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Gravitationally induced, anomalous density gradients in a fluid near the critical point are shown to
have significant effects on light-scattering measurements of the decay rate of density fluctuations along
the critical isochore. We have calculated the height dependence of the decay rate for xenon and carbon
dioxide using a parametric equation of state and both the mode-mode coupling and the decoupled-mode
theories of critical-point dynamics, and have found that the minimum in the decay rate, which does
not always occur at the height of the critical isochore, can be several percent lower than the value at
the critical isochore. In addition, the density gradient across the diameter of the incident light beam is
shown to give rise to a measured decay rate significantly different from the value at the center of the
beam, particularly at small scattering angles, under some typical experimental conditions.

I. INTRODUCTION

The spectrum of laser light scattered from a.

fluid contains a quasielastic component, called the
Rayleigh line, centered on the frequency of the in-
cident laser light, whose width is the decay rate
(I') of spontaneous density fluctuations. ' Near the
critical point the isothermal compressibility (Kr)
diverges, inducing a vertical density gradient in
Earth's gravitational field, and the decay rate then
depends on the height in the sample. The value of
the decay rate at the critical isochore has general-
ly been obtained by assuming (a) that I' as a func-
tion of height at a fixed temperature and scattering
angle is minimum at the critical isochore and (b)
that the density gradient across the width of the
laser beam has a negligible effect on the measure-
ment of I . In this paper we carefully examine the
validity of these underlying assumptions, since in
fact the density gradient is most pronounced in the
region of the critical isochore, and the detailed be-
havior of I' as a function of height in the sample in
this region has not previously been analyzed ex-
plicitly.

Furthermore, a recent analysis of experimental
Rayleigh linewidth data by Swinney and Henry in-
dicated that more data are needed in a region very
close to the critical point in order to test the re-
sults of two theories of dynamics near a critical
point. ' These theories, the mode-mode coupling' '
and the decoupled-mode"' theories, predict slight-
ly different values for the decay rate very close
to the critical point. It is therefore important to
consider possible complications in the interpreta-
tion of experimental data in that region.

In Sec. II we briefly consider the time autocor-
relation function of the electric field scattered
from a fluid. The method used for determining the

height dependence of the decay rate and other ther-
modynamic quantities that appear in the autocorre-
lation function is described in Sec. III; in particu-
lar, the detailed behavior of I as a function of
height in the sample near the critical isochore as
predicted by both the mode-mode coupling theory
and the decoupled-mode theory is discussed. In
Sec. IV we analyze in detail the effects of a finite
density gradient across the laser beam diameter
on the measurement of I'. The results of specific
calculations for xenon and carbon dioxide are also
presented. In Sec. V we discuss the significance of
our analysis.

II. TIME AUTOCORRELATION FUNCTION
OF SCATTERED FIELD

The geometry of a light scattering experiment is
shown in Fig. 1. Laser light having the carrier
frequency &u, and wave vector K, is scattered from
the sample at an angle 6I with a resulting wave vec-
tor k~. The magnitude of the momentum transfer
vector, q =—R, —R~ is then given to a good approxi-
mation by q = (4v/a) sin-,' 8, z being the wavelength
of the light in the sample. The time-correlation
function of the scattered electric field, ''

C (t) -=(E, (0)E,(t)),

is related to the spontaneous decay rate I' of the
qth component of the density fluctuation, p„by'

By using the Ornstein-Zernlike theory' (Ip, I') can
be expressed in terms of the sample density p, the
compressibility K~, and the long-range correlation
length g, as
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K~ can in turn be related to ( by the compressibili-
ty theorem of statistical theory":

pK (p)/p, K (p, ) = [&(p)/$(p, )]', (4)

p, being the critical density. Thus Eg. (2) can be
rewritten as

C~(t) = Cp)'e r'/(1+q'('), (5)

III. HEIGHT DEPENDENCE OF THE DECAY RATE

To determine the height dependence of the decay
rate, it is necessary to have an equation of state
for the fluid. Recently Schofield, " and Ho and
Litster" introduced a general parametric repre-
sentation of scaling laws, and the ensuing equation
of state, which we adopt here, has been shown to
fit experimental data to high accuracy for a num-
ber of fluids. "

In the parametric representation of the equation
of state, a point in the (p, T}plane is specified by
the two independent variables y and 8. The linear
model of the equation of state is described by

e =(T —T, )/T, = (1-b' )6r,

Ap =- ( p —p, )/p, = k 8r

Sp, —= [p(p, T) —p(p„T)]p, /P, =ae(1 —8')r8" .

(6a)

(6b)

(6c)
Here p. and P denote, respectively, the chemical
potential and the pressure, and the subscript c re-
fers to values at the critical point. As shown in
Fig. 2, the two-phase region is bounded by 8=+1,
the critical isotherm is given by 6=+b ', and the
critical isochore by 6=0 for T&T,. The constants

where the proportionality constant C is independent
of density. Equation (5) will be used in the calcula-
tion of the density dependence of the time-correla-
tion function.

8P
pep= pc, +T —Z, .

P
(8)

Very near the critical point, only the second term
in Eq. (8) is significant, and (sP/sT)~ is only weak-
ly density dependent. Furthermore, the back-
ground contribution to the decay rate is at most
only a few percent of the total decay rate for the
temperature ranges considered here.

There are two theories for the critical part I:
(a) the mode-mode coupling theory' ' and (b) the
decoupled-mode theory. ' ' The mode-mode cou-
pling expression for I" is

F' = keTK, (qg)R(q()C(qg)/6vq, g', (9a)

where k~ is the Boltzmann constant and q, is the
shear viscosity: R(q, () and C(q)) are numerically
evaluated factors which incorporate various refine-

8.o

a, b, k, P, and 5 are determined from a fit to ex-
perimental data for the fluid under consideration.

The theoretical prediction for the decay rate I'
can be deduced from the procedure described in
detail by Swinney and Henry, ' which we briefly out-
line here. I is assumed to be the sum of a back-
ground (i.e. , nonanomalous} part and a, critical
part:

I'=X q'(1+q $ )/pc +1", (7)

where A,
~ is the background thermal conductivity,

which is calculated from thermal conductivity data
obtained away from the critical point. " The specif-
ic heat at constant pressure, g~, is related to the
isothermal compressibility and the specific heat at
constant volume, c~, through the thermodynamic
relation

8 * - I/b g*i(b

Eo(~o ko)

sample

Es((us, ks)

FIG. 1. Schematic diagram of the light-scattering
geometry. The incident field Ep propagates along the y
direction with wave vector kp and frequency up and is
scattered from the sample at an angle 8 with wave vec-
tor k, and ~~. The z axis is taken parallel to Earth' s
gravitational field.

FIG. 2. Schematic representation of the (~,Ap) plane
in terms of the parametric variables (r, 8). The two-
phase region is bounded by 8 =1 Piquid) and 8 =-1 {va-
por); the critical isochore is specified by 8 =0, and the
critical isotherm by 8 =+ 1/b.
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q', = (&q/15w ) In(qD)), (9c}

where q and qo are parameters determined from a
fit to experimental data.

The decoupled-mode theory gives

(10a)

where the effective shear viscosity qe« is defined
by

r},e"=qe]1+ (Bq/15m'qe)[lnqD) ——,
' ln(1+q']')

+ v(q$)]}. (10b)

&,(qh) and C(q)} are the same functions that appear
in Eq. (9a), and r(q() is a function which has been
determined numerically. The parameters g and q~
are the same parameters appearing in Eq. (9c).

These two theories for I"' differ significantly
only in a region very near the critical point (i.e. ,
for q( &1), where the difference is a few percent.
Hence in order to test the two theories it is impor-
tant to obtain accurate decay-rate data in a region
where density gradients will be most pronounced.

The density dependence of the decay rate is de-
termined by the density dependence of the correla-
tion length ] (and to a lesser extent the background
shear viscosity qs), which can be found from Eq.
(4) with Kr expressed in terms of the parametric
equation of state as

8'(2P6 -3)

ments to the mode-mode coupling theory, and

E,(x) is given by

Z, (x) = -', [1+x'+ (x' —1/x) arctan(x)]. (9b)

Additionally, the shear viscosity q, can be treated
by decomposing it into a background part q~ and a
critical part q'„with rf, given theoretically by

0.05

0.04
T~O.OOl K

the decay rate using Eqs. (6)-(12) for the specific
cases of xenon and carbon dioxide. Values for the
constants appearing in the equation of state were
obtained from Hohenberg and Barmatz" (see their
Table I), and the parameters needed for calculating
the decay rate were obtained from Swinney and
Henry' (see their Tables III and VII). Most of the
results discussed in the remainder of this section
will be confined to carbon dioxide, since very sim-
ilar results were obtained for xenon.

The density as a function of height z calculated
with the parametric equation of state is shown in
Fig. 3 for CO, at four temperatures (T —T, =-hT
=0.001, 0.01, 0.1, and 1 K). Note in particular
that at AT =0.001 K the variation in density across
a 0.02-cm interval (a typical value for the diameter
of a focused laser beam) centered at the height
corresponding to the critical density is about 3%.
(For xenon, this variation in density is Bgo). Clear-
ly, the effects of such a large density gradient
across a laser beam must be examined carefully.

Figure 4 shows the correlation length $(z)/$(z, )
[see Eqs. (4} and (11)]as a function of height for
CO2. Note that at ET = 0.001 K, the correlation
length at z -z, =0.01 cm has decreased to about
60% of its value at z, .

Figure 5 shows the decay rate I'(z j/I'(z, ) as a
function of height at the scattering angle 6= SO',
and at three temperatures for CO, with I" cal-
culated from the mode-mode coupling theory.
Clearly, the decay rate varies quite rapidly over

rn our discussion thus fax, all the quantities in
Eq. (5}have been related to the density through the
equation of state. Height dependence is intI oduced
through the relation

Q.Q2

O.QI

Q
I

-ool-
where g is the acceleration of gravity and z, is the
height corresponding to the critical density.

Since light-scattering experiments are usually
performed at some fixed temperature T, the two
independent variables y and 6) which appear in the
equation of state are constrained by Eq. (Ba). Con-
sequently, by combining Eqs. (6) through (12}one
can express explicitly all the quantities appearing
in Eq. (5) in terms of either the sample height z
or one of the variables r or 6}.

We now illustrate the substantial height depen-
dence of the density, the correlation length and

-0.02-

-0.05-

-0.04-

0 0.1 0.2 0.5
Z - Zc (cM)

FIG. 3. DensitJJ of CO2 as a function of height at four
isotherms (AT=0.001, 0.01, 0.1 and 1 K) as determined
from the parametric equation of state.
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FIG. 4. gelative correlation length $(z)/$ (z,) vs height
for CO2 at three different temperatures (4T =0.1, 0.01,
and 0.001 K).

0.90
-O.IO

I

-0.05
I

0
Z - Zt. (cM)

I

0.05 O.IO

a short height interval for small aT. Further-
more, we obtain the unexpected result that the ab-
solute minimum in I as a function of z at hT
=0.001 K does not occur at the critical isochore but
is 6% smaller than I'(z, ). Figure 6 shows I'(z) over
a smaller range in z and ~T, and we see that the
minimum in I' ranges from 1.8/g less than I'(z, ) for
AT=0.003 K to 5.8/o for LT=0.0005 K, and the lo-
cation of the minimum ranges from ~ =z —z,
=-0.027 cm for AT=0.003 K to -0.020 cm for bT
=0.0005 K. Table I lists th'e values of the minimum
in I'(z}/I'(z, } and the corresponding values of M
for both xenon and CO, for several angles and tem-

FIG. 6. I'(z')/I" (~,) for CO2 as a function of ~ over a
0.2-cm interval for four temperatures, with the critical
part of the decay rate calculated from the mode-mode
coupling theory. At these temperatures the (absolute)
minimum in I'(z) occurs below the height of the critical
isochore. The difference in the values of the two minima
about &, is due to the weak density dependence of the
background shear viscosity.

peratures. For angles less than about 30', the
minimum values are located at z =z, . For both
fluids the minimum value of I' can be as much as
6% less than the value at critical isochore.

The above behavior of I'(z) can be explained by
considering q$ as a function of z and I' as a func-
tion of q$. As indicated in Fig. 4, q$(z) is maxi-
mum at z=z, for all temperatures and angles.
Curve (a) in Fig. 7 is a plot of I' vs qf for CO, at

I.2 0& I I I I I I I
I

I I I I I I I I

N

Ce

~ I.I

N

cn 105—UJ

I.O
0.10 K

O.OOI K

(b)

0.9 I I I I I

-0.5 -0.2 -O.I 0 O.I 0.2 03
Z-Zg (CM)

I04 I I I I I

IO

III I I I I I I

O.l

FIG. 5. Decay rate I'(z)/I'(& ) vs b, & for CO2 at 8=90'
and for three temperatures (AT =0.001, 0.01, and 0.1 K)
with I' calculated from the mode-mode coupling theory.
4 T = 0.001 K, the minimum in I (z) does not occur at the
critical isochore (i.e. , z =~,).

FIG. 7. I' as a function of q$ for CO2 as given by (a)
the mode-mode coupling theory and (b) the decoupled-
mode theory (for 8 = 90'). These curves include the back-
ground part of the decay rate.
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TABLE I. The minimum value of I'(z) jl (z~ ) and the corresponding height Az =z-z, for
(a) CO2 and (b) Xe at several temperatures and scattering angles with l calculated from the
mode-mode coupling and the decoupled-mode theories.

r(z)/r(z, )
minimum

Mode-mode coupling
bz

at min.
(cm)

I'(z )/r (z
mlIl1muIIl

Az
at min.

{cm)

Decoupled-mode

0.0005

0.001

0.002

0.003

180
145

90
60

180
145

90
60

180
145
90
60

180
145
90
60

0.918
0.919
0.932
0.955
0.940
0.943
0.962
0.982
0.969
0.972
0.987
0.997
0.984
0.986
0.996
0.991

-0.017
-0.017
-0.017
-0.008
-0.035
-0.035
-0.020
-0.008
-0.041
-0.041
-0.019
-0.007
-0.043
-Q.043
-0.019
-0.006

0.982
0.983
0.987
0.994
0.989
0.989
0.994
0.998
0.995
0.996
0.998
0.999
0.997
0.997
0.999
0.999

-0.008
-0.008
-0.005
-0.002
-0.010
-0.010
-0.007
—0.003
-0.016
-0.013
-0.007
-0.004
-0.015
-0.015
-0.009
-0.004

0.0005

0.002

0.003

180
145
90
60

180
145
90
60

180
145
90
60

180
145
90
60

0.908
0.908
0.914
0.935
0.923
0.925
0.943
0.967
0.952
0.955
0.973
0.991
0.969
0.971
0.987
0.998

-0.006
-0.006
-0.006
-0.002
-0.014
-0.014
-0.007
-0.004
-0.017
-0.017
-0.008
-0.004
-0.019
-0.019
-0.009
-0.004

0.984
0.9S3
0.9S5
0.990
0.986
0.987
0.992
0.997
0.993
0.994
0.997
0.999
0.996
0.997
0.998
0.999

-0.002
-0.002
-0.002
-0.001
-0.004
-0.004
-0.002
-0.001
-0.006
-0.005
-0.003
-0.001
-O.GQ7

-0.006
-0.003
-0.002

~T =0.001 K and 6=90' with I' calculated from the
mode-mode coupling theory. In the region q] &3.5
the decay rate decreases with decreasing q( until
a minimum is reached at q$ =3.5. That is, I'(q$
=3.5)/I'(qg &3.5) &1, and the minimum in I'(z) will
occur at the value of )M ) corresponding to q$
=3.5. Because of the density dependence of the
background shear viscosity, the minimum in I'(z)
for ~~0 is not as small as for M&0. At angles
less than about 35', qt'(z, ) is less than 3.5 (for nT
=0.001 K) so that the minimum in I"(z) will occur
at M = 0. It should be emphasized that the m&g+&-
tude of the minimum in I'(z) is independent of the
model used for the equation of state but depends
only on the theory used for calculating I". Only
the height at which the minimum occurs depends

on the equation of state.
Curve (b) in Fig. 7 shows I' as a function of qt'

(at 8=90') with I" calculated from the decoupled-
mode theory. The slope of F as a function of q$
for q$ &3 is not as steep as in curve (a), so that the
minimum value of I'(z) predicted by the decoupled-
mode theory will be closer to I (z, ) than those pre-
dicted by the mode-mode coupling theory (see
Table I).

The decay rate shown in Fig. 7 consists of both
background and critical parts. The background
j."~, however, is only a small fraction of the total
decay rate in the region q$ &1; e.g. , I'z/I' = 8@ at
qE=1 and 5%, at q)=10. Moreover, the same val-
ues for I'z are used in curves (a) and (b). Hence
the significant difference between these curves is
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due to the difference between the two theories for
the critical part I".

The predictions of the two theories for I'(z) are
compared on an absolute basis in Fig. 8, which
shows I'(z) for (a) the mode-mode coupling theory
and (b) the decoupled-mode theory for CO, at 8
=90 and aT = 0.001 K The results for I'(z, ) differ
by 10.6'Po, but the minimum values of I'(z) differ by
7.5$ (and are located at slightly different heights).

As a check on our procedure for determining
F(z), we have compared our calculated values of
I"(z) for xenon with those obtained by Lim" (see
Fig. 2 of Ref. 2). Figure 9 shows the decay rate
as a function of z at gT =0.018 K and 8= 90'; the
circles represent the experimental data and the
solid line represents the calculated values. The
agreement is very good at a temperature which is
far enough from T, that the finite-beam diameter
effect is negligible (as will be shown in the follow-
ing section) yet close enough for a density gradient
to be present. . This agreement lends confidence to
our procedure.

We have shown that the assumption that the mini-
mum in the decay rate as a function of height in the
fluid occurs at the critical isochore is not valid at
temperatures very near the critical point (dT
&0.003 K) and at scattering angles greater than
about 30'. In the next section we examine the as-
sumption that the density gradient across the diam-
eter of the laser beam has a negligible effect on the
measurement of the decay rate.

IV. SPATIALLY AVERAGED TIME
AUTOCORRELATION FUNCTIONS

We consider in this section the effects of a densi-
ty gradient across the width of a laser beam on the
measurement of the decay rate. Consider a laser

(s(q, t)), =c f wM)e N'~'dt (14a)

where the weighting factor W(z) is the product of
the incident-beam intensity profile and the inten-
sity of the scattered light, :

(21./D~"') p(z) ~'(z)
[I +q']'(z)] exp[2(z -z,)/D]'

' (14b)

The midpoint of the laser beam is designated by z,
and the z dependence of the beam intensity has been
integrated out. The effects of refraction of light in
the sample scattering volume are small and are
neglected. Finite collection-aperture effects have
also been neglected; Czworniak and Jones have
shown that such effects should be small for the
Rayleigh component. "

We next turn to the specific calculation of Eq.
(14). Although one can express the various quan-
tities appearing in the integrand of Eq. (14) in
terms of z, the algebra becomes quite complicated.
Instead, one can circumvent this complexity by

field excited in the Gaussian transverse mode, in-,
cident on the sample along the y direction. The in-
tensity profile across the beam diameter D is given
by

1(z, z) =l,(2/Dz'~')'exp[-[(2/D)'(z'+z')g, (13)

where the z direction is taken parallel-to the sam-
ple height (see Fig. 1).

As has been discussed in detail in the previous
section, the quantities on which the field time auto-
correlation function depends [see Eq. (5)] vary ap-
preciably over a small but finite laser beam diam-
eter D. Hence the measured time autocorrelation
function of the scattered light should be averaged
over the sample height:

3.4
40

I

3.2
CO

3i

3.0
4

2.9

o 5.0

2.8-
2.7

-O. I -0.0$
I

0
Z-Z, (cM)

0.05 O. I

FIG. 8. Absolute value of I' vs z for C02 at 8 =90' and
AT =0.001 K as given by (a) the mode-mode coupling
theory and (b) the decoupled-mode theory. In both cases
the minimum in I (z) occurs below the critical isochore.

20 I I s

-I.p -0.5 0 0.5
Z-Z, (cv)

l.p

FIG. 9. I' as a function of z for xenon at 0 =90' and
LQ' =0.018 K. The curve represents the calculated height
dependence, and the circles are the values measured by
Lim (Ref. 16). At this angle and temperature both the
mode-mode coupling and the decoupled-mode theories
give the same results for I .
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transforming the integration from the sample
height z to the variable g. Thus, we can rewrite
Eq. (14) as

&!b

(S(q, I}),= C' de W'(8)e
—&!b

where

(15a)

and

W'(e) = —"
W[z (6)],ae,

z(8) -z(8O) = (P,/p, -g}ae(1 —6')(1 —b'8')

(15b)

(16)

(s)q, ))) =s ()+Q " '
)8 ' ))8)

rI = 1

where the moments of the fractional spread in de-
cay rate, i.e. Ar/r„are given by

The weighting function W'(6) differs from W(z) by
the "scaling factor" (ez/88}r, and 6, corresponds
to the midpoint z, of the laser beam. In this 8
space, the ra, nge of integration is from -1/b to
1/b, as can be seen from Eq. (16).

As is clear from Fig. 5, the spread in the decay
rate associated with the density gradient across a
laser beam diameter is small, compared with the
absolute value at the beam center, I"„ i.e. ,

~r/r, -=[r(e}—r, ]/r, «1.
By using Eq. (17}, we can recast Eq. (15) in the
following convenient form:

(S(q I)) =S.e
is related to the decay rate I', at the midpoint of
the beam by

v. = r, (l+(v,)}. (2o)

The true decay rate of the sample density fluctu-
ations at the critical isochore can be obtained from
Eq. (20) by measuring the exponential decay con-
stant y of the time autocorrelation function of the
scattered field and by correcting for the spatial
averaging effect, namely (V,), provided the beam
midpoint zo coincides with the height z„of the crit-
ical isochore. The first-order moment (V,} then
represents the fractional departure of the mea-
sured decay rate from the true value I', . The ex-
plicit eva, luation of (V,) is rather complicated,
since (V,) depends on many factors such as the
beam diameter, the temperature of the sample, the
scattering angle, etc. Furthermore, the midpoint
of the beam might not exactly coincide with the
height of the critical isochore since the height of
the midpoint is known with only finite precision.

The results of our numerical analysis for the
moments in ar/r, for xenon and CO, will now be
presented. We first consider the situation in which
the midpoint of laser beam coincides with the
height at the critical isochore, i.e. z, =z„and I'
is calculated from the mode-mode coupling theory.
Figure 10 show's the first-, second-, and third-
order corrections, viz. (V,), (V,), and (V,) to the
decay rate of xenon as a function of scattering an-
gle for AT =0.001 K and a 0.01-cm-diam beam.

i/b &!b

(v„) =- de w'(6)(ar/r, )" d8 w'(6}.
—1/b - j/b

(19}

35,

30

I I I

Equation (18) gives the practical relationship be-
tween the measured autocorrelation of scattered
light and the decay rate of density-density fluctua-
tions in the fluid. Ip the limit of either an infini-
tesimal laser beam diameter or a negligible densi-
ty gradient in the sample, for which (V„)=0 the de-
cay constant of the time autocorrelation function,
(S(q, t}),of the scattered field is equal to the decay
rate of the fluid. However, in the presence of a
large density gradient at some temperature &, the
laser beam may sample substantially different val-
ues of I' across its beam diameter with different
weighting factors. In this case one should exercise
caution in deducing the decay rate from (S(q, t)},.
The case of particular practical interest corres-
ponds to the situation in which only the first-order
moment (V,) modifies significantly the overall time
dependence of (S(q, &)),. Assuming (V,) «1, the ef-
fective decay rate y defined by

0

20—
V)

(5
X
O

)0-

(v,)

0—
&v,)

-5
0 20 40 60 80 I 00 I 20 I40 I60 I 80

e (DEGREKS)

FIG. 10. First three moments in the expansion of the
measured time autocorrelation function spatially aver-
aged over a 0.01-cm-diam laser beam for xenon at b T
=0.001 K [see Eqs. (18) and (19)] as a function of scatter-
ing angle.
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TABLE II. A comparison of values for $'&& with I' calculated from the mode-mode coupling
and the decoupled-mode theories for CO2 and Xe at & T = 0.001 K with a 0.01-cm-diam beam.

e

(deg)

0'g&(%)
CO2

Decoupled-mode Mode-mode Decoupled-mode

0 &&(%)

Xe
Mode-mode

180
135
45
30
15

5

0.08
0.10
0.67
1.58
4.16
9.03

—0.36
-0.41
-0.21

0.69
4.06
8.95

0.40
0.48
3.04
6.25

16.29
36.97

—1.11
-1.27
-0.67

2.13
11.99
27.30

shows (V,) for xenon as a function of 8 at nT =0.001
K for three values of D (0.02, 0.01, and 0.005 cm).
The correction at say 8=10' ranges from 9% for
D=0.005 cm to 31$ for D=0.02 cm.

In our discussion thus far, the midpoint of the
laser beam has been assumed to coincide with the
height of the critical isochore. As the beam center
is moved off the critical isochore, the correction
relative to the value of I' af the center of the beam
decreases since the density gradient across the
beam becomes smaller. In an experiment the de-
cay rate is measured as a function of z, and the
minimum in I is taken to be the value at the crit-
ical density. However, because of the finite reso-
lution of the sample height (typically +0.01 cm) the
midpoint of the beam might in fact never coincide
with z, . Moreover, as suggested in Fig. 5, the
minimum in I' might not occur at z =z, . Conse-
quently, the correction relative to the theoretical
value of I' at the critical isochore must also be
considered for z, -z, ~Oh, where Qg is the experi-
mental uncertainty in the measurement of z.

Figure 14 shows (V,) for xenon as a function of
angle for four cases: (a) AT=0.001 Kandz, -z,
=-0.005 cm, (b) aT=0.001 K and z, -z, =0, (c)
aT = 0.002 K and z, —z, = -0.005 cm, (d) aT = 0.002
K and z, -z, =0. In each case the correction is
with respect to the value of the decay rate at the
critical density, i.e. , I'(p, ). (The corrections are
nearly symmetrical about z„. so we do not show
the case M=0.05 mm. ) Since the position of the
midpoint of the beam relative to z has an assumed
uncertainty of +0.05 mm, the actual correction will
lie somewhere between the values at the two ex-
tremes. In the cases shown in Fig. 10, these
ranges are 18.3% to 38% at nT = 0 001 K and. 7.8%
to 16% at n.T =0.002 K, for a 10' scattering angle.

When the decoupled-mode expression for I" is
used, the finite-beam effects are qualitatively sim-
ilar but slightly different in magnitude. Table II
compares (V,) for xenon and CO2 at aT = 0.001 K
and for several angles with I" calculated from both
the mode-mode coupling and the decoupled-mode

theories.
The results of the numerical calculations for

typical experimental conditions very near the crit-
ical point can be summarized as follows. The fi-
nite-beam diameter correction is less than -3%
for 30 ~ 6 &180, but at smaller angles the cor-
rection becomes very large, even at AT =0.003 K.
Departures from a single exponential fit for the
time-autocorrelation function should become de-
tectable at angles less than 5'.

V. CONCLUSIONS

The effects of gravitationally induced density
gradients very near the critical point are summa-
rized as follows: (i) The minimum value of I' as
a. function of height in the fluid does not necessarily
occur at the critical isochore. (ii) When the mode-
mode coupling theory of critical-point dynamics is
used to calculate the decay rate, I'(z) has a mini-
mum significantly different from I'(z, ) at a height
slightly lower than the height of the critical iso-
chore. (iii) The decoupled-mode theory also pre-
dicts a minimum in I'(z) away from z„but the de-
parture from I'(z, ) is quite small. (iv) At small
scattering angles the measured decay rate, which
represents a value spatially averaged over the in-
tensity profile of the laser beam, can be signifi-
cantly different from I' at the midpoint of the
beam.

Conclusions (i), (ii), and (iii) result directly
from the increase in I' as a function of q] for qg
+3, which is rather significant for the mode-mode
coupling theory and can give rise to negative values
of the first-order moment (V,). This appreciable
upward trend in I'(q() for the mode-mode coupling
theory is due primarily to the factor R(qg) which
appears in Eq. (9a) and which incorporates various
refinements to the theory.

Experimental light-scattering data currently
available do not cover the regions in angle and
temperature in which these effects should be ob-
servable. The major limitation on the quantitative
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measurements of these density-gradient effects is
temperature control; the sample temperature must
be maintained to within much less than 0.001 K.
Photon autocorrelation spectroscopy provides the
necessary precision for measuring the decay rate
of the scattered-field time autocorrelation func-
tion, and a focused beam diameter small enough to
minimize the spatial-averaging effects can be
achieved. Precise measurements of I' as a func-
tion of height very close to the critical point will

provide a sensitive test of the two theories of crit-
ical-point dynamics.

Our analysis is being extended to the case of a
binary mixture. For a mixture, the thermodynam-
ic derivative (ep/aP) r „, which corresponds to Kr
for a pure fluid, is strongly divergent at the crit-
ical mixing point. " Consequently, an anomalous
density and concentration gradient should also ap-
pear in the mixture.
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