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The concept of scaling dimensions is important in the physics of large systems, in particular, in the
statistical mechanics of critical phenomena. The main purpose of this article is to explain and formulate
this important concept in a more transparent and precise fashion. Discussion is in the framework of
the n-component classical spin model and the renormalization group. It is emphasized that not every

quantity, but only special ones, called scaling variables, have well-defined scaling dimensions. In general
these variables can be derived by making use of certain parameters which are the scahng fields of
Wegner. The dimensions are simply related to the exponents associated with the renormalization group.
We hope to extract a fairly concrete picture by a general formulation followed by explicit determination
of the scaling variables in the large-n limit. Dimensions are obtained to 0(1/n).

I. INTRODUCTION AND SUMMARY

We are interested in some special random vari-
ables in the statistical mechanics of classical n-
component fields. These random variables, mhich
will be called "scaling variables, " transform sim-
ply under the Kadanoff scale transformations, or
more precisely, the renor'malization group —Wi1.-
son version. ' ' These sealing variables are useful
in studying critical phenomena. In formulating
the reduction hypothesis, 4 Kadanoff constructed a
set of variables in the framework of the Ising
model. What is presented here is simply a more
general study of that set of variables, and the
associated concept of scaling dimensions. '

The basic idea of scaling variables is very ele-
mentary indeed and is best illustrated by a simple
analog.

In quantum mechanics, states and operators are
often classified according to properties under
various transformations. To be specific, let us
speak of the set of transformations IR(8),0&8& 2'.
R(8) rotates the coordinate system about the s axis
through an angle 8. Under R(8), an operator A
transforms to A'. There are special operators
T, , called "tensor operators, " having the simple
transformation rule under R(8):

mhere m, is a quantum number characterizing the
operator T, . The angular momentum components
4 ~ i J„, 4, are simple examples of tensor opera-
tors with m, = +1,0, respectively. An arbitrary
operator in general does not have the simple prop-
erty (1.1) but can be expanded as a linear combina-
tion of the tensor operators. Experience tells us
that the classification and construction of tensor
operators are of fundamental importance.

Now consider a statistical mechanical system
and the renormalization group (R, , 1 &s &~}. R,
increases the unit of length by a factor of s and
does other things to be specified later. (The rule
R,R, =R„. is obeyed, but unlike the rotations, the
inverse of R, is not defined. ) Under R, , a random
variable A transforms to A'. There are special
random variables D,. having the simple transforma-
tion rule, analogous to (1.1),

where the constant -y, , which characterizes the
variable S, , mill be called the sealing dimension,
or simply the dimension of S, . These special
random variables mill be called scaling variable.

If R, were just a change of length scale arid
nothing else, then any random variable would have
property (1.2), and -y, would be just the usual
dimension of the variable in units of inverse length.
This usual dimension will be referred to as the
naive dimension. Then there mould be nothing we
could add to the results of the usual dimensional
analysis. Of course„R, does more than change
the scale. As a result, the dimension defined by
(1.2) in general differs from the naive dimension
and only the scaling variables, not every random
variable, have a definite dimension. Hopefully,
one can construct a complete set of scaling vari-
ables so that any random variable can be expressed
as a linear combination of scaling variables.

The important ingredient of R, , which makes R,
different from a straight change of scale, is an
averaging process explained briefly in Sec. II. A
more detailed explanation can be found in Refs.
1-3. However, despite the extra ingredient of
R, , the naive dimensional analysis does provide
a qualitative guide. The study of the scaling vari-
ables mill tell more about the extent to which the
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naive dimensional analysis is applicable.
The tensor operators of rotation are useful in

analyzing matrix elements. Analogously, the
scaling variables mill help study certain behaviors
of correlation functions. We have in mind especial-
ly correlation functions for a system near its
critical point. In fact, the physics of critical
phenomena is characterized by the scaling vari-
ables of lowest dimensions.

We nom outline the content of this paper briefly
and summarize the main results.

Our discussion mill be within the framework of a
model of an n-component classical "spin-vector"
field P(x) =(P, (x), o =1, 2, . . . , n) in a d-dimen-
sional space (2&d&4). The Fourier components
of P, (x) are denoted by Q„, with k smaller than
a cutoff A. The quantities P„or P, (x) are our
basic random variables. All- other variables are
sums and products of them. The probability dis-
tribution P is specified by a set of parameters
p = (u„u„u„.. . ). We write

P ~exp[-3C(g, y)], 36- )td»H(p, y(x)). (1.3)

Here we assume that the interactions are of a
short-range nature, so that H only depends on

P(x) and its derivatives at x. The transforma-
tion R, transforms p, to p,

' = (u,', u,', . . . ) =R,
'

y. ,
mhich specifies a nem probability distribution
P' ~ exp[-3C(p', P)] . The rules of transformation
of random variables under 8, are obtained from
the condition that the averages of transformed
random variables over P' are the same as the.
corresponding averages of the origina1 variables
over P.

To determine scaling variables, we shall make
use of a set of special parameters g, , the "scaling
fields" of Wegner. ' These parameters have the
simple property that R, takes g, to g,'. according to

(1.4)

where y, are constants. In other words, we can
get a set of more convenient parameters g, by
making combinations of u„u„u„.. . . It mill be-
come obvious that once the scaling fields g, are
found, the scaling variables can be constructed by
differentiating exp(-36):

(1.5)

The random variable X), satisfies (1.2} and has
the dimension -y, . The reason for the appearance
of e is that the transformation of random vari-
ables under 8, mill be defined in terms of average
values of products. The factor e of course al-
ways appears when average values are calculated.
Note that in (1.5) u, in general depends on the

scaling fields. Thus, definition (1.2) of the scaling
variables is now generalized to

&&(g)- l&&(g)1
'

= s "& &&(a '). (1.5')

It mill become clear later that this is a very natu-
ral and convenient generalization. One might
think that S, S, and B'X/Bg, sg, should be scaling
variables of dimension -y,. -y~, but in general
neither of them is. In fact, it turns out that only
the combination, called "scaling product, "

8 X
8]eely

{1.6)

is a scaling variable of dimension -y, -y&. Equa-
tion (1.6) is of course obtained from differentiating
exp(36} twice. In view of {1.3), we have the notion
of focal scaling variable D, (x):.

d'xD; (x)

D, (x) will have the dimension d -y, . The local
version of {1.6) is

{D,(x)D, (~)}=D, (x)D, (X) —5(» -X)D„(x),

H =(V y)2+ U(y'), (1.6)

where D, &
= 'BH/ gB, sg~. The spatial resolution of

6(x -y) is of O(A '), owing to the cutoff A in wave
vector space. Correlation functions mith simple
transformation properties will be defined and their
universal properties will be discussed. All these
general discussions will be included in Secs. II and
III.

General arguments mill not go very. far. Our
understanding of the renormalization group is still
at a qualitative and intuitive level. There are no
practical rules to find the scaling fields. To hunt
for a more concrete picture, me shall turn to the
special case of n-~. This is a simple but still
nontrivial case. The scaling fields can be deter-
mined and we shall obtain practically all scaling
variables explicitly. This explicit illustration
will provide an over-all view. Many of the quali-
tative features are expected to remain when n is
not large. Of course, only a small subset of the
scaling variables are of interest to critical phe-
nomena. These are the ones with lowest dimen-
si.ons. Section IV is devoted to the study of the
large-n case. Once the scaling variables are
determined to the zeroth order in I/n, their di-
mensions can be calculated to the next order, i.e.,
to O(1/n). In Sec. V, such a calculation is carried
out. Let us go through some main features of
these sections.

In the Iarge-n limit, we take H [defi@ed by (1.3)]
of the form
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and U(P') is regarded as a power series in P'. Let

(1.10)

The set of parameters p. can be thought of as coef-
ficients in the power series t(P'). Apart from an
additive constant, H is specified by these param-
eters. We determine in Sec. IV a set of scaling
fields g, as combinations of these parameters
and then find the corresponding set of local scaling
variables. The results are simple:

eral, and then examining the renormalization
group. The results are more complicated. To
give some rough ideas, we plot the dimensions
of some scaling variables in Fig. 1. This is like
an energy level diagram for an atom. The levels
are classified according to the symmetry prop-
erties of the scaling variables under rotations in
spin space and in coordinate space. The symbols
I, P, ~, T, Y respectively stand for invariants, spin
vectors, spin tensors, tensors, and spin-tensor
tensors. One can include more if necessary.

I et us list the scaling variables of lowest di-
mensions. The qualitative pattern should be gen-
eral. We shall denote these variables by the fol-
lowing names:

with dimensions d -y, =2I, ,

y, =d —2/, 1=1,2, 3, . . . . (1.12)

T 'II'

According to (1.10), t, and hence D, , depends on
the details of the interaction. Since I; is a power
series in Q', we can write any power series in P'
as a power series in I;, i.e., a linear combination
of D, . Thus, the set of scaling variables I,

" forms
a comPlete basis sef for the space of all power
series of (I)'. Obviously, it does not make sense
to speak of the dimension of p' or (p')', for ex-
ample. One has to say that Q' or (Q')' is a sum
of terms each of which has a definite dimension.

Of course there are more scaling variables than
I, ". There are variables involving gradients and
those which are not invariant under rotations in
spin space or in coordinate space. These addi-
tional scaling variables are found by adding to
(1.8) a small term W containing variables in gen-

y, =1/v =d —2+8d '(d —1)(d —2)S,/n,

y~-—0,

y, =d —4+8d '(4 —d)(d —1) S /n,

ye=i(d+2-n),

y~, =-,'(d -2+q),

y, =2-8d 'S,/n,

y„= -8(d —3+4d ') /S,n

yq —-0,

yT = -16(4/d —1)(d+2) 'S,/n.

The exponent q is given by 4(4/d —1)S~/n and

(1.13)

1nvarlants D j y D g y D~y. . . ,

spin vectors D &, D @„.. . ,

spin tensors DT y DpT y D7 ~~. . .
y

tensors D~, . . . ,

spin-tensor tensors DT, . . . .
Their dimensions are d -y, We list y, , correct
to 0(1/n):

sinn(-,'d —1)
v(-,'d —1)8 (—'d —1,—'d —1) ' (1.14)

C

+0
C
CP
E

FIG. 1. Lowest dimensions in the large-n, limit for d
slightly larger than 3.

where B is the beta function.
It should be noted that the spatial derivatives of

any local scaling variable are also local scaling
variables, for example, V, D, , V'D, , (V,V~ G„V')D, , -
etc. The dimension of the derivative increases
by one for each additional V applied. These de-
rivatives must be included in the complete set of
local scaling variables on the same footing as D,.
themselves.

The explicit expressions for the scaling vari-
ables, to the leading order in 1/n only, are
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D, =t,
D 4--(Vp) —M, (t),

D, =t' —a,V't,

D4,„=P„

physical interpretation of scaling variables, and
universality. Special attention is paid to the vari-
ables D&, and D~„which are in some sense triv-
ial.

H. PRELIMINARY

D, , =v, —= Q P —(2/n)Q 5

~ +tv

D„=[(d—4)/d(d —2)] A.„+tv„,
n

D, „=r.,= gv-. y.v,4.—(2/d)(vy)'5„,

(1.15)

In this. section we define our notation and revidw
briefly the basic aspect of the renormalization
group. A detailed but elementary introduction can
be found in Ref. 3.

A. Definitions

DT ~
——V p V Q —(1/d}5

—(1/n)5„.T,~
—(2/nd)(VQ)'5, ~5„,

where the spin tensor X„ is defined as

x...=Vy. Vy. , —(2/n)(vy)'5. .. , (1.16)

and V, =S/Sx, ; a, 5 run from 1 to d. Of course,
t = sU/sf', w-here p' and (Vp)' are defined by
(1.9). The subtraction term M, (t) in D4, will be
explained in Sec. IV, and the coefficient a, is a
constant given by (5.96). To the. lowest order in

I/n, A.„iand t7„.are both scaling variables but
with the same dimension, namely, d. This situa-
tion of degeneracy is the same as that in first-
order perturbation theory of elementary quantum
mechanics. Namely, when a perturbation is
turned on, the degenerate zeroth order eigen-
states in general cease to be the right eigenstates
to the lowest order. One has to take linear com-
binations of them. Here, when O(1/n) contribu-
tions to the dimensions are considered, one finds
that ~, and t7 ~ are no longer scaling variables;
their combinations, as given by D~, and D„ in
(1.15), are The s.ame situation arises in the
case of D, and the case of D gy For n- ~, the
dimension four is shared by t' and v't, and the
dimension —,'d+1 is shared by tP, and V'P, . Of
course, this consideration is not needed for vari-
ables of different symmetry.

In general, the lacal scaling variables are linear
combinations of products of p, Vp, etc., with the
same rotational symmetry. The above-listed re-
sults show that the combinations are nontrivial
and interaction dependent. For large n, the de-
tailed dependence on interaction comes through
t = eU/s p'. For not-l—arge n, more complicated
relationships are expected. Unfortunately, we have
not found better rules of determining scaling vari-
ables than (1.5). The best way of determination
would probably depend on the details of H.

Further remarks are included in Sec. VI. We
shall comment on simple features of exponents,

Let us imagine an n-component classical "spin"
field (Q, (x), o = 1, 2, 3, . . . , n) = Q(x) in a d-dimen-
sional cubic volume L' with periodic boundary
condition. I et P„be the Fourier components
of P, (x):

(x) L-4/2Q y e44'x

a&A
(2.1)

where A is a cutoff and Fourier components with
k&A are always excluded in our model. The vari-
ables P„or P, (x) are the basic random variables.
Their probability distribution P will be written in
the form (1.3). The transformation R, introduced
in Sec. I transforms p to p.'=R, p, according to the
rule

y(x)-s ' "y(x/s), (2.3)

where it is understood that variations of wave
vectors higher than A/s in P(x) have been washed
off.

(d) The transformation R, does not change the
short-range nature of the interaction. We have

P I ~ e-x(P ', $) 3 &0 ~ ~&
V'Ok'

a, A/s& a'&A 0-'"~sa
(2.2)

where sk means s times k, and the constant y will
be specified shortly. A few remarks are in order.

(a) R, effectively represents a transformation of
a probability distribution P to another P'. The
multiple integral in (2.2) is a "coarse graining"
procedure which smears out variations of p of
wave vectors k' greater than A/s. The substitution

P,- s"P„for the unintegrated variables is a change
of length scale by a factor s.

(b) P' describes a system in a volume L" -=s 4L4,

as a result of scale change, but the cutoff A re-
mains the same as before (the effect of scale
change on A compensates that of the coarse grain-
ing).

(c) In terms of Q(x}, the substitution p„-s"y„
means
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30(p', P) = ))d'xs H(p', P(x/s))

(2.4)

"critical point" if all those g, with y, & 0 vanish.
This condition requires in particular that T =T, .
In the absence of external fields, we assume there
is only one such sealing field, g„with y, &0. Thus
we can expand

where the x' integral is taken over a volume J"
g-dLd

(e) For random variables P, with k&A/s, E and
P' are equivalent in the sense that

(y~ ya
~ ~ y, )p=s (y„y,»

~ ~ ~ y, ~ )~, .

(2.5)

The average ( ~ ~ ~ )~ is given by

r

4

(2.6)

g, (r) = J (r r,—)+a(r —r,}2+~ ~ ~ .
We shall give the name 1/v to y„and define

4-=lg, (T)l "

(2.10)

(2.11)

For T —T,-0, we have g, (T) ~ T —T„assumi ng
440 in (2.10).

C. Free energy

We define the free energy per unit volume E(p, )
as

where
&-E(}f)Jd g~ -&(p. 4 )

J
(2.12)

(2.7) It is easy to show that

E(p, ) =s 'E(p') yAE(p), (2.13)
(f) A fixed point p* has the property that

if an appropriate value is chosen for the exponent
y. This value will be denoted by

where AE(y)is the p, art of the free energy con-
tributed from the part of X involving only P,.,
with k'&A/s. In obtaining X(p,', P} from (2.4),
AE(p) has been thrown away as an additive con-
stant.

y=& --:n.

8. Scaling fields

(2.9)
III. TRANSFORMATION OF RANDOM VARIABLES,

SCALING VARIABLES, AND PRODUCTS

The fact that R,R, =R„.suggests that we shouM
be able to choose a proper set of parameters fg, ),
where i runs through a set of labels. Each of them
is a function of the old parameters in the set p, .
Under R, , g, will transform simply into g&s"~,

where y, are constants, which we call "exponents. "
These parameters are called "scaling fields" by
%'egner. ' The way to determine them as functions
of old parameters would depend on the details of

R, , which we shall not elaborate.
I.et us note some qualitative points. If the proba-

bility distribution is fixed at the physical distribu-
tion, i.e., the canonical ensemble, then all the
parameters, and hence the scaling fields, will
assume values determined by the temperature T
and microscopic coupling constants. It is impor-
tant to note that g, will depend on the physical
parameters smoothly because they describe inter-
actions over a short distance A ' (of course g,
depends on A in general). The whole theory of
critical phenomena is to explain how singular
large-scale collective behavior comes out of
smooth short-range interactions.

Ne ean define the scaling fields in such a way
that the fixed point p.

* of interest corresponds to

g, =0 for all i. The system is said tobe at its

Under R, , the probability distribution P is trans-
formed into P'. The transformation of a random
variable may be defined by the criterion that the
average of transformed variables over the trans-
formed probability distribution is the same as that
of the untransformed ones over the untransformed
probability. For example

4a- (4a}' = &' "'4.a (3.1)

4( )-(0( )}'= '~" "~4( / ), (3.2)

according to (2.5) with y =1 ——,'q. We define the
transformation of any random variable (sum of
products of the basic variables P) A-A' under

R, by the criterion

(Ay, ~ ~ ~ y, ) =(g'y„~ ~ ~ y„),s &'-"k&

(3.3}

for arbitrary m and k„.. . , k &A/s. The trans-
formation rule for P is very simple because P~
for k&A/s is not involved in the coarse-graining
procedure of R,. However, in general a variable
A wouM contain products of P„with all k, greater
as well as smaller than A/s. Such variables may
be called "composite" as opposed to the basic
variable P which is "elementary. " The transfor-
mation rule for a composite variable is in general
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very complicated. Fortunately, through the use
of the scaling fields, variables with simple trans-
formation rules similar to (3.2) can be constructed
easily.

A. Scaling variables

Let us use the scaling fields g,. to label our
probability distribution and write

Thus, (3.9) is true apart from the last term of
(3.12). Since the average value of variables like
Q, will almost always drop out automatically in
our later formulas, we shall for simplicity regard
g, as a scaling field of dimension y, . One must
return to (3.12}when the average of 2(( does play
a role.

X =X(g, ),
X' =X(g,') =X(g,s"(). (3.4)

B. Products of scaling variables

Similarly to (3.5), let us differentiate e ~ once
more to obtain

8 R ~ (g)e x
Bg)

&((g)=-,aX
(3.5}

We define a va, riable Q((g) for each scaling field

g, by differentiating e e '= f&((g»((g)&e ',

(&;(g)~,(g) )-=&;(g)&;(g)—&(((g),
O'X

&;,(g) -=,

(3.13)

{3.14)

(3.15}

Now 1st us differentiate both sides of (2.5}with

respect to g, From the' left-hand side, we. get

=&[&;(g)—&&((g)&r)4», " 4» &p, (3 5)

where the term -&S((g)&~ of course comes from
differentiating the denominator. Similarly, from
the right-hand side we get

where D({g') is of course sX(g')/sg, '. By our
criterion (3.3), we have the transformation rule

&((g) —&&((g)&~-s'[&((g') —&&((g')&p l,

Following previous arguments for S„one easily
shows that Is)( s,.) is a scaling variable of dimen-
sion -y, -y~, i.e.,

(S((g)S((g))- s"('"((S((g ')g)((g ') ). (3.16)

f& (g)&(g)" & (g))

- " '" '-'"'(& (g')" &,(g')& (3.»)

Previous comments concerning the average value
below (3.12) also apply. Note that Q(( must be sub-
tracted from S, S~ to get a scaling variable. Nei-
ther N,. S,. nor S,&

is a scaling variable. Let us
call (S( ~() the "scaling product" of 5)( and I),.
Obviously, scaling products of any number of S, 's
can be constructed by differentiating e ", and we
have the transformation rule

(3.9)

which is similar to (3.1) and (3.2). Thus 5)((g) with
its average subtracted off is a scaling variable of
dimension -y(, in the spirit of (1.5'). It would be
nicer if we did not need to subtract the average of

S( in (3.8). Indeed we do not need to if

C. Local random variables

It follows from (1.3) and (3.5) that

m,.(g) = (f'x D((g, x),

sa{g, 4 (x))

(3.19)

(3.19)

&g),. (g)&( =s'(&g),. (g')& p, . (3.9)

This is almost true. We know, by differentiating
(2.12), that

D((g, x)-s ~"(D((g', x/s), (3.20}

where D, is a "local variable. " From the trans-
formation rule for X)( and (2.4), we expect that

&a)((g)&~ = — +(g) Il,
Bg;

According to (2.13), we have

(3.10)

(3.11)

i.e., D, is a scaling variable of dimension d -y, .
However, this is correct only if D, is integrated
over a slowly varying function of x, i.e., only the
Fourier components of D, with wave vectors much
less than A satisfy (3.20}. Again this is due to the
coarse-graining operation in R, , and must be kept
in mind.

The local variable D,&
is defined as
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(3.21)

(3.22)

8 Q
D(, (g, x) -=,

Bg(8'
The local versions of (3.14) and (3.16) are, re-
spectively,

(D, (x)D, (X))=D, (x)D, (S)-D„(x)5(» -y),

p + p + ~ ~ ~ + p =0 but no subset of these p's sums
to zero. If we write G(0, 0 ~ ) we mean the limit

p, - 0, p, -0, . . . , not p, =0, p, = 0, . . . . It is also
understood that all p's are very small compared
tg A.

It follows from the transformation rules of
scaling variables and scaling products that

ED, (g,.)D, (g, ~0
—s *""}'"&{D,{g ', xis)D, (/f'', yis) II (3.23)

G((P1" P. ;g)
4+~(+( ))(4+2 )))/}G (sP ' ' ' sP 'gI)

Similar conclusions follow for scaling products of
more than two local variables.

The basic variables (t), (x) are specially simple
local scaling variables. They can be expressed
as a derivative of the form (3.19) when a term

g a.y. (x) (3.24)

is included in Il and h can be included in the set of

g, 's. For any scaling variable D„(t)+( as well as
((P,D, ) are scaling variables (%&A/s), although

they might not be equal.
More local scaling variables can be constructed

by applying the gradient operator V to D, one or
more times. The dimension increases by one
every time a V is applied. Scaling products in-
volving gradients can be defined easily.

D. Correiation functions

We introduce the following notation for corre-
lation functions:

GA(P11P2 Pnt t g)Id x '''d-x e (~) *1
j.

)((A {x,)y(x,).~ ~ y(x„)),. (3.25a)

From this definition, we generate the following
names of other correlation functions. 1st "A- (t)"

mean "replacing A by (P in (3.25a)." Then we de-
flDe

(3.25b)

(3.25d)

G() for A(x, ) (P(x,)-(D((x,)D)(x,)f,
G, /} for A (x,)(t)(x,)(P(x,)- {D,(x,)D/(x, )D)(x,)},
etc. (3.25e)

The component labels v for the P's are dropped
for simplicity. It is understood that in (3.25)

G(P, ~ P„;g) for A(x,)- ()t)(x,),

G„, for y(x, )-a(x,),

G„sc for (P(x,)-B(x,), (t)(x,)-C(x,), etc. ,

(3.25c)

G(/(P, " P.; g)

""""'~G (P " P g')fj 1

(3.26)

G(l})=G(h -i} g)

G(O) =r -'.
(3.2V)

(3.28)

Setting s = ( [see (2.11) for g] in (3.26), we obtain,
for example,

1 Ffx; P2" ~,

G((0, 0, 0;g(T))~r '(/" "' '

G (Q Q Q 0 ~ g(T)) ~ 1 -(v(+v)} /(2-1)}-1

(3.29)

(3.30)

(3.31)

8G-&0 k -k g T 0-/-(v(+1))/(2-1)}-2 (3 32)
Bk2

for very small T —T, . For T =T'„we set 8 =k '
to obtain from (3.26), for example,

G(k)~l) "",
G, (0, k, -k; (T,))(xi "( "",
G,.)(k, -k, 0, 0; (T,))~k "1 "/ "",

{3.33)

(3.34)

for very small k, provided that they do not vanish.
We can write any local random variable A(x)

as a linear combination of local scaling variables:

A(x) = P a, D, (x). (3.35)

Note that the complete set of D, in the summation
should include also those which are total spatial
derivatives of other scaling variables. Of course,
a, would depend on the details of the model since
D, in general do. They are all functions of the
scaling fields even if A is not. It follows that

and similarly for G,.», etc. Of course, G, &, G,»,
etc. , do not satisfy equations like (3.26). Equation
(3.26) simply states that we can apply the rules
of the naive dimensional analysis provided that the
variables are scaling variables and products are
scaling products. From (3.N) it is easy to deduce
behaviors of G, , G„, etc. , for 7 —T,-O. Let us
list a few formulas for future references. Define
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a,-G, , (s.36)

C„s=pa,. f' (3.37)

GD =Z&~yr G~.
$j

(3.38)

Once the expansion coefficients are known, the
critical behavior of G„,G», etc. , can be deduced
easily from that of G, , 8,&, etc.

There is a set of Nard identities which follows
trivially from our definitions of scaling variables
and scaling products. Ne get

G(p, ''p;g)=G (0, p. '"p;g},
Bg]

We have to write G, ~ in terms of G, z following the
definition (3.22). Then we have to expand D,~(x)
in terms of scaling variables. That is to say,

G„(p,"P.;~)=G,,'G.„(P, P., P, "P.;s),

plicative factor, a function of p, g, p, (, ~ ~ ~,p~&
and nothing else except n and d, i.e., a universal
function. In principle, these functions can be cal-
culated once and for all. The remaining work is to
calculate the expansion coefficients a, of (3.35)
for the random variable of interest.

To sum up, the scaling variables and the related
concepts of dimension and scaling products are
designed in such a way that those correlation
functions defined as averages of scaling products
of scaling variables will transform under R, by the
rules of the naive dimensional analysis, with
scaling dimensions replacing naive dimensions.
Any random variables can be expanded as a linear
combination of scaling variables. Only the first
few terms with the lowest dimensions are of inter-
est when the system is near its critical point. The
concepts of scaling variables and dimensions intro-
duced here are not restricted to the fixed point.
This is in contrast to some previous work in the
literature.

G~(p. "p.;r)=G(, (o, p, "p.;a},
Bg]

Bg)
Jj(P2 Pmtg) Ggjl( t Pm PSltg)t

etc. (3.38}

The motivation of Nard identities is to add an
extra variable into a correlation function by dif-
ferentiation. It must be noticed that in (3.39),
apart from the first identity, -S/Sg, does more
than adding a variable. For example, the right-
hand side of the second one is G,~, not the G„.
obtained by adding D, into Gz.

E. Universality of correlation functions

The transformation rules (3.26}for the corre-
lation functions G, , G,&, 6,», etc. , are the final
objectives of the general renormalization-group
analysis. They are analogous to the transforma-
tion rules of matrix elements of tensor operators
following a rotation-group analysis. The factors
s"i correspond to the irreducible representations.
The exponents y, reflect the geometrical properties
of R, . They are "universal" in the sense that they
are functions of n and d only.

The scaling variables in general depend on all of
the parameters g, . However, such dependence is
precisely that needed to achieve the simple trans-
formation rules (3.26). In the event when the wave
vectors P, ~ .-p -p and T —T, approach zero but

p t' remains finite, we can drop terms of O(p/A),
O($ '/A). The dependence on parameters other
than g, disappears as can be seen by choosing
s = ) in (3.26). Thus, in this limit, each of G, ,
G,J, etc., is expected tobe, apart from a multi-

IV. SCALING FIELDS AND SCALING VARIABLES
IN THE LARGE-n CASE

So far our discussion has been formal. Ne now
turn to the large-n case, where explicit construc-
tion of scaling variables can be carried out, as
a concrete illustration. .

—2-8+1 -4/2/I (id) (4.2)

We shall write (4.1) in a more convenient form.
Let us introduce the Legendre transformation of
Uo

a(t) -=v- y't, (4.3)

which is regarded as a function of t. It follows
that

A. Renormalization group and scaling fields

The renormalization group in the case of large n
has been studied extensively. ' %'e shall sum-
marize the basic features briefly and cast some
results into a form which is most convenient for
our purpose here.

We start with If and t defined by (1.8}and (1.10).
The transformation ft, takes t(Q'} to another power
series t '(P'). The formula is given by [see (4.35)
of Ref. 3]

t '(y') =s't(N),

X=s-'"y'i ,'nZ, ) dpp' '/(t'/s'+ p-'). -(4.1)
A/s

Given t, these two equations can be solved simul-
taneously for t . The Quantity Zg is (2s) x (the
area of a unit sphere in a d-dimensional space):
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-BA
Bt

(4.4) (4.16)

Similarly, we have Q'(t') =O' —P't', and

-BQ'
Bt' (4.5)

Thus, the transformation R, brings 0 to O'. It is
easy to verify that (4.1) is equivalent to

pAsQ'(t')=s'Q(t's ')--,'nK~
~~

dPP' 'ln(t'+P')

(4 6)

and (4.5). Now we write Q(t) as a power series:

These are very simple results. Note that we can
obtain D directly as t . There is no need to
determine explicit expressions for g in terms of
parameters originally given by p, . The scaling
products of these variables are easily worked out.
For example, (3.21) gives

D„„(x)=

Q(t)=g a„t,
m=1

and then expand (4.6) in powers of t ':
(4.7)

= mst + Bt
28

(4.1V)

where

Now let

(-) a'-2" nz,
m d —2m 2

(4.8)

(4.9)

and JD (x)D„(y)j follows from (3.22). and (4.1V).
Scaling products of more variables can be worked
out in the same manner. Only powers of t and its
derivatives with respect to P' appear in the prod-
ucts.

C. Completeness and determination of other scahng variables

by perturbation

gm = ~m ~my

pm=d —2m, m =1,2, 3, . . . .
Then (4.7) and (4.8) become, respectively,

(4.10}

(4.11)
So far we have determined the scaling fields and'

thereby obtained local scaling variables D = t
of dimension 2m, m=1, 2, 3, . . . . %'rite

n(t) = g (g.+a'.)t,
m=1

(4.12}

n'(t ') =g (g.'+a„*}t ", (4.13)

where

g =g g m. (4.14)

B. Scaling variables

By the definition (3.19) and by (1.8) and (4.12),
we obtain the local scaling random variables

D (x)=
Bgm

=[t(4'(x))1., m=1, 2, 3, . . .BQ

which have the dimensions

(4.15}

From (4.4) and (4.5) we can solve for t(P') and
t'(P'), which are now parametrized by g and
g', respectively. By our definition of scaling
fields and their exponents, (4.10) and (4.11) are
the desired ones.

t =t +up' u+(y')' sv+(y')' + (4.18}

and assume uc 0. Then it is evident that any power
series in P' can be written as a power series in t.
Therefore, any local random variable which is a
power series in P' can be expanded as a linear
combination of the scaling variables t . From
this linear combination, various properties of
correlation functions involving this local variable
can. be deduced easily as discussed in Sec. HI.
The set of D =t is comP/ete as far as random
variables which are powers of P' are concerned.
Such random variables are of course the most
important ones. However, there are other vari-
ables of interest, for example, (V'P)', P'(VP)',
P,Q', 2P, P, . —(1/e}P'6„., They are of
interest to the extent of their correlation functions
over our old probability distribution. To be more
precise, we are interested in random variables of
various structure and symmetries, but their corre-
lation functions are to be calculated with a simple,
completely symmetric probability distribution like
(1.8}.

Therefore, for the sake of generating new scaling
variables, we shall attempt to find small perturba-
tion terms of the form g„a„and add them to H of
(1.8). Here g„and D„are the new scaling fields
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Q =Q,(t)+w(t, {vy)', (v2y)2, . . .),
where Q,(t) is given by (4.3). Now we must de-
fine

(4.19)

U W'

sy2 sy2
(4.20)

W is of course a function of P2 through t. Equa-
tions (4.4) snd (4.5) hoM for the full Q given by
(4.19). Let us simplify the notation by writing

and scaling random variables to be determined
and gv are taken to be small. If we differentiate
EI+Q„.g„.D„. with respect to a given g„and, after
the differentiation, we set all g, .=0, then g„will
disappear and we get our scaling variable D„. Of
course, if one wants to find scaling products of
two new scaling variables, it is necessary to in-
clude second-order terms in g„ in addition to the
first-order terms. After differentiating twice,
one sets g„=0. %'e now proceed to the explicit
construction of the perturbation terms.

We add to H of (1.8) a small term W and write
the Legendre transform as

m V2 V~ ~ P 2 ~ ~ ~ 2vm

t vZ "~Zv2 Z "mg
1 2 V V~ V22~2 Vm'

(4.29)

In view of (4.27}, g„„...„are scaling fields with

I

ypy ~ ~ 2 d av+ vg(2 2I d}
m l=l

(4.30)

The corresponding local scaling variables are

Z &eeeZ m
m

with dimensions d-yvv ...„.
(4.31)

W= +4.W. (t, z, )

The local scaling variables (4.15) and (4.31) are
invariant under rotation in spin space and under
rotation in the coordinate space. Generalization
to vector and tensor variables is straightforward.
The simplest spin vector is just P, (z), which can
be generated by adding W =Q, tt, p, to H as stated
before [see (3.24)]. We can extend the coeffi-
cients of Q, to functions of t and Z, , so that

z = (gled )2

w=w(t, z, ).
(4.21)

Da VV ~ ~ ~ 2 ha 22 ~ ~ ~ y, (4 32)
VV '~2V

To first order in 8', one finds that 22 ~ ~ ~ 2 =4'aDV2 ~ ~'1 m
(4.33)

Q'=Q2+s W(t's, s (zi+gi)),

~As
1 -=-'22SC

~ dp p'-'"'(t '+p')-'

(4.22)

(4.23)

Qt s-2/2+ls2 g y W (t t~ 2 z s2 2l 2)--
(4.s4)

where Q2 is (4.6}with Q', Q carrying the subscript
0. We now expand (4.23) in powers of t ' to find

Q'=Q2+s2W(t s-2 z s2 2i 2}-- (4.27}

where the new symbol z, is the subtracted gradient:

zi =-zr M, {t)
-=(v'4 )' M,(t)— (4.28)

Of course, t ' replaces t in the Z, appearing in
(4.27). Now write (4.26) as a power series

(z +g )s' " '=[z M(t'}]s2 *'--'+M (t'2 ')

(4.24)

M, (t) -=-',nZ, A2"'-2+ {-t/a2) /(d+21 -a-am).
m=0

(4.26)

It is clear now from (4.24) that in (4.22) W can be
regarded as a function of [z, M, (t '}]s2 -" ' and
t's '. We write

(4.26)

TV= Td rg~di t Zg,
dd

%e get the sealing variables

(4.37)Ddd~ VV ~ "V =~ddrDVV ~ ~.V~ 1 m y m

with dimensions d —2+(d-yves, ".~ }. Similar
arguments apply if we start with

Z„,=Vy, Vy, , —(2/22)(Vy}25„, , (4.38)

instead of (4.35). Scaling variables which are
vectors and tensors in the coordinate space can
be obtained easily also. For example,

corresponding to (4.26), (4.29), and (4.27). The
sealing fields are hd, vv, " v and the scaling vari-
ables are given by (4.33) with dimensions —,'d —1

+EL —pvV ~ ~ ~ V

Results for rank-two traceless spin tensors
follow in a similar fashion. Let r„be such a
tensor of the lowest dimension. In this case

~„,= 4.4., —(2/22)y'5. ..
with the dimension d -2. Ones with higher di-
mensions are generated by
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T..= g (V. y.)(v,y.) —(2/d)(vy)'5. „ (4.39) A. Background material for calculations

T...., = (V.4.)(v,y. , ) —(1/d) 5.,X... —(1/ n)5...Z'.,
—(2/~)(vy)'5. ,5.. (4.40)

The variables (4.38)-(4.40) are all of dimension
d. Variables with higher dimensions can be .ob-
tained by multiplying them by D»,...„.Other
examples are V'Q„V'r„. We shall stop our
determination of scaling variables here. Further
extension is straightforward but is of little inter-
est. A few remarks are in order.

(a) The above results are very easy to remember
because they follow the rules of the naive dimen-
sional analysis. The scaling variables are built
as powers of t and Z, with dimensions 2, d+2l-2,
l =1,2, 3, . . . . To get variables of symmetries
other than invariant, just multiply P„A.„&, r„&,
~ah & ~ebaa'& etc. , with powers of t and zr ~

only nontrivial results in the large-n limit are the
special important role of t= SU/sg'—, and the sub-
traction terms M, (t) [see {4.25)].

{b) Tile subtract1on tel'Ill MI (t) I'enloves the A-
dependent terms in (O'P)' [see (4.28}] so that z,
will have the desired behavior in calculating corre-
latloll fllllctlolls [see (5.38)-(5.41)] . As was Illell-
tioned before, our local scaling variables make
sense only for their Fourier components of wave
numbers much smaller than A, i.e., corrections
of the form A 'V', A 4V4, . . . are not taken care of.
Such corrections are not important except for local
variables involving many powers of V, namely,
z, with sufficiently large E. Since there will be no
further interest for Z, with /&1, there is no need
to consider these correction terms here.

(c) Linear combinations of the above deter-
mined scaling variables may be needed in the case
of degeneracy, i.e., when two or more variables
share the same dimension. This point has been
discussed in Sec. I.

V. CALCULATION OF y,. TO 0(1/n)

The exponents y, can be calculated easily to the
first order in 1/n knowing the scaling variables
D, to the zeroth order. This section is devoted
to such calculations.

The results are already summarized in Sec. E.

The details of the algebra are not of vital im-
portance to the ideas which we want to illustrate
in this paper. The purpose of this section is to
record enough intermediate steps so that the reader
can easily repeat the algebra. The technical infor-
mation furnished here should be useful to re-
searchers w'orking on related problems.

The background material is all contained in Ref.
'7. Here we shall review a few basic formulas for
later reference.

The parameters specifying our model are con-
tained in t(Q ). Without losing much generality,
we shall take a simple t(Q'):

t{y')=t, +up
2 (5.1)

with only two parameters, to and u. The quantities
t, P'/ narc taken to be of O(1) for large n, and
u =O(1/n). By (1.8) and (1.10) we have

ff = ( Vy)'+ t,y'+ ,'u(y-')', (5.2)

which generates the perturbation expansion in
powers of u. The values of the scaling fields are,
for this special II,

(5.3)

(5 4)

(5.5)

u =(2a*) ' N =-a*

[See (4.9) for a*.] We define G(k), r by

G(k) -=&y..y. ,),
G(0) -=1/r

In the large-n limit, we have

G(k) =(r+k') ',

r =t(nr) =t, +utt=u(g, +X-X,),

f&/= (p') =-,'n(2II) ~
J)d k G(k)

(5.8)

(5.7)

(5.8)

(5 9)

(5.10)

,'nK, It dk k~ '/-(r+k'), (5.11)

where K~ is given by (4.2). These 8Iluations fix r
in terms of t, and u. We shall be interested only
in cases where x«A'. In these cases,

Ã —lV, = --,'nr'/'-'Z/(-, 'd —1) ——,'n r /u* [1+0(r/A')],

where

Z=- —,'K, II(-,'d —1)cscII(-,'d —1).

Substituting (5.12) in (5.10}, we obtain

(5.13)

(5.14)

where we have assumed that u is of the same order
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of magnitude as u -A' " for large A, so that
pl~ 4

We define

11(k)=(2v)-' d'P G(P) G(P+k).

For r «A2, we get from (5.15}

11(k)=11(r, k') —(2/nu*) [1+O(r/A')],

(5.15)

(5.16)

a, (x) =[t,+uy2(x)] '+O(1/n), (5.25)

where the O(1/n) term is some power series in (P2.

The coefficients in this power series are smooth
functions of O(1/n) of t, and u. What we shall do is
to compute the correlation function G, (P„P„P,)
for p„p„p,-o. By {3.30), we have

G (0 0 0) r-2(/(2-2(-1

11(r, k') =11(r/k2, l)k'-',

II(r, 1)=II(0, l)(1+4r)" "k

+24(1 - 'd) 'r'k-'F(1 —' -'d -4r}

=II(0, 1)[1 —2(3 —d) r+O{r')]

+28(I ——,'d) 'r ' '[1 —(4/d)r+O(r')]

(5.le)

where II(r, k') is given by (5.15) except that the P
integral is extended to infinity. We quote the re-
sults':

-r "k" '(I +blnr). (5.26)

(5.27)t =r —Z, (0, r)+u((t2 —{y2)),

D, (x) = (r —Z,)'+ 1(r —Z,)'-'u(y2 —{y2&)

+ —,'I(l —1)(r —Z,)' 'u'(Q' —{Q'))'

By computing the coefficient b of lnt' in Q, , and
with known results of q, y, can be determined to
O(1/n). The O(1/n) term in (5.25) will not contribute
to 5 lnr to O(1/n) because all correlation functions
of powers of (t(2 have no logarithmic term to O(1).
Since r=t, +Z(o, r), we write, using (5.24),

II{0,1)= ZB(,'d —1,—'d——1.),

11(r 0) = &r'k-2

(5.18)

(5.19)

(5.20)

+ ~ ~ ~ (5.28}

Only the second and the third terms in (5.28) con-
tribute to G, to O(1/n):

where I' and B are the hypergeometric function
and the beta function, respectively.

A frequently occurring quantity will be

f(k)=-u/{1+-.'n 11(k)}

1 (, (I 1)R ($I )

= —II '( , )(I+I(I—,0),(—)
(5.21}

When O(l/n) corrections are included, (5.9) be-
COQles

r 2G, (O, O, O) = &(r -Z.}'-'I;+21(I —1)r '-212,

(5.29)

r-21', =u d'xd'x'e '"* """{y2(0)(P,(x)(P,(x')),

(5.3o)

with p, p' approaching sero. I; is just -BG 1/st,

G(k) =[t2+k2+Z(k, r}]
=[G2'(k)+Z(k, r) —Z(o, r)]

G, '(k)—= r+k'.

We shall write the self-energy Z(k, r) as

Z (k, r) =u{(p2) + Z, (k, r).

(5.22)

(5.23}

(5.24)

+

0

The leading term for Z, is shown in Fig. 2(b). Our
graph notation is standard: a solid line for C„a
dashed line for -u. Each closed loop contributes
a factor n and each u contains a factor 1/n. A wavy
line stands for the geometric sum shown in Fig. 2(a).

8. Calculation of y&

The scaling variables (4.15}are, for the special
t given by (5.1),

(c)

FIG. 2. (a) Wavy line is defined as a geometric sum,
and represents a factor -I [see (5.2l.}l; {b) &„- (c}
terms for I'2 lsee (5.33}].
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I; =(2/nZ)»' (5.31)

where J is defined by (5.13). The quantity F., is
also known [see (C16) in Ref. V]:

Z, = const+ const r~ ~' '

We simply quote the result to the orde'r
of interest:

&.—,
&

= &(~'y)'&- &M(f)&

f-A

,'nZ-, dPP' '"-'(»+P')-' —M, (»}
~o

= -(-»)' —,'n J»'~'-'/(-, 'd -1}. (5.39)

The leading contribution to G —, (0, 0, 0) is shown in
Fig. 3(a). We have [see (5.21) for 1(P)]

—(Kd/n) Il(0, 1) '(5 —2d)»(ln»+ const)

+higher orders in r.

1; is shown in Fig. 2(c). We have

(5.32)

G-, (0, 0, 0)»'=- „&(~'y)'&[-f(0)1- „' f(0)

(5.40)

Since GT-r 'T~" "' ', we see that

y-, =2-2t+O(I/n). (5.41)

(5.33)

Using the information provided by (5.15)-(5.21),
the logarithmic term in (5.33) can be extracted
We obtain

I; = (2/n)'» d~" (-»ln»+»const)

x-,'Kdli(0, 1)-'[4[(4-(f)2-I] 6(3

+ const+ constr -'+"

Of course, Z, was designed to give this result.
Here we only illustrate the role of the subtraction
term M, (t). It is just what is needed to remove all
the A dependent terms implied by (V'(j))' and to give
the right power of x.

We proceed to evaluate the O(1/n) term for y —,=—y~,
i.e., for l = 1 only. The graphs are shown in Figs.
3(b)-3(e). The shaded piece is simply the O(1/n)
correction to the right-hand part of Fig. 3(a),
which is r' ' ~. Thus, the sum of graphs in Figs.
3(a) and 3(b) gives

+higher orders in r. (5.34) ' [-'(f/(-'d —1)], (5.42)

Substituting (5.31), (5.32), and (5.34) in (5,29)
comparmg 'the result with (5.26), we can extract
y, . We find

&( =d —2i+[4(d —I)/d][d —2 —(l —1)[2+d(d —4)]j
x(2/n)S, O(n '), I=1,2, . . . (5.35)

where (r '), = -3(&d —1)(2/s) S, is the O(1/n) part of
y '. The contribution of Fig. 3(c) is

(2w) '
J(dq T'(q)r)(q) ' ~ ):,(0, r), ((v()'))

x( J' l}»2 d(2 (5.43)

sinv(-,'(f —1)
2 '

(dd —1)B(2d —1, ~d -1) '

(5.36)

We have used the expressions'

y ' = (~zd —1)(1+6Sd/n),

q =4(4/d —1)Sd/n

in arriving at (5.35).

(5.3V)

C. Ca1culations of y~

First, let us look at the correlation function
G-, (0, 0, 0) for a general l. Our notation here is
that

DT =F, = (V'(j)) —Mi(t), (5.36)
(a) Leading terms for 6; [see (5.40)]; (b)

corrections to the left part of (a); (c)-(e) more cor-
rection terms.

with M, defined by (4.25). To the leading order in
I/n, we have
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T(q) =— (2&() 4 d'pp'(y+p'} '[y+ (p+q)']

(5.44}

The O(1) term simply gives 1 for the left-hand
side. The only O(1/&2) graph is one that looks like
Fig. 3(d). The traceless nature of v excludes
other graphs. The evaluation is easy, and we ob-
tain

The first term in large parentheses in (5.43}gives

JS4—2d( ,'d-——1}'(d —2)(d —1)y'/' ' lny (5.45)

and the second term in large parentheses gives

-(2/n)K4 dpp' '(y+p') 'll '(p) =(2/n)S41ny,

(5.55}

therefore
—JS4 2d(—5 —2d) y4/' ' lny. (5.46) (s.s6)

(2/&2)K dPP4-'P2(y yP ) 11 '(P)

Figure 3(e}gives

= -(2/n) S4 2(d —2) y lny. (5.47)

2(2/n)(2(() ' (f'q T(q)(y+q') 'II(q) '

Irrelevant terms are not listed in (5.45}, (5.46),
and subsequent formulas. Substituting (5.45) and

(5.46} in (5.43) and combining the result with
(5.42), one finds that the coefficient of lny from

' (5.43) cancels that from y-&&' (&(. It remains to
evaluate the graphs in Figs. 3(d) and 3(e). Figure
3(d) gives

Gg —= aGz+G„ (5.57)

in an obvious notation. For the right choices of
the coefficient a, we would get [see (3.30) and
(3.32)]

G (0, 0, 0)y'-y' " " "' (5.58)

F. Evaluation ofy~, andy„

The variables X„[see (4.38)] and tt„must be
considered together because they are of identical
symmetry under rotations and have the same di-
mension to the lowest order in I/n As. mentioned
before, we have to consider linear combinations
of ~„.and t7„. LetD =a~+tv', and

= 2(2/n) S,(d —2) y lny. (5.48)

We see that the lnr terms in these two formulas
cancel. Therefore, we conclude that

G»(pi k, -k} 2 - (2+2&/(2-)»
k28

}(,'=0
(5.59)

(5.49)
Gq(0, 0, 0)y2 to O(1/n) comes from a graph like
Fig. 3(d) only and gives

D. Evaluation of y» Gq(0, 0, 0) y'= -2(d —2)S4(2/n) ylny. (s.sp)

We turn to the scaling variable D&, . Consider
the correlation function

G /P) y y —(24(-4/2-(+)&/2&/(2- 2&( (5.51)

(5.50)

for p -0. Qne easily derives the critical behavior

Since ty„, =(y —Z,)y„+y„u((()&' —(4&'}), we ob-
tain

G„(0,0, 0)y'=(y —Z, ) G, (0, 0, 0) y2~2Z,

= y [1+2(d —2)(lny) S, 2/n], (5.61)

where the last term 2E, comes from the graph in
Fig. 4(b). Similarly, BGn/Sk' can be calculated.
We obtain

Again, using (5.27}, t =y —Z, +u((t)2 —((p2)), we
obtain

r28Gy
Bk2

=1+-,'q lnr, (5.62)

G~, (0) (yy—Z,)+Z, =y, (5.52)
r 28G, T

ak2,"=-glor. (5.63)

where the last Z, comes from the graph in Fig.
4(a). By (5.51), we conclude that

y4( ---,'(d —2 &1)+O(n '). (5.53)

E. Evaluation of y,

(5.54)

The scaling variable 7' is given by (4.35) y„
=[/, (t&, i —(2/&2)(p26„]. We have

G (P P P)y2 y( 2T/(2--

(0)

FIG. 4. (a) O(1//'n) graph for 6@& r, see (5.52)]; (b) O(1/n)
graph for G«[see (5.61)j.
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Thus, (5.5V)-(5.63) give

Gor' =a[-2(d —2}S~2/n]rlnr

+ r+ 2(d —2)S~(2/n) r lnr = r(1 ——,'y lnr),

(5.64)

I'(q) =-', (4-d)11(0, 1)q~ ',

which we substitute in (5.72) to obtain

S~(2/n)(lnr)k, k, .4(4 —d}

(5.74)

(5.75)

therefore

(5.65)

r28G
=a(1 + —,

'
q lnr) —q lnr = a [1 ——,

'
(y + q) lnr],

To sum up, we have

r'Gr(0, k, -k) =k,k, [1 —(1/d)(4 —d)(2/n)S~lnr]

= k,k, (1 ——,'q lnr). (5.76)

In view of (5.VO), we conclude that

——,'y = (1 —a}2(d —2)2S~/n,

--,'(y+q) =q(-,' -I/a}.
(5.66)

(5.6V)

yr =0+O(n '}.
H. Evaluation of y~

(5.77)

There are two sets of solutions for y and a:

D~~ ~~. ——X~~i+ tr~~i, y~~ ——0+O(n ),

for a=1, and

d-4
vt, aa'

d(d 2) aa'+t aa' ~

y„= -8(d —3+4/d)S~/n+0(n '),

(5.68)

(5.69)

Finally, we come to the scaling variable Y„„.
given by (4.40). This is again a traceless tensor
and we shall evaluate the k,k, (ao 5) term of

G~(0, k, -k)r'-k, k, r "&'"~" " O(k') (5.78.)

The O(1) term is just k,k, . The O(1/n) term is
again given by Fig. 3(d) and the answer given by
(5.71). We get

for a =(d —4)d '(d —2) '. yT ——-8(4/d —1)(d+2) 'S„2/n+O(n 2). (5.'19)

2 (4 —d)(d —2)= ——S„,
}

(lnr} k, (5.Vl)

Figure 3(e) is more difficult to evaluate. It gives

2(2/n)(2v) ~

J
d'q I'(q)q, qu'il 2(q)[r+ (q+k)2]

(5.72)

where

G. Evaluation of y~

We turn to the traceless tensor variable T,b

=Q,V,Q,V,Q, —(2/d)( QV)'5, ~. The O(1/I) graphs
for Gr are given in Figs. 3(d) and 3(e). The other
graphs in Fig. 3 will not contribute due to the
traceless condition. For our purpose, it is suffi-
cient to consider the coefficient of k,k, for a4b in

Gr(0, k, -k)r'-r '"r'"'~" '" k k&+O(k ). (5.70)

The trivial term for G~ is simply k,k, . The con-
tribution of Fig. 3(d) is

2——(2s) " d'p (p + k), (p + k)~ [r+ (p + k)'] ' ll '(p)

I. Determination of the gradient term in D»

In the n- ~ limit, the variables tQ, and V'p,
have the same dimension, —,'d+1. Thus we expect
that

D» ——tP —aV &f&, (5.80)

-k' " (5.81)

where we have used (5.53) for y&, . The calculation
of Gz, (k) is trivial. For r =0, we have t = -Z,
+u(P' —(Q')). Figure 4(a) gives the O(1/n) contri-
bution:

in the same fashion as the case of degeneracy dis-
cussed in Sec. V F. Note that O'P, needs no modifi-
cation. The gradient of a scaling variable is al-
ways a scaling variable. We need to determine
the constant a. The gradient term in (5.80) does
not contribute to the correlation function calcula-
tion of Sec.V D, which was done at k =0. To deter-
mine the constant a, let us take k 0, r = 0. If
G»(k) x0 at r =0, then we expect that

G „(k)G(k)-' -k-"»+'~+'- &~

I'( )q. , -=(2 ) 'J d'Pp. p ( +P') '[ +(p+q)'] '.
(5.73)

G» (k) G (k) ' = -Z, + Z, (k) +ak~

= -r]k2 ink +ak'.

Clearly, the answer is a=1.
(5.82)

A counting of powers of q in (5.72) shows that, to
calculate the (lnr) k,k, term, only I'(q) with r =0
is required. Once r is set to zero, the integral
(5.'l3) is straightforward. One finds

J. Gradient term in D2

Here is another case of degeneracy at n-~. The
variables t ' and V't both have the dimension 4 for
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n -~. Again we write

D2 = t2 —a2V2t. (5.83)

A =-scscv(6-d)K, , 2' '(d —3) sin-,'w(5-d}.

(5.93)

As in the last case, the calculation of y, was done
at 0=0 and the gradient term was not needed. To
determine a„we shall calculate

I"(k) —= G,(-k, —,'k, —,'k) G(-,'k) '

= I;(k) + a,k'I;(k),

at x=0, %40. For our purpose,

I;(k) = {2/n) 11(0, 1) ' k ')" ",

(5.84)

(5.85}

and I", is the contribution of Fig. 2(c). We must
have

(5.86)

if it is not zero at r=0. If I; has a term propor-
tional to ink, i.e.,

The coefficient E is the residue of the pole at
& =8 —d of (5.21) of Ref. V:

E = -vcscn(8 —d)
2w

sin(V —d) q) sin38
x d sin

sing sine (5.94)

Replacing sin38/sine by -I +4(cos'8) = -1+4/d,
the P integral can be done. Substituting the result
and (5.93) in (5.92), we obtain the constant c de-
fined by (5.8V):

c = -2(d —3)(4 —d)(6 —d)d '(2/s)S, . (5.95)

By (5.88), and the values of y, g given in (1.14), we

obtain

I; = c(2/n) II(0, 1) 'k' "ink

+ ~ ~ ~ (5.8V)

(d —3)(4 —d) (6 —d)
2(d —1)[2—d(4 —d)]

'

then, in order that (5.84)-(5.86) are consistent
to O(1/n), we must have -y, +2+c/a, =-y„namely,

u. =c/(y, -y, -2). (5.88)

To find c, we write down I; following Fig. 2(c}:

I; = (2/n)'(2 w)
' jd'q I)(q) '

rt(q ~ k l '

x[-2T(k, q)II(k) '+2(q+-,'k) '], (5.89)

where T(k, q) is the solid-line triangle [not (5.44)]
in the first graph. It has been studied in Ref. 7
using the Mellin transform [see (5.14)-(5.18) of
Ref. V]. It was shown there that

T(k, q) =k' 'T(k, q/k), (5.90)

T(k, q) =II(0, 1)q '+Aq' '+Bq '&Cq' '+Dq '
gag +Q ~ Q (5.91)

I {k)=k' ~(2/n)'II(0, 1) '{-2)K~

p1/a
(dq jq)(&+(2--'d)[1+(2-d)((q. k}'&]Aj,

(5.92)

where {(q k)') =1/d stands for the angular average.
All other terms are of no interest. The coefficient
A is given by (5.29) of Ref. V:

where k is the unit vector along k, and A. , B, . . .
are angular integrals. Replace q in (5.89) by kq;
then expand II(q+k) ' in powers of 1/q. Substituting
(5.91) in (5.89}, we collect terms proportional to
dqjq:

Within the range 2&d &4, a, vanishes at d =3. It
blows up at d =2+ v2, where the degeneracy y, =y,
+2 remains to O{1/s). This degeneracy may re-
main to higher orders with a slightly different d.
At this special d, D, ~ (V'D, +terms which vanish
at the fixed point).

VI. DISCUSSION

Our results l. ave been summarized in some de-
tail in Sec., I. Here we add a few remarks.

A. Exponents

The exponents y, calculated in the previous sec-
tion are summarized in (1.13). The dimensions
of the corresponding local scaling variables are
given by d -y,- . An over-all qualitative view is
given by Fig. 1. The exponents y, =1/v and y@
=~(d+2 —q) are familiar. Some of the other ex-
ponents have been discussed by many authors.
Kawasaki discussed the strain tensor and y~.' In
connection with the anisotropic perturbation, y,
was examined by Riedel and Wegner, '0 Fisher and
Pfeuty, " and Wallace. " Wegner made more gen-
eral classifications of perturbations to the sym-
metric n-vector model. " The exponent y, gives
an estimate of how fast the fixed point is approached
under R, , and was examined by many au-
thors 2 Q 3Q 13 15

Some of the results listed in (1.13) are expected
to be general, i.e., they should hold vrhen n is not
large. One expects that yz=y~ =0 should hold in
general also in view of the argument that com-
ponents of the strain tensor, which is dimension-
less, should appear as scaling fields g~ (the trace,
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i.e„ the dilatation) and gr „(the traceless part of
the strain tensor). One also expects that the re-
sult for y« is general. (Of course, ye defines q. )
Checking-(1. 15), one sees that the corresponding
scaling variable D«, sH/—s(p, can be interpreted
as the fluctuation of the local "magnetic field. "
The exponent d -y& is what one expects for such
a magnetic field. The scaling field g», coupled
to it is thus a shift in the spin variable (t), . The
scaling variable D~, „.may be viewed as a local
"stress" in the spin space, and the scaling field

g~, „i is a strain" in the spin space. Thus, the
exponent y~, should vanish. A shift or a strain in
the spin space is a change of variable. We shall
discuss this point in more detail shortly.

It would be very desirable to derive more scaling
laws to relate one exponent to others. Note that
the question whether all the exponents can be ex-
pressed in terms of two fundamental exponents
q and v needs more qualification. In principle we
can express d and n in terms of q and v and thereby
find all exponents as functions of g and v, since
all exponents are functions of d and n. This is, of
course, an extreme statement, but the fact that
there are only two variables n and d implies many
relationships among the many exponents. Since
only v and q seem to be needed in studying the
thermodynamics and the leading behavior of sim-
plest correlation functions near the critical point,
a better understanding of the additional exponents
would demand more detailed analysis of more
correlation functions. The reduction hypothesis
seems to be a natural next step.

B. Variables D+, and D~,

A perturbation term g, D», added to H can be
generated by a change of variable

(6.1)

in H, since D«, = sH/8 $, . As a consequence, the

free energy will not depend on the scaling field
g, since it is unchanged under (6.1}."Wegner
calls such scaling fields, which can be removed
from the free energy by a change of variable,
"redundant. "" It is warned in the last part of the
Appendix of Ref. 2 (Wilson and Kogut) that the
scaling variables associated with some scaling
fields are "equivalent to zero" in some sense. An
equivalent comment is made in Ref. 1V. Let us
clarify this point.

The correlation function G«(P, P;g) is the
Fourier transform [see (3.25)] of

D«, (x,)e = —
6 ( )

e (6.3}

(6.4)

Of course, our 6(x -x') has a spatial resolution
-A '. In the sense of (6.2), D« is equivalent to
zero, or shows no long-range correlation even
at Tc'

Similarly, a term g, D~, „.added to H can be
generated by a change of variable

(6.5)

where o 0 o'. Thus g„. is "redundant" also. In
view of the expression for D~, in (1.15),

'

we see
that

5X
Dd~. a()' 5~ 4a'

+a
(6.6)

By the same arguments as above, we conclude that

(6.2)

unless x, =one or more of x„x„.. . ,x . We have
integrated by parts and made use of the fact that

(6.7)

G~,(0, k, k; g(T,))-k ~+'), - (6.8)

which is the behavior for G(k). In other words,

unless x, = one of x„.. . , x . The above argument
runs parallel to some of the development in Sec. 2
of Ref. 1'l.

The results (6.2) and (6.7) are consistent with
our previous general conclusion on correlation
functions in Sec. GI. This consistency is possible
only if the exponents y» and yz„assume the values
given by (1.13). For example, since &~, =0, (3.33)
implies that

D~, acts as a constant attached to one of (t)'s.
Another example is given by (5.81), which says
that

G«(k) -1 (6.9)

at T„ i.e., -Fourier transform of 6(x).
In spite of the trivial features of these redundant

scaling variables, they are still needed in forming
a complete set of scaling variables. Precisely how
important they are is a question to be studied
further.
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C. Physical meaning of scaling variables

The variable P, is the order parameter and we
have indicated above that D&, can be interpreted
as the local fluctuation of "magnetic field. " It is
also reasonable to identify D~ and D~ „respectively
as the trace and the traceless part of the stress
tensor.

It would be very nice to associate each of the
rest of the scaling variables listed in (1.15) with a
familiar physical quantity, too. We feel that, for
best results of such effort, the association should
be made individually for each model of interest.
A general association may often be pointless. For
example, the most important variable D, has been
often interpreted as the energy density fluctuation
in model systems. Would it be useful to think of

D, this way in general? Since D, =BH/sg, and

g, ~ (T —T,) for T —T,-O [see (2.15)], then near
T, we have D, ~ BH/BT Since .H may be thought of
as the "local free energy, " then Dy is proportional
to the local entropy density fluctuation. From the
relation E =I'+ TS, D, also accounts for the fluc-
tuation of local energy density (the free energy
does not fluctuate as much). Clearly, what is more
convenient is not to think of D, as the energy den-
sity or entropy density, but to do it the other way
around. Namely, the energy density, entropy
density, and perhaps other density fluctuations
are all dominated by the scaling variable D, . More
physical significance should be attached to the
scaling variables, rather than to the familiar quan-
tities. More precise and useful interpretation can
be made when the details of the model are taken
into consideration. For example, let us take our
model as a model of —,'n-component Bose system.
Then Q' is the density of Bosons. For large n,
D, = t = BU/s p' is thus the effective local potential
seen by a Boson. In this case, the Hartree ap-
proximation is a good one. The local potential
plays a dominating role and turns out to be pre-
cisely the leading scaling variable D, .

universal (i.e. , independent of the details of H)
features, as mentioned in Sec. III. In fact, the
scaling variables are so structured to ensure this
universality. These correlation functions are
very important and are analogous to the matrix
elements of tensor operators of the rotation group.
We have not made a detailed study of the universal
correlation functions. " The exponents y, are also
universal. They are analogous to the quantum
numbers specifying irreducible representations
of the rotation group. All the universal features
seem to be geometrica/ in nature, in that n and d
appear as the only parameters. However, we know

that an averaging process, which is statistical
in nature, is a vital part of R,. Namely, R, is not
a purely geometrical operation. Which of the
universal features are statistical in natureV That
is an intriguing and important question.

E. Conclusion

The scaling variables should be 'the basic set
of variables for studying general problems in
critical phenomena or any subject where the re-
normalization group is a dominating feature. They
are entirely analogous to the tensor operators of
the rotation group in atomic or nuclear physics.
By the use of scaling fields, we have shown that
the concepts of scaling dimension and scaling
variables can be clearly defined away from the
fixed point as well as at the fixed point. We hope
the above study has made this point transparent,
and has provided a fairly concrete qualitative
picture as well as some useful quantitative infor-
mation for the case of large n.
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