
Green's-function theory based on H» .

The scheme is almost suggestive at once because
the H, part of Hgz is Hermitian with the structure
of the Hamiltonian for the uncoupled set of oscil-
lators. Hence, we have a vacuum state Io) with
energy Eo and such that

k Io) =0.
Its adjoint is of course (OI =—(() I

because H, is
Hermitian and has the property

&olka =0.
Also, the set of states of Ho form a comPLete set
which we shall therefore use to set up a perturba-
tion scheme for H». We have the following well-
known facts:



ELEMENTAH Y EXCITATIONS IN SUPEHF LU ID. . .

etc .
We note that

(0IH, I0) =(OIH't I0) =Es. (8)

A. Modified Rayleigh-Schrodinger perturbation

method for Hg~

Consider the equations

We first develop perturbation theories of both the
Ray1eigh-Schrodinger (RS) and the Brillouin-Wig-
ner (BW) types in a general fashion. It is impor-
tant to note that our result should lead to the same
value of E and E in any given order, so that our
assumption is borne out ~

Clearly (4 „'
I

is the adjoint state of I4 (')) and this
enables further simplification, as wiO be seen be-
low. Perm(5, , ) stands for the permanent of the
Kronecker delta's 5, , . From (12) and (13), we

immediately obtain

H(&) —(@(o)IH I@(o))

go) (y(o)IHtI@(o))

g(l)~ .
n

(15)

the last statement follows in view of the above ob-
servation. Since H, (and H, ) is a cubic polynomial
in b and b, and since the oscillator states of dif-
ferent occupation of levels are mutually orthogo-
nal, we see that

g(1) 0 g(&)
n n

Here n stands for the nth excited state. We treat
H, as a perturbation on 00 and so we write

Also,

n 0
(17a)

I+ ) = I+"'&+ I+"&+".

z =z('}+a~'}+ ~ ~ ~ ~

z =z('}+z('}+ ~ ~ ~ ~

n n n

and we obtain from (9), (10) and (11}the equations:

(H H(o)) Iy(o)) —()

(H H(o)) Iy(~)+ (H @O))Iy(o) ) —()

H(o)}I@(2))~ (p Ea))I@0)& H(o) Iy(o)& —()

(12)

0
(17b)

n 0

@(2}g
n

where & stands for a projection operator which
excludes the g &')), &C( )I states:

cIy(o)& (@(o)
I

The second-order "energy" can now be obtained:

etc .

(H g(o))Ie(o)& 0

(H g(o))I@(x))+ (Ht

g(o)) I@,(2)
&

+ (pt

go))I@(»& -0
go))I@(&)& g(»I@(o) &-0

(13)

The last equation follows because of the simple
structure of &@&o)

I
and I4„' &. Since the entire p

oscillator states fox m a complete set, one could
write these explicitly:

g(o) pi &@(o)IH Igo)') ($(o)'IH I@(o))

etc.
From the first of Eqs. (12) and (13), since H, is
Hermitian, I4„")) and (@&o)I are just n free oscil-
lator states with their energies equal:

8

I+!"&= g 5'., I0& [P 45.. .,H "=I+")&,

(14)

(4„')I =(0I II 5o [Perm(5 )] ' '=&@
f=z

x g(o) g(o)')-&

where the primes indicate exclusion of the n -par-
ticle intermediate states. Two examples should
suffice to display these results.

a. Ground-state energy. Here n =0, and so

&o" = &0IHx @(o)
0 0

From (3}we know that p can only be a three-par-
ticle state arising from the b ~b ~b~ and bbb terms
in H~. Since E(0}=F., we obtain
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bg, ,)„+)„,ob~ b» b, y (kPP )(Eo Ho) g 6», +», +», ~, o ba'f}'ba''4 (k& 2 z)IO&

kz, k2, k3 klk2ks

= —6 g g,g+g Oy& )(kkP~)y~~»(k, k2k~)[Es(k, )+Es(k2)+Ez(ks)]
ky, k2, kg

Explicitly this is seen to be E,', as well as real.
This result is in agreement with Berdahl and Lee. '4

b. 5Vrst excited state. Here Carrying this out explicitly, we observe that
H, b~t)0& would involve only the yP and y~i'» terms
in H„whereas (Ojb j'E, would involve only the yi~»

and y( ~ terms in H, . We obtain finally:

E(2)—
I Ik~, k2, k3 ky, k2, k3

6-„,-„,-„;5g;,-„;,-„.;g) (kIk'P', )y)i" (kgb, )[Es@,) +Es(k, ) +Es(k,}]-'

a a a a a a,ba3ba] )+&Q Q X,+r2+X. o X(+r2+X, o

kgb k 2 kg, k2

xy ~ ~(k»kIk' )y2z
~ ~(k»k, k )[Es(k) -Es(k, ) E(ks)]2-(O~b z b z btz btz ~0& ~

In view of the symmetry properties of the y's and the inner products, we obtain finally,

Ei
1

(k&+k2~0)

yi'»[k, k, —(k, +k, )]y~t'»[k, k, —(k, +k, )][Es(k,) +Es(k, ) +Es(k, +k, )) '

+2P g yt'»[kk, —(k +k, )]y~i'»[kk, —(k +k, )][Es(k) -Es (k, ) -Es(k +k, )] '
k, (~-k)

—18 g y('»[kk, —(k +k, )]y~i'»[kk, —(k +k, )][Es(k)+Es(k, ) +Es(k +k, )] ',

~ED''» +e, (k) . (22)

In the above equations, P stands for the principal
value.

A similar procedure leads to the result that
E

y
=E

y
. It should be pointed out that in view of

the structures of y' 's, these expressions are con-
vergent because A.k-1 for k- .

Lee" missed the last term because the BZ
scheme' cannot be applied in a straightforward
manner to ~4', &. This is because he substituted
(4 [')& from the second equation in (12), into the
third equation and then equated coefficients of ~k&

instead of taking its inner product with (k~; but
then he incorrectly supplied the last term from the
first double sum by extracting the terms for which
k„k„—(k, +k, } equal k. A comparison of (21) and
(22) shows that the first term here is just EP».

B. Modified Brillouin-Wilner perturbation

thod f r+Bz

For the sake of future development we will here
outline a Brillouin-Wigner type of perturbation
method for Hsz. We first write Eq. (9) in the form

(H, -E„)le„&= —,ie„&,

Let us take the inner product of these equations
with the appropriate p-particle states of the "non-
interacting" bosons governed by H, :

(E(o) E )(@io) ~@ &
(@(&&) ~H ~y )
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&4."I4.&=1=&4' 14'.&.

Then we obtain, from (23),

(24)

z„=z„')+ (e(0) iH, ie„&,

E„=E( )+ (4()iHtiC „& .

Now, we use the completeness of {pj-oscillator
states to write ~4„) in the following form:

(25)

(EI" -E.)(4'I", I@.& = —(@p"' IHi'I@.& (23)

Here (4~~')
~

and (4~~')
~

are p-particle states with

different momenta k labels than those in (4„& and

~4„&, respectively. If the k labels are the same,
we denote them by corxesPonding symbols without
the Prime. Let us choose the normalization

tions for the ground- and excited-state energies
E, and E, as before, and because of the structure
of y

' 's we may note that E, and E, may indeed be
the same as E, and E,. We shall not discuss this
formulation any further.

III. SCATTERING THEORY BASED ON HBz

An elegant formulation of scattering theory in a
general fashion may be given via the Lippmann-
Schwinger (LS) equation for the T matrix. " A
suitable modification of this theory is given here
for our purposes. The fact that one has a "bi-
orthogonal expansion" in terms of {~%'&, (4 ~) or
{~4&,(4~}for a simple operator (with closed ranges)
enables us to express the resolvent operator
associated with H~z or HBz in the form

G(z)=g 14'$(z.-z) '&4 I,
=14("&

(&)&~ G(z) = Q I@.& (Z. -z) '&4.(,

(29)

and from (23), we obtain
where z is a complex number, and n stands for a
set of labels characterizing the "eigenstates" of
H» or H~z. Equivalently, we have,

x(4~(') ~H, (4„& (E„—E~(') )
' (26a) (HBz z) G(z) =1 =G(z)(ffBz z} y

(H,', — )G( )=1=G( )(H'„- ).
(30)

x(4,'"'IH, 14"."&(Z.-E') (2V)

z„=z„' +&+„'~H,'~4„' &+ g (4&'~H,'(4,')'&
fp)~n

x(4(0)'~Ht(4(0)& (E E(o)')-~. (26)

+ g (4„'"[H,[e,'"'&&@,'"'IH, I4'.& (E.-zp"') '

(p) sen

(26b)

The sum here on{pj indicates integration over the

corresponding momenta variables also. One may
iterate (26a) to obtain the usual type BW series in

Exactly similar analys is leads to an equation
for ~C„& involving H~t. To second order, for ex-
ample, one has the BW equation for the eigenval-
ues:

E(o) + (@(o))H (y(o)& p Q (@(o)(H (4 (o)'&

(P) ~n

G(z) =G.(z)+G, (z)H, G(z) .

Introduce a T operator in the usual way,

(32)

(33)G()=G.() G.()T()G.(),
so that if ~4, &

is an initial state and (4z( is a final
state, the scattering amplitude is (4&~T~4,&

with
z taken to be the energy of the initial (or the final)
state. From (33) and (32) one has a LS equation:

T (z ) =H, +H, G, (z) T (z ) . (34)

Had we used the right-hand side of the Eq. (30) we
would have an equivalent T operator, denoted for
the sake of clarity T, which would obey the equa-
tion

T(z) =Hi+T(Z) G, (z)Ht, (34')

Let us introduce the resolvent operator associated
with the Hermitian-part H, :

(H, -z)G. ( ) =1=G.( )(If.-z). (31)

Rewriting H~z=Hp+Hy we have an equation for G:

As shown in the previous discussion, (4„') ~H, ~4 ('))
=0=(4'(o)~H~t~C(0)&, and because of the other prop-
erties, noted earlier, one can only deduce that
E„*and E„obey the same transcendental equation.
To second order in H„using the properties of the
matrix elements, one can write down the equa-

corresponding to

G( )=G.( )+G( )H,'G. ( )

and

G(z) =Go(z)+Go(z) T(Z) G, (z) . (33')
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I+,& =baba Io&

and the final state is

(35a)

(+pl =«lb,.,b, „q«,(k'-k) and k~k' (35b)

Since II, is cubic in 5, 5 operators, the first term
in (34) would yield zero So, . we iterate (34) once

These two formulations should yield the same phys-
ical scattering amplitude for this theory to be of
any physical significance for our problem, when
one calculates (kpi'f'I4, &. As in our perturbation
scheme, this can be verified term by term for the
Born-type series for T and T. '

As an example, we compute the two-roton scat-
tering amplitude" from T(z). The initial state is

and consider the new equation as our starting
point:

T = {H, +H, G, +H, )+(H, G,H, )G,T. (35 }

In Ref. 20, (4&IH, G,H, I@,& was calculated based
on a Hamiltonian due to Sunakawa et al." This ef-
fort is motivated by recent conjectures on the na-
ture of the roton-roton coupling, especially since
it has been demonstxated" that an arbitrarily weak
attractive coupling gives a bound state of two ro-
tons.

In Sec. V, this expression will be shown to be
identical to that derived in Ref. 20. We give here
the expression for (4&IH, G,H, I4,}whose deriva-
tion is straightforward:

(e, lH, -.~,Ie,.&
= QAoz&, (36a)

Aez'=4yt'&(k+k', -k, -k')y'&(k+k', -k -q, -k'+q)[E (k)+E (k')-E (k k+')) ',
Ao z&=4y&'&(k'-q, q, -k')&A'&(k, q, -k -q)[E, (k) -E,g +q) -E,(q)]-',

Ass=4+&(k', -q, -k'+q)y'3&(k+q, -q, k)[E,(k-') E, (k'--q) -E,(q)]-',

ASS=4yt;&(k', -k -q, -k'+k+q)yt;&(k' -q, -k, -k'+q+k)[E, (k') -E,(k+q) -E, (k -k'+q)]-',

A'P=4y'&(k, q —k', k+k'--q)yy&(k+q, -k', -k-q+k')[E (k) E(k' —q)--E (k —k'+q)] ',

(36c)

(36d)

(36e)

Aes= —36y~~3&(k' —q, k+q, -k -k')y~~&(k, k', -k -k')[Es(k+k')+Es(k+q)+Es(k'-q)] '.
Here we have made use of the permutation symmetries of &"' 's

~

IV. FINITE-TEMPERATURE THEORY BASED ON Hgp

In order to develop a finite-temperature theory,
we must define the statistical operator P,p as-
sociated with H~z. Formally this can be done be-
cause we have assumed that the ranges of (H»z
-E) and (H~~z —E) are closed, so that we have the
eigenvalues of H» and H» the same. Thus,

(37}

set of states must be used consistently, as in the
definition (38b) of the trace Hence. forth we shall
use the set [IC„},(4„I); we could of course use the
equivalent set [I@„&,(@„I).

The finite-temperature theory is best developed
via the introduction of the temperature-dependent
Green's function. Vfe will first define the "Heisen-
berg repx esentation" of b~ and 5, introduced in
Sec. II by observing that in the Schrodinger rep-
resentation, the equations of motion of a one-
particle state are

With respect to this P,p„ the thermodynamic aver-
ag;es of physical quantities may be defined:

(X} Troop X/Tl Pgp y

where

N„I%„(t)}=H,—I%„(t)},
d

ik„(C„(t)l-=(4—„(t)IHzz .

(39a)

TrA = p (4„IA i 4 „& . (36b)
Equivalently,

le„(t)& =8»z'+Ie„'&}; (e„(t)l =(C„(0)Ie'"»z' ".
It should again be stx essed that the biorthogonal
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Proceeding in the usual way to construct opera-
tors in the Heisenberg representation, we obtain
the time dependence of an arbitrary operator in
the {)4),(4 ~] space:

N —Os(t) =itt —On(t) +[Os(t), &zz]
~ d . 8

where

O (t) =e«sz&&O (t)e-«sz&&

(40)

(41)

with O, (t), the operator in the Schrodinger repre
sentation. [A, B] in (40) represents the commu-
tator, (AB BA-) Ha. d we chosen to employ the
operator defined in the complementary space,
{~C),(4 ~), the equations (40) and (41) would contain
H~~ instead of Hgz As stated in Sec. II, the final
results in either development should be equivalent.
We can now define the Green's functions in a con-
sistent fashion, for example, the one-b~son
Green's function may be defined as

Tr{P.,[b,(t)b,'.(t') ],)
Tr{P, j

(42)

where [ ], indicates the time-ordering symbol. In
a fairly straightforward way, we can show [by
working in terms of the states of Hzz, {~4),($~) or
H~~z, {~4),(4~) if one employed the operators acting
on the appropriate space], the usual properties
of 9 (kt; k't') indicate that it is a function of (t —t')
and that it obeys the periodicity condition in the
complex time domain. One can then proceed to de-
velop the Fourier-series representation, etc., as
for the usual temperature-dependent Green's func-
tion." The Dyson equations obeyed by 9 follows
by using (40). We must bear in mind the state-
ments made in Sec. II concerning the properties of
~4„) and (4„~. As an illustration we shall write
down here, without derivation, the expression for
the excitation energy for the uniform system in
second order in (V) ' '.

y ~k k2 -k-k2 y ' k k'2 -k-k

2

,2P ~ y'"(k — — »'"(k — — ) [, ,„(k),„(k,„)]E,(k) -E,(k, ) -E,(k+k, )

4P ~ y, (k«, k, -k —k«)y» (k«, k, -k —k2)
[ (k ) (k +k )—] .

Ee(k) +Ee(k+k, ) —Ee(k, )
(43)

This is the finite-temperature version of Eq. (22).
Here ns(k) = [expPEs(k) —1] '. Straley" has writ-
ten down "formally" a Green's-function theory of
Hgz for T = 0 K. The analysis given above is not
only a derivation of it but also an extension for
T +0 'K. As the Hamiltonian describes only irrota-
tional flow, the finite-temperature extension given
here is only valid when the superfluid density is
much greater than the normal fluid density, i.e.,
r&05 K'"

V. THE SUNAKAWA HAMILTONIAN

In the BZ formalism, one introduced the collec-
tive coordinate

I

Hermitian, but an infinite-series Hamiltonian by
introducing a "velocity operator" v, which is
canonically conjugate to p, . By introducing a
projection operator, Sunakawa was able to write
the Hamiltonian in terms of these canonically
conjugate pair of operators. One then introduces
the boson creation and annihilation operators, B„
and B*„, for the "excitations" of the He4 liquid,
when the fluid is assumed to be irrotational,

p, =(~,}"'(B,+B»,),
'I

v, = ,'k%(~,)- t-'(B, -B»). (46)

The Hamiltonian can then be written as (following
notation introduced in Ref. 20):

N

p =N ~'g e'" '~ (k40} (44)
H =Ho+H»

H E0++oEs(k)B «B».

(46)

(47)

and expressed the Hamiltonian in terms of p~.
Finally, creation and destruction operators are
defined and the Hamiltonian is expressed in the
form of Eqs. (1)-(3). Because of the problems
that arise due to the non-Hermiticity of the Hamil-
tonian, several authors have considered alternate
derivations of the Hamiltonian.

Sunakawa et al."have obtained a completely

From the manner in which 5, and bt were intro-
duced in the BZ formalism, it is evident that the
BZ Hamiltonian also describes an irrotational
Bose fluid.

The interaction Hamiltonian H, is an infinite
series in powers of N ~ in this formalism. The
first two terms are of importance here and are
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given by

I [g~,'~(k, k, )B ~~B*, B~~
k, .k2 (xo)
(k~+ k ~)

(48)

y 's ofH

g~ ~(k,km) =
2 [y, ~(k, k2k~) + y~& ~(k,k2k~)],

with

k, =-k, —k2.

(49a)

(49b)

(49c)

where we observe that the g',",are related to the The biquadratic interaction can be written as

H~,'~= g ][g~,'~(k, k, q}(B» „B", ,B*,B", +4B*, „B,„B,,B, )]+[H.c.]+6g~e(k,k,q)B", „B*, ,B, B, )
ki~ k2i%

(wo)

g2

k~, k2

(50)

where

2

One property of this Hamiltonian is worth noting
here H,'~ ha. s the interesting property that, for-
mally,

(52)

where H, is the interaction part of H ~z, and Ht is
the Hermitian conjugate of H, . This property will
be very useful in proving equivalences in Sec. VI.
In Eq. (50) the terms BB,B*B*,B~B arise from
normal ordering of operators, and their coeffi-
cients are seen to be divergent. In actual calcula-
tions of physical quantities, we will

14/& = lk& =B*,IO&,

EP~=Es +Es(k) .

(53)

(54)

Using standard Rayleigh-Schrodinger perturbation
theory, the first-order shift in the energy is zero
but the second-order shift is

later show that these are canceled by simQar
divergences arising from terms elsewhere. The
zeroth-order eigenfunctions and eigenvalues for
the low-lying excited state with a single elementary
excitation are given by

E(.) 6 ~ [gV(pip.)1*,8 ~ Igk'(kk. )l'~ Es(p, ) +Es(p~) +Esp, +p~) ~ Es(k}+Es(k2) +Es(k +k2)1 J 2 g j. 2
2

B

~ Es(k) —Es(k, ) —Es(k k, )
(55a)

where

(k)H',+~k&= g (x, x~', +x, z, p', +x,p~', )+ ' p [a, (k+4,)'+z„, k', ] (p, =-p, -p, ). (55b)

Eq. (55b) has been written in a completely sym-
metric form which will be more convenient for
later calculations. Separating out the second-
order shift to the ground-state energy, E„, one
can write dawn the k-dependent second-order
shift to the Bogoliubov excitation spectrum,

(56)

Eo) 6 ~ [gP'(PZ. )]'~E.(p }+E.(p.) +E.(p. +p.}

2
2 2

+48 (X& X+, +X A P, +A. X P2),
PI iPg

(57a)
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„.(k)= 16~~E,(k) +E,(k, ) +E,(k+k, )
k2

[g",~(kk, )]'
Ee(k) —Ee(k, ) —Ee(k +k, }

+ ~, P [~, (%+I,)'+X„,k,']. (5Vb)
k2

It shouM be noted that Kebukawa" has recently
obtained the second-order correction to the ele-
mentary excitation energy using RS perturbation
theory involving H,' only and obtained a divergent
result. The last term in (5Vb) arises from the
normal-ordering terms in H,', and as will be
soon evident, these ax'e necessary to cancel the
divergence found by Kebukawa.

By similar means, it is possible to calculate the
scattexing amplitude for two rotons which have
initial momenta k and 0' going into a final state
with momenta k+q and k' —q. H,' is treated in
fix st order while H~,'~, in second order, and one
thus keeps track of the equivalent processes com-
pletely. The initial state is

(58a)

and final state is

I@,& =E;+,E;,Io) = I-k+q, k' —q&, (56b)

where q x (0, % -%'), and k & k'. To lowest order,
the scattering amplitude for the two-roton scatter-
ing is given by

(k+q, k' —q IT Ik, k') = (q, lH&'~+a&'&(E-ff, )-'ff&*&l@,
&

= (q'y I T.I q'g& + 0'y I Ts I q'(& .
(59}

Here, E=Ee(k)+Ee(k') =Ee(k+q)+Ee(k'- q). The
calculation was done in Ref. 20, and one may refer
to this paper for the final expression.

As an intex eating example of the usefulness of
this last formulation, consider the special case
of two-roton scattering into two rotons. In center-
of-mass frame where %+K' = 0 and q is such that
1k+jl = IR' —jl = k„where k, is the momentum at
the roton minimum, we have A, =0=A, and

(k+q, k -qlr, lk, k &=~', k'k,'/mX, (60)

~h~~~ l%+il =k, imp»es 2k i+q'=0 After some
algebra, it can be shown that the total scattering
amplitude is

(61)

If one now follows Ref. 20, and uses the experi-
mental excitation energy and structure factor,
T is in fact less than zero for all values of q and
therefore this process has an attractive com-
ponent. This is quite suggestive of a bound state
for the process as was first surmised by Ruvalds
and Zawadowski. " The actual strength of the in-
teraction is in fact too strong and renormalization
of vertices and roton propagators become impor-
tant. For a complete discussion of this point see
Ref. 20.

rived in Sec. V for the Sunakawa Ha.miltonian. The
second-order shift to the ground-state energy,
Eq. (5Va) can be shown to be equal to the BZ re-
sult, Eg. (21), but this proof is similar to the
proof of equivalence of the shift in the Bogoliubov
excitation spectrum and therefore will not be
shown. Substituting Eg. (49a) and (49b) into (5Vb)
and identifying e,~z(k} of Eq. (22), we have

VI. PROOF OF EQUIVAI. ENCE

A. Energy spectrum

In this section, we compare the results for the
energy spectrum of elementary excitations derived
from the BZ Hamiltonian in Sec. II with those de-

~ [y&'&(k, k„k,)]'+y,"&(k, k„k,)]*
Ee(k) —Ee(k, ) —Ee(k, )

+ ' P (X, k', +X, k,'), with k, =-k, -k.
(6

This result can be simplified using the following identities which can be proved after some straightforward
algebx'a:

[y',@(k,k„k,)]' + [y", ~(k, k„k,)]' = 2y',3~(k, k„k,)y~,"(k,k„k,)

+V2 & [E,(k}+E,(k,)+E,(k,)](X,X, k', +X,X, k', +X, X„,k*), (63a)
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[y."'(k, k„k,)]'+ [y~@'(k, k„k,)]' = 2y,"'(k, k„k,)y',"(k,k„k,)
A2+«[Z, (k) —Z, (k.) —Z, (k.)](~, ~,,k'-~, ~, k; —~,~, k', ).

Substituting (63a) and (63b) into (62), we obtain

h 2

e„(k) = ~,»(k) — g (X,Z, k', +X,,X, k' +X,X„k,') + g (x, x, k' —X,X, k,' —x,X, k,')

(63b)

h2

02

(64)

and thus we clearly obtain

e.„(k)= e,» (k) .
This demonstrates the explicit equivalence of the
second-order corrections to the Bogoliubov ex-
citation energy. Since H~z is non-Hermitian, it
is worth noting that no such equivalence for the
wave functions is expected. Moreover, in view
of the remarks made earlier, e„(k}is conver-
gent. 33 By a similar analysis, it can be shown
that the self-energy calculated to second order
for finite temperatures in both the BZ and S
theories are equivalent.

B. Scattering amplitude

As shown in Sec. III, if the BZ Hamiltonian is to
describe a real system, then the scattering ampli-
tude must satisfy the property that

(k+q, k' —q)H G+, )k, k')

= (k+q, k' —q)H~~~G&»~ (k, k') . (66}

It is the intent of this subsection to not only prove

Eq. (66) but also show its equivalence with the
corx esponding result obtained in Ref. 20 fox' the
Sunakawa Hamiltonian. We will in fact show that
Eqs. (36a)-(36g) and this expression are equivalent
and the proof of (66) will then become self-evident.
Two identities are needed:

y,"'(k k k }= g"'(k k ) ~ —,'(N '~,Z, X, }~'' '2 '3

x[Z,(k) -Z, (k,) -Z, (k,)],
(6'I a)

x[Zs(k) +Zs(k, ) +Zs(k, )].
(6Vb)

When these two expressions are substituted into
Eq. (36) and use is made of energy conservation
it is found that after a great deal of algebra, that
each A j z can be written in terms of A. j given in
Ref. 20 plus other terms. When the sum over all
the six A~j~z is performed, many terms cancel
and one is left with the following result:

g w»'= g w, +—(~„~,.~„,~, ,)~'[~,z, (q)+~, , „z,(k —k'+q)+~„, .z, (k+k')]
j=l

6 2
= Q A( + (A~A~th~~~hqi, )~ [k k'~+q++q ~ $ -R')]

j= l

= gA. +24@4~(k k' q}'

therefore the scattering amplitude for two-roton
scattering through second ox'der computed fx"om

the two Hamiltonians is equivalent. Equation (66)
can be proved by a similar process and will not
be shown here.

VII. COMPARISON WITH CBF RESULTS

The present analysis of the two collective-
variable approaches to the theory of many-boson

systems is of particular interest in that further
connections to other theories are also possible.
The other major technique for many-boson sys-
tems is the theory of correlated basis functions.
When perturbative corrections are added to the
BM wave functions to take into account the sec-
ond-order energy generated by the three-phonon
components, Lee" has shown that the excitation
energy is given by
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&-k„-k, i 6H i k& = 2yo&(k, k„k,),
&k, k„k, ~6m~o& =6y',"(k, k„k,),

(70a)

(VOb)

where the matrix elements have been evaluated
with use of the convolution approximation for the
three-particle distribution function. Lee" has
shown that (69a}-(69c)and the k-dependent part
of (22) are equivalent.

VIII. SUMMARY AND CONCLUDING REMARKS

The main objective of this paper was to set up a
mathematical procedure for calculating physical
quantities of interest from the non-Hermitian
Hamiltonian derived by Bogoliubov and Zubarev. '
We have set up a perturbation scheme for cal-
culating both the energies and scattering ampli-
tudes using the complete, orthonormal states of
the Hermitian part of H», treating the non-
Hermitian part as a perturbation. We have also
set up a finite-temperature Green's-function

E',"(k) = Es(k) + e,„(k) + e„(k), (69a)

4 2s'p 2 p2 k2 k3

(69b}

d'k, j (-k„-k, (6e f k& /'
xP 2(2v) E (k) —E (k ) —E (k )

d'k, J(k, k„k, /6a/O&/'
2(2w)'p Es(k)+Es(k, }+Es(k,) '

(69c)

and Lee made the observation

theory by suitably defining the statistical operator .
and the Heisenberg equations of motion. With
this, we hope to have answered the queries of
Hiroike" and Straley. "

We show that the energies for the ground-, and
first excited states, the temperature-dependent
self-energy of a boson, and two-roton scattering
amplitudes obtained in Rayleigh-Schrodinger
perturbation theory are completely equivalent to
the corresponding results computed in the second
order from the Sunakawa formalism. In the Suna-
kama formalism, one develops the Hamiltonian
operator to a given order in N '~' and then carries
out the usual perturbation calculation to an ap-
propriate order in H ~'. It thus appears that our
scheme involving 0» is simpler in its structure
because it is not an infinite series. Also the co-
efficients appearing in the interaction part of the
Hamiltonian are not divergent as in the S theory .

.A major problem in these field theoretic ap-
proaches is the appearance of A.„since this de-
pends on the poorly known interaction potential,
V(k). A numerical evaluation of physical quanti-
ties of interest therefore becomes difficult. The
only hope is that A., is the lowest-order approxi-
mation to the experimentally measurable structure
factor, S(k}, and this must somehow be exploited
in the actual numerical computations. S(k) is de-

fined by

S(k) =«Ip,p", iG)/«IG&, (71)

Where ~G& is exact ground state of Hez and (G~ its
counterpart. Expanding ~G&, (6) to order (I/N),
we have

[Es(k) +El(P) +Es(P+k)]'

~ y', '(k, p, -k —p)yP(k, p, -k —p) +y~p(k, p, -k -p)yp'(k, p, -k -p) 1

[E (k)+E (P)+E (p+k)]E (k) N'

—= X~ + S, (k) .

E(k) = Es(k) + e, (k) +O(1/N')

1= E (k) + —— + e, (k)
2m ~, S(k)

= E~(k) +Es(k) ' + e, (k) .
A,~

(73)

This expression does not agree with the result de-
rived by Lee."

Since it is well known that E~(k) = hak'/2mS(k)
gives the correct sound velocity for liquid helium, '
it is interesting to examine if the corrections to
Ee(k) using our formalism agree with this result.
From Eg. (22),

E(k) =E,(k) +(1/N)O(k') . (V4)

Thus E(k) derived from the BZ or S formalism
approaches the Feynman expression, E~(k), for
k-O, as it should. It should be noted from (72)
that A., does not have the same slope as S(k) for
A-O, as has been assumed by Sunakawa et al."
The problem now reduces to finding a good model
for the helium-helium potential, or equivalently
A., so that both S(k) and E(k) can be calculated

(72)
l

In the long-wavelength limit, the last two terms
can be reduced further using the expressions
given above, and we find
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theoretically and compared with their experimen-
tal values in detail.

ACKNOWLEDGMENTS

We thank Professor John Ruvalds, Professor A.
Bagchi, and J. Carballo for many valuable remarks
concerning this manuscipt. One of us (AKR) thanks
Professor E. C. G. Sudarshan for several conver-
sations on field theories involving the indefinite
metric which were of immense value in interpret-
ing the canonical but nonunitary transformation
discussed in the Appendix of this paper.

APPENDIX

In this Appendix, we outline a transformation
method which to a desired order in (N ~') can
make the Hamiltonian H» Hermitian, by intro-
ducir1g a canonical but nonunitary transformation
of the operators b„bk~ into a new set of boson op-
erators B„B,*. b, may be considered as the
formal adjoint of b~, whereas B, is the Hermitian
conjugate of Bk. With this distinction, we seek a
polynomial transformation between bk, b~~, and Bk,
B)fc ~k'

1 1
k2e »3

(Al)

k2, k3

(A2)

BZ 2( BZ BZ) 2+8Z BZ)

=He+H~a y

(As)

we seek the undetermined coefficients in (Al) and

(A2) to be such that to each order in (N 't'), the
non-Hermitian part is canceled out, leaving it to be
one order higher in (N ~'} only. For instance,
carrying this out to first order in (N ~') is at
once easily accomplished and this leads us to the
Sunakawa Hamiltonian to order (N 't') in B,Bf'

with the non-Hermitian residue of order (N 't')'
The choice of P2", P~~' in (Al), (A2} that accom-
plishes this is

P~~«(k, k2k3) = P~~'«(k, k2k~-)

= y~ «(k, k,k, ) —y~@«(k,k,k,),

P~' «(k, k2ks) = P2-'«(k, k2ks)

and

B„B*,are assumed to obey also the Bose commuta-
tion rules as do b„b,. It is obvious that this con-
nection must be an infinite-series relationship.
Writing

(A4)

From (Al}, (A2} and (A4) we observe that the
adjoint of (Al) differs from (A2) by terms of
order (N ~') and higher. Proceeding in this way
we can, in principle, obtain a Hermitian Hamil-
tonian from Hgz This has the following conse-
quence. The commutation rules between b„b,
will have operator corrections of order (N ~') and
higher, contrary to the originally proposed com-
mutation relations, but which will cancel out when
higher-order terms are included. This establishes
a point about H» and the other Hermitian formula-
tions, namely, that the Hermitian versions will all be
an infinite series and H&z perhaps involves really
@ set of more complicated operators bk, b» than
was originally intended. Noting that the non-Her-
miticity in the BZ formalism arises from intro-
duction' of 8/sp„we choose to associate b~t as
being the formal ad joint of bk, to differentiate it
from the Hermitian adj oint operator. Hiroike" es-
sentially tried to set up a"Hermitian" counterpart of
s/8 p~ by introducing the Jacobian of transformation
from the coordinates to the pk variables, and this
turned out to be a series in (N ' 2). Our demon-
stration here indicates a basic formal reason for
Hermitian, infinite-series Hamiltonians as com-
pared to the simple, non-Hermitian Hamiltonian
of BZ.



10 ELEMENTARY EXCITATIONS IN SUPERFLUID. . . 1851

L. D. Landau, J. Phys. USSR 5, 71 (1941); 11, 91
(1947).

2For an excellent recent review of the various aspects of
the two-Quid model, see J. de Boer, Physica 69, 193
(1973).

3R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49,
177 (1971). For a recent review of the various experi-
ments on the excitations in superQuid liquid helium,
one may refer to A. D. B. Woods and R. A. Cowley,
Rep. Prog. Phys. 36, 1135 (1973),

4L. P. Pitaevskii, Zh. Eksp. Teor. Fiz. 36, 1168 (1959)
ISov. Phys. —JETP 9, 830 (1959)].

~N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947).
8R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189

(1956).
7E. Feenberg, Theory of Quantum Liquids {Academic,

New York, 1969) and references cited therein.
N. N. Bogoliubov and D. ¹ Zubarev, Zh. Eksp. Teor.
Fiz. 28, 129 {1955)(Sov. Phys. —JETP 1, 83 (1955)].

9J. Gavoret and P. Nozieres, Ann. Phys. {¹Y.) 28, 349
(1964).

~OJ. Ruvalds and A. Zawadowski, Phys. Rev. Lett. 25,
333 (1970); A. Zawadowski, J. Ruvalds, and J. Solana,
Phys. Rev. A 5, 399 (1972). For a recent survey of
the various aspects of the two-roton interactions, and
references to many articles, one may consult the re-
cent review article of J. Ruvalds, in NATO Advanced
Study Institute on Elementa~ Excitations in Solids,
Molecules, andAtoms, Antwerp, Belgium, 1973.

~'K. A. Brueckner, Phys. Rev. 156, 204 (1967).
i2D. K. Lee, Phys. Rev. A 4, 1670 (1971); Phys. Rev.

187, 326 (1969).
'3H. W. Jackson and E. Feenberg, Rev. Mod. Phys. 34,

686 (1962); T. B.Davison and E. Feenberg, Ann. Phys.
{N.Y.) 53, 559 (1969); A. Bhattacharyya and C. W. Woo,
Phys. Rev. Lett. 28, 1320 {1972); Phys. Rev. A 7, 198
(1973); 7, 204 (1973),

~4P. Berdahl and D. K. Lee, Phys. Rev. A 7, 1376 (1973).
~5D. K. Lee, Phys. Lett. A42, 1 (1972); Phys. Rev. A 8,

2735 (1973).
'6H. M. Chan and J. G. Valatin, Nuovo Cimento (X) 19,

118 (1961).
~~K. Hiroike, Prog. Theor. Phys. 21, 327 (1959).
S. Sunakawa, Y. Yoko-o, and H. Nakatani, Prog, Theor.
Phys. 27, 589 (1960); 28, 127 (1962); S. Sunakawa,
H. Nakatani, and Y. Yoko-o, Prog. Theor. Phys. 27, 600
(1960); Y. Fukui and S. Sunakawa, Prog. Theor. Phys.
34, 499 {1965);S. Sunakawa, S. Yamasaki, and
T. Kebukawa, Prog. Theor. Phys. 41, 919 (1969);
T. Kebukawa, S. Yamasaki, and S. Sunakawa, Prog.
Theor. Phys. 44, 565 (1970); 49, 1802 (1973);
T. Kebukawa, Pxog. Theor, . Phys. 49, 388 {1973).
D. H. Kobe and G. C. Coomer, Phys. Rev. A 7, 1312
(1973) and references therein.

20A. K. Rajagopal, A. Bagchi, and J. Ruvalds, Phys.
Rev. A 9, 2707 (1974). The notation employed in this
paper will be followed here.

2'J. P. Straley, Phys. Rev. A 6, 498 (1972).
22F. J. Dyson, Phys. Rev. 102, 1217; 102, 1230 (1956).
23T. Holstein and H. Primakoff, Phys. Rev. 58, 1098

(1940).
24P. Bexdahl, Ph. D. thesis (Stanford University, 1972)

(unpublished). We thank P. Berdahl for sending us a
copy of his thesis before publication.
ST. Nishiyama, Prog. Theor. Phys. 38, 1062 (1967).
The earliest paper where the density and phase opera-
tors are introduced seems to be in T. Nishiyama, Prog,
Theor. Phys. 7, 417 (1952).

28B. Friedmans PrinciP/es and Techniques of'App/ied
Mathematics {Wiley, New York, 1956), pp. 131-133
and 199-205. P. M: Mor:-e and H. Feshbach, Methods
of Theoretica/ Physics (McGraw-Hill, New York, 1953)
Vol. I, pp. 884-886 has a description of a similar
method for finite-dimensional matrices.

27A. J. Layzer, Phys. Rev. 129, 897 (1963) (quasiparti-
cles in many-fermion system).
See S. K. Joshi and A. K. Rajagopal, Advances in Solid-
S«« I'hysics (Academic Press, New York, 1968),
Vol. 22, p. 159, in particular, Appendix A; A. K.
Rajagopal and M. H. Cohen, Coll. Phen. 1, 13 (1972)
(nonadiabatic theory of phonons in solids).

29J. Schwinger, Quantum Kinematics and Dynamics
(Benjamin, New York, 1970) ~ This book contains a
general formulation of quantum principles using such
right and left operations in a consistent fashion and
our presentation here parallels this.

30R. G. Newton, Scattering Theory of 8'aves and Parti-
cles (McGraw-Hill, New York, 1966).

3'R. Haymaker has verified by a direct calculation of the
g matrix to second order in H& that (4&( T )4'&) is
indeed the two-roton scattering amplitude.
See, for instance, A. Fetter and J. D. Walecka, Quan-
tum Theory ofMany-I'artie/e Systems (McGraw Hill,
New York, 1971).

33G. S. Great and A. K. Rajagopal, Prog. Theor. Phys.
(to be published). In this paper we have calculated the
fourth-order correction to the ground-state energy us-
ing both Hsz and Hs. By arguments similar to the ones
given in the text. E ti is convergent when Bs& is em-
ployed. In computing the corresponding energy from
Hs, we must include terms involving H~& ~ and H~&@. The
normal ordering of the terms inH t also lead toBB,
B*B+,B+B terms as in the case of H{&4 with divergent
coefficients. These all cancel out when appropriate
divergences arising from elsewhere are combined and
the final result is explicitly shown to be equivalent to
the corresponding Hsz result.


