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Hydrodynamic fluctuations of a horizontal liquid layer heated from below are considered in the

vicinity of the point where convection sets in because of buoyancy. It is assumed that convection

occurs in the form of nearly two-dimensional rolls. Close to the instability, the hydrodynamics

(described in the Boussinesq approximation) is simplified considerably by the appearance of a slow

mode which dominates the motion of all hydrodynamic variables. It is described by a slowly varying

complex amplitude whose absolute value and phase describe the strength and the position of the

convection rolls, respectively. Generalizing previous work by several authors, an approximate equation of
motion is derived, which is satisfied by the slow variable. New in this analysis is the inclusion of
fluctuating terms, which leads to a Langevin equation. The fluctuations are shown to satisfy a

detailed-balance principle. Consequently, a generalized thermodynamic potential can be defined, which

was discussed briefly in an earlier paper. It depends as a functional on the slow variable, which

thereby assumes the role of an order parameter of the transition. I give a further evaluation of the

hydrodynamic fluctuations for a horizontally unbounded liquid layer on both sides of and at the

Benard point by using my potential and applying various approximations. For strictly two-dimensional

flows (i.e., independent of one horizontal coordinate) I calculate the time-independent steady-state

properties (coherence lengths) without any further approximation by relying on published numerical data

obtained for one-dimensional Ginzburg-Landau fields. Dynamic steady-state properties (coherence times)

for that case and fluctuations in the three-dimensional case are calculated in a quasilinear

approximation which reproduces the time-independent results for two-dimensional flows reasonably well.

In the purely heat-conducting region my results contain some earlier results of Zaitsev and Shliomis in

lowest order. Large and long-lived fluctuations of velocity and temperature are shown to appear at the

critical wave number as the liquid is brought near the convection instability. They are due to the

random appearance and disappearance of convection cells. Their size and lifetime at the Benard point

are only limited by nonlinear coupling of the critical modes to other passive modes. In the

heat-convection region, the coupling to passive modes stabilizes the amplitude of the convection cells;

only slow fluctuations of the positions of the rolls remain (for unbounded layers) and destroy the

long-range order of the one-dimensional roll lattice, in agreement with well-known general theorems. If
the Benard point is approached from this side, the stabilizing influence of the passive modes decreases

and is efficient only for the large fluctuations at the Benard point. Approached from either side, the

Benard point resembles the critical point of a Landau phase transition. The width of the region

around the Benard point where the Landau description breaks down is calculated and found to be

unobservably small in realistic liquids. An experimental check of these results, though very tedious,

seems possible and very worthwhile.

I. INTRODUCTION

A plane horizontal fluid layer at rest, if heated
from below, develops a buoyancy force due to
volume expansion of the liquid near the bottom.
For sufficiently strong heating, the buoyancy force
may overcome the viscous shear forces and the
fluid starts moving; the liquid undergoes a transi-
tion from a state where heat is transported by
heat conduction only to a state of combined heat
conduction and heat convection. The first experi-
mental investigation of this transition was under-
taken by Bernard' in 1900, who established that
convection occurs in the form of regular convec-
tion cells spread over the liquid layer in the form
of a regular lattice. The only cell pattern ob-
served by Bernard was a lattice of hexagonal cells.

Lord Rayleigh' in 1916 first provided a theory
that explains the onset of heat convection. He

achieved this goal by means of a linearized per-
turbation analysis of the hydrodynamic equations
around the state at rest. He considered the case of
free boundaries at fixed temperatures on the top
and on the bottom of the fluid. This case, though

physically unrealistic, still contains all qualitative
features of the transition and allows for an analytic
solution. According to Rayleigh's solution, in-
stability sets in at the critical wave number k,
=m/v2 l as soon as the Rayleigh number
R =gpET l'p2C„/qz is made larger than the critical
va&ue R, =—", m' (for notation see below}. A further
result was that for R &R„convection may occur
within a finite band of wave numbers around k, .
More realistic boundary conditions require numer-
ical solutions, and were considered later. Most
of these calculations, like Rayleigh's, are based
on a set of approximate hydrodynamic equations,
suitable for the description of free thermal con-
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vection (Boussinesq approximation').
Since then, a large number of experimental and

theoretical investigations have been published. "'
They confirmed the quantitative results for the
critical temperature difference very well, but
also showed that a great variety of cell patterns
is possible, and is observed in experiments with

different liquids and boundary conditions. ' Such
cell patterns include plane two-dimensional rolls
(i.e., independent of one horizontal Cartesian
coordinate), square and rectangular cells and

more complicated forms. In the linear-stability
theory, ' they are not distinguished, and corre-
spond to the same critical wave number and Ray-
leigh number. A further experimental result' was
the fact that even for R &R„convection was mainly
observed with the wave number k, . Therefore,
the main drawback of the linear theory appears to
be its inability to predict a definite cell pattern,
and to explain why cells with just the cr&tical wave
number occur also for R&R, .

A nonlinear approach to the Bernard problem
began to be developed by many authors. "' Per-
haps the most generally applicable formulation of
this approach, which, in a somewhat altered form,
will also be used in the present work, was given

by Schluter, Lortz, and Busse x' In their ap-
proach, the solution of the hydrodynamic equations
with given boundary conditions is sought in the
form of a power-series expansion of the unknown

functions [like the velocity v(x) and the tempera, -
ture T(x)] with respect to some unknown small
parameter e:

V(x) =6[v (x)+Ev (x)+' ' ']

T(x) = e[T"'(x)+ ~T"'(x) + ~ ~ ] .

The Rayleigh number R, or rather R -R„ is also
expanded with respect to e,

R =R, +~R&') +~'R&»+ ~ ~ .
The hydrodynamic equations are then solved iter-
atively for the functions v"'(x), T"'(x); v"'(x),
T"'(x), etc. , starting with the lowest power of e.
Existence conditions for the solutions in each
order of E uniquely determine the unknowns R
R"', etc. , and permit e to be expressed in terms
of R -R, if the procedure is stopped at a given
order of e.

It is clear that this approach is restricted to a
vicinity close to the Bernard point. However, it
gives important results about the onset of the
convective moti. on and its behavior for R slightly
in excess of R, . For R &R„ the pz'ocedure out-
lined above, like the linear theory, allows for
solutions within a finite band of wave numbers
and with various cell patterns. However, it could

be shown" that, within the Boussinesq approxi-
mation, and for R sufficiently close to R„only
two-dimensional rolls are stable among all cell
patterns. " Furthermore, only those rolls whose
wave number k is in the range h, & ~%~& k„were
found to be stable. The upper bound k is of the
order of (0„—k,)- (R -R,)'~'. All rolls with

@~&0, are unstable with respect to the growth of
perturbations along the roll axis; for ~R~& k„, rolls
are unstable, either against growth of perturba-
tions oblique to the rolls, or against. generation
of new parallel rolls with wave numbers inside
the region of stability.

It seems reasonable to expect that observed rolls
correspond to stable rolls. The question, of
course, remainS: Why, among all possible wave
numbers within the stability region, is just the
critical wave number observed experimentally'P
Segel" considered the nonlinear coupling between
parallel rolls of different wave numbers and
showed that, apart from a slight dependence on the
initial conditions, the roll with the largest linear
growth rate is most likely to survive. In the pres-
ent paper, I offer a different explanation by adding
fluctuations, i.e., a probabilistic aspect, to the
whole picture. " I will show that, since the liquid
layer is subject to thermodynamic fluctuations,
rolls with ~k~ =k, are the most likely to occur

There are many reasons why an inclusion of
thermodynamic fluctuations into the theory of the
Bernard instability is of interest. The large de-
generacy of solutions fox R &R, is only one of them.
Another one comes from the pronounced simi-
larity of the Bernard point to the critical point of a
second-order phase transition: The transition
point is experimentally well defined, and corre-
sponds to a point where the symmetry of the sys-
tem is subject to a qualitative change. One is led,
therefore, to expect a pronounced enhancement
and a considerable slowing down of thermodynamic
fluctuations at the critical wave number near the
Bernard point, similar to the occurrence of strong
fluctuations near a critical point. One would like
to know the typical frequency range of the enhanced
fluctuations, in order to decide which method is
most suitable to detect them experimentally. Theo-
retically, one expects that, by their enhancement,
the fluctuations will determine the exact nature of
the Bernard transition and its relation to second-
order phase transitions.

There is an interesting and crucial difference
between the fluctuations at the Bernard point and
critical fluctuations. In both cases, the fluctua-
tions originate on the microscopic level. Critical
fluctuations, and all hydrodynamic fluctuations
in general, are obtained by selecting only those
fluctuations which have very long wavelengths and
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which lie in the hydrodynamic part of the spec-
trum. This constitutes the macroscopic or hydro-
dynamic level of description. From that macro-
scopic level, fluctuations near the Bernard point
are obtained by an additional, second selection
process, which takes place if R is close to R, and
singles out fluctuations near the critical wave
number k„which itself lies in the macroscopic
range. It is this second selection process which I
will analyze in detail in the present paper.

The statements made above can be summarized
by saying that, at critical points of second-order
phase transitions, the stability of a certain class
of (equilibrium) states breaks down on a micro-
scopic level, while, in the Bernard case, the sta-
bility of a class of (nonequilibrium steady) states
breaks down on a macroscopic level. On the
microscopic level, the Bernard instability is proba-
bly not felt at all, since (at least according to
generally adopted assumptions, which I will not
question here) the system remains in a state of
stable, local, thermal equilibrium throughout the
entire transition.

A further motivation for including thermodynamic
fluctuations in a theory of the Bernard instability
comes from the fact that a fluid layer near the
Bernard point, though locally in thermal equilib-
rium, must be regarded as a system far from
global thermal equilibrium. It has generally been
shown"' that, for an instability like the B6-
nard instability to appear, it is necessary for a
system to be driven by some external force (the
temperature difference between the top and the
bottom of the layer, in the present case) suffi-
ciently far away from global thermal equilibrium,
so that its response (i.e., its deviation from ther-
mal equilibrium) becomes nonlinear with respect
to the external force."

In the linear range, there exists a very-well-
- developed thermodynamic theory of nonequilib-

rium steady states, "which combines the theories
of the stability and the fluctuations from the steady
state in the usual fashion, well known from equilib-
rium thermodynamics. Much less is known about
a thermodynamic theory of fluctuations from the
steady state in the nonlinear domain far from
equilibrium. A number of thermodynamic varia-
tional principles have been proposed for that re-
gion"'" which are based on variational properties
of the entropy production or the energy dissipa-
tion, permit the determination of steady states,
and give sufficient criteria for their stability.
However, a clear-cut relation between the above-
mentioned potentials and the fluctuations from
the steady state does not seem to exist."

The only thermodynamic theory that allows the
calculation of fluctuations in the nonlinear region

far from equilibrium, is the theory of Landau and
Lifshitz, " in which thermodynamically deter-
mined fluctuating forces are added to the hydro-
dynamic equation. " In thermal equilibrium, the
relevant thermodynamic potential (depending on
the boundary conditions), say F, is given by solv-
ing these equations for the time-independent proba-
bility distribution W of the fluctuations, and taking
F-—lnW. The question, then, is whether a simi-
lar solution W with a similarly corresponding
generalized thermodynamic potential, say 4, can
be obtained also for steady states far from thermal
equilibrium.

In a recent paper" we have proposed such a
generalized thermodynamic potentiaP4 in order
to describe, within specified assumptions, a liquid
layer near the Bernard point. That potential 4 is
linked to the probability distribution W of fluctua-
tions from the steady state by the usual Einstein
formula W -e . Furthermore, it was found that,
throughout the transition region, stationary states
of heat transport across the layer are determined
by an extremum condition for the potential, sub-
ject to given boundary conditions.

It is my aim in this paper to provide a deriva-
tion of the form and the properties of 4 through
an analysis of the hydrodynamic equations with
fluctuating forces in the vicinity of the Bernard
point. However, we have to leave open the ques-
tion of which of the formerly proposed poten-
tials'" my new potential is most closely related
to. I hope to be able to return to this interesting
question in future work.

The paper is organized as follows: Section II
is largely a summary of my basic notation and
the assumptions which establish my starting point.
The latter is taken with the'hydrodynamic equa-
tions in the Boussinesq approximation, ' including
the fluctuating-force terms due to Landau and
Lifshitz. " For simplicity, I consider the case
of free boundaries on top and on the bottom of
the layer.

In Sec.QI, the working equations are simplified
by a restriction to the close vicinity of the Bernard
point. To this end, we employ a modified version
of the above mentioned expansion technique. " In
this expansion, "'"the separation of time scales
and length scales is explicitly introduced; these
scales occur close to the Bernard point, due to
the selection of fluctuations near the critical wave
number k, . The slowly varying mode, for the
case of nearly-two-dimensional rolls and R =R„
is identified in Sec. IGA. The small parameter of
the expansion is introduced into the equations of
motion in Sec. IIIB. In Sec. IIIC, the stochastic
equations of motion (Langevin equation) for the.
amplitude of the slow mode is determined to second



10 HYDRODYNAMIC FLUCTUATIONS NEAR THE CONVECTION. . . 1765

II. BASIC HYDRODYNAMIC EQUATIONS

Macroscopically, the fluid layer is described
by the balance equations of hydrodynamics, which,
in conventional notation, "take the form

B,p+B, (pv~) =0,

p(B j Vj+ Vj Bg Vj ) = Bjp —pg5-j3 + Bjjjjj
p(B, s + vj Bj s) = -p B, vj i crjj Bjv, —Bqq j,

with

(2.1)

(2.2)

(2.3)

order in the small parameter. The components of
the slow mode in terms of the hydrodynamical
variables are determined to the same order. In
Sec. IIID, the stochastic force is evaluated. The
Langevin equation, which is completely deter-
mined at the end of Sec. III, forms the basis of
all following considerations.

In Sec. IV a number of general properties of the
stochastic equation of motion are discussed. In

Sec. IVA, the Fokker-Planck equation is obtained,
which is stochastically equivalent to our Langevin.
equation. A number of useful symmetries is dis-
cussed in Sec. IVB. In Sec, IVC, it is shown that
the fluctuations of the slow mode have a detailed
balance symmetry. This symmetry makes it easy
to obtain the time-independent probability distribu-
tion for fluctuations from the steady state in Sec.
IVD. In. this way, I complete the derivation of
the generalized thermodynamic potential, dis-
cussed previously. " In Sec. IVE, I discuss ex-
trema of my potential that correspond to stable,
unstable, or metastable steady states.

In Sec. V I proceed to an evaluation of the Fok-
ker-Planck equation in the case of strictly two-
dimensional rolls. Time-independent correlation
functions are obtained in Sec. VA without further
approximation, by evaluating the required func-
tional integral using the Feynman-Kac formula"
and recent numerical solutions" of the resulting
"Schrodinger" equation. These "exact" numerical
results are analytically approximated in Secs.
VB and VC for R(R, and R)R„respectively,
using a quasilinear approximation. In Secs. VD
and VE, the quasilinear approximation is also
used to calculate time-dependent correlation func-
tions.

In Sec. VI correlation functions are obtained for
the case in which a (weak} variation of the roll
amplitude along the roll axis subsists. Section VI
is subdivided into two subsections according to the
different cases considered. The quasilinearization
is employed throughout this section, because of
a lack of exact methods for evaluating the required
functional integrals.

The density p, the pressure P, and the tempera-
ture T of the liquid are connected by an equation
of state, which may be taken as

dplp = Pd-T+XdP (2.6)

W-e' (2.9)

where k is Boltzmann's constant and 4"'S is the
second-order entropy change due to the fluctuations
b, T, Ap, v from equilibrium, which is given by
the familiar quadratic form"

'S = —— dr — (t3T) + +v
(&p)'

2 T T XP

(2.10)

Equations (2.9) and (2.10) are consistent with Eqs.
(2.1)-(2.7) if"

(sjj(x, t)sj (x', t'))

P is the volume-expansion coefficient, and y is the
isothermal compressibility. The internal energy
density per unit mass ~ is given by a second equa-
tion of state, which we take as

ds =C„dT+(pip3}dp, (2.7)
where C„ is the specific heat per unit mass. The
forces which drive the velocity field v are gravity
[which acts in the vertical direction (i = 3)], the
pressure gradient, viscous forces (which contain
the coefficients of viscosity ji, g), and a random
force, which is described by the fluctuating stress
tensor s,„. Similarly, Eq. (2.3) contains the ran-
dom heat-flux density q, , in addition to the usual
heat-conduction flux, the viscous heat source, and
the work done by pressure. The averages of the
random quantities have to vanish,

(s„(x,t)}=0=(q, (x, t)), (2.6}

in order to recover the standard equations of fluid
dynamics as equations for averages. "

The random flux densities can be assumed to be
Gaussian, inviewof the central limit theorem of
statistics. A knowledge of their second-order
correlation functions is then sufficient for obtaining
all higher-order correlation functions. In general,
the former have to be considered as phenomeno-
logical quantities for each specific experiment.
Here we will make the assumption that the fluctua-
tions have thermodynamic origin; i.e., we impose
the requirement that Eqs. (2.1)-(2.5) lead to the
correct probability distribution function for fluctu-
ations from equilibrium. The latter is, in Gaus-
sian approximation, given by the Einstein formula

ojj jl (Bjv j + Bj vj }+ (0 3 g}5jj Bj vj + s j

gg = -K8] T +gg .
(2.4)
(2.5)

=2IjT[q(5jj5j +5, 5jj}
+ (K ——',ji)5jj5j ]5(x -x')5(t —t'), (2.11)
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(q, (x, t) q, (x', t')) =2kT'&&5„5(x -x')5(t —t'),

(2.12)

eters Q„Q, defined by

(s„(x,t) s, (x', t'),'
(q&(x, t) s„(x', t')) =0. (2.13) =2Q (5&&5& +5,. 5q&)5(x —x')5(t —t'), (2.20)

We will be interested in solutions of Eqs. (2.1}-
(2.5) which satisfy the boundary conditions

x —O' T —T' p —p p-p .

x =l: T=T —bT,3 0

(2.14)

where l is the layer thickness. If we neglect all
fluctuations, the simplest solution satisfying Eq.
(2.14}for a very thin layer is given by

p =p. = p. (1+x,(AT/I - xp. g)1, .

p=p. =p. p.g~-, (I+i~,(ttt Tlt —xp, g)1, (215}
T = T = To —t&.T x,/l,
V=V =0

C

(2.16)

as new variables and consider their equations of
motion in the Boussinesq approximation. ' This
implies that we take all fluid parameters to be
constants, and make use of the facts: (i)PATis a
small parameter in most liquids; (ii) xp, gl is
negligible for thin layers, and; (iii) for convective
motions, the viscouS energy dissipation in Eq.
(2.3) is negligible. To leading order in Pt&T, the
equations are

8~ v~
——0,

8
& v& + vy &&J v&

= -
8& p + 5 &&&+vWR T5

3 + sj s
&

.

(2.17)

which describes the time-independent steady state
in which energy is transported across the layer
by heat conduction only. We introduce

T=T Tcy ~ ~ ~cy

(q&(x, t)q (x t )) =2Q 5&$5(x —K )5(t —t )

which are obtained as

(2.21)

gPkT po ~Tpo (2.22)

Equations (2.17)-(2.19}are the basis of all further
considerations.

The boundary conditions, which we will use for
mathematical convenience, are those of free sur-
faces at x3 =0, 1:

V3 y 3 1 3VR 0 (2.23)

u-=(v, T,p), (2.24)

The results obtained for these boundary conditions
give us sufficient reason to expect no qualitative
change of the results if the boundary conditions
are changed, e.g. , from free to physically more
reasonable rigid boundaries. " Boundary condi-
tions in the (x„&&,) plane are also needed. In order
to separate as much as possible the effects which
are due to special boundary conditions from the
effects which are due to the convection instability,
we will consider, in the present paper, an in-
finitely extended horizontal fluid layer. It is not
difficult to specialize our results for finite layers.

Before proceeding further, it will be convenient
to establish some abbreviated notation. We intro-
duce a five-component vector which contains our
five hydrodynamical variables as components;

P(s, T+ V~B~T) =s~s~ T+WRV, —B, q~.

(2.18)

(2.19)

and define the scalar product
3

(u&'& u& &) = [v&'&(x) ~ v& &(x)+T&'&(x) T& &(x)F
Here we have made use of dimensionless units:

We scale lengths by l, times by pl'/g, and tempera-
ture by (t&.T r&'C„/p20 gP&&P)'~'. We also returned
to the original notation for the hydrodynamical
variables p, T, which now describe deviations
from the purely heat-conducting steady state in
dimensionless units. For all other quantities in
Eqs. (2.17)-(2.19), dimensionless units are also
understood. The fluid flow is then characterized
by the dimensionless Rayleigh number

R = gpss. T Pp20C„/qK

+p"'(x)p' '(x)], (2.25)

where F is the surface area of the fluid layer.
Then we define a nonlinear matrix differential
operator L acting on u, such that Eqs. (2.17)-
(2.19) without random flux terms may be written
as

1,(u) =0. (2.26)

The random fluxes are combined to form the vec-
tor

and the dimensionless Prandtl number
I —= (s, s,~, s, s,~, s, s,~, a~ q&, 0), -(2.27)

P =&lC„/&&.
so that Eqs. (2.17}-(2.19) take the concise form

The fluctuations of the fluid are characterized in
the new units by the two dimensionless param-

1.(u}=f
used in Sec. III.

(2.28}
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III. HYDRODYNAMICS NEAR THE INSTABILITY

It is now our aim to derive from the basic equa-
tions of motion a simplified equation describing
the liquid near the instability. Such simplified
equations have been derived before by a number
of authors. "'" Our derivation, given here, ex-
tends earlier work by taking into account the ran-
dom flux terms, which form the inhomogeneity
of Eq. (2.28)."

A. Slow normal mode

For sufficiently small values of R, the motion-
less heat-conducting steady state will be stable,
and we may linearize Eqs. (2.17)-(2.19) in v and

T." The resulting linearized inhomogeneous'
boundary-value problem is known to be self-
adjoint. ' The eigenfunctions of the corresponding
homogeneous problem are of the form

gg (t) /(0) e xg(B)t (3.1)

with real positive eigenvalues &„(R}. For R -R,
=~n', one of the eigenvalues, say ~0, tends to
zero, &,(R,) =0. Hence, in the close vicinity of
R =R„ there exists one normal mode of the sys-
tem which has a very slow decay rate Ao(R), if
compared to the decay rates of all other normal
modes. As a result, this slow mode will dominate
the hydrodynamic behavior of the system near the
instability. Let us find that normal mode for
R =R, .

The homogeneous linear boundary-value problem
associated with Eq. (2.28}, if specialized for the
eigenvalue A.,(R,}=0, may be written

L,(u"') =0, (3.2)

with the self-adjoint matrix differential operator

8~a)
' 0 0 -8,

0 B~ 8~ 0 0 -82

0 0 s s, WR, -s,
0 0 MR, s s& 0

0 0

(3.3)

The numerical value of R, in Eq. (3.3) is obtained
as the smallest number for which Lo, with boundary
conditions (2.23), has the eigenvalue A.,=0, and
for which Eq. (3.2}, therefore, has a nontrivial
solution u' '. The possible solutions u' ' are highly
degenerate, as was already mentioned in the intro-
duction. In view of the stability results of Schlii-
ter, Lortz, and Busse, "we will assume that u' '

is a plane wave -e"~'& in the x, direction, whose
amplitude does not depend on x, . This ansatz just
describes a regular lattice of two-dimensional

rolls, which was found to be the only stable cell
pattern for R slightly larger than, and sufficiently
close to, R, ." However, we thereby introduce a
preferred direction in the horizontal plane, and,
have to restrict our analysis to cases in which the
boundary conditions in the (x„x,) plane are com-
patible with a plane wave in x, direction. In order
to consider more complicated situations (e.g.,
interaction of several plane waves in various di-
rections}, the calculations would have to be al-
tered at this point.

Putting our ansatz for s'0' into Eq. (3.2) we ob-
tain

R, =—"
w
' k = w/W2 (3.4)

u"' =wy, (x„x,)+c.c.,
g, = e'~~*i (i v2 coswx„0, sinwx„

W3 sinwx„-3 w cos wx, ),

(3.5)

where w is an arbitrary complex amplitude whose
absolute value gives the intensity, and whose phase
gives the position, of the convection rolls. We
may assume that after a time t» dmin%. „i

' has
elapsed (where iminX„i is the absolute value of the
smallest nonzero eigenvalue of Lo, corresponding
to a wave with wave number k,}, all normal modes
on that length scale, except u"', have relaxed to
the steady state. On such long time scales, the
five hydrodynamic variables, which make up the
vector u, are determined by just one complex
amplitude w. In this discussion, linearization of
Eq. (2.28), neglect of fluctuations, and R =R,were
assumed.

For R unequal but close to R„and fluctuations
as well as nonlinearities switched on in Eq. (2.28),
the slowest-decaying normal mode will still be
very close to u"', Eq. (3.5). However, its com-
ponents will receive small corrections, depending
on R -R„and its amplitude will be a slowly vary-
ing random function w(x„x„t) of space and time.
In a generalization of the work of Newell and
Whitehead, "we will now set up a systematic ap-
proximation procedure which allows us to find
both the stochastic equation of motion which gov-
erns w(x„x„t), and the corrections to the com-
ponents of the eigenvector u' '.

(3.8)

B. Splitting of equations of motion

It will be convenient to explicitly distinguish
between the length scale of the convection cells,
which is set by the layer thickness l, and the length
and time scale on which the amplitude w(x„x„t)
changes. This goal is achieved by introducing"
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8, -8, +e 8„8,-8,+M~8„, 8»-e'8, .
Then, inserting the -ansatz

»» =a»»(&, q, 7)g(«„«,)+c.c.

(3.6)

(3.9)

into Eqs. (2.17)-(2.19) and collecting equal powers
of e, we may write the operator L in Eq. (2.26)
in powers of ve,

L = Lo+ &'/2~L/2+ c~L + e3/2L~/2+ c ~L.

Lo is already given by Eq. (3.3}. The other opera-
tors are

(3.10)

~L / 2 (»»}—(2 828»»»»7, 2 828$»»»2 —
87»»»5 y

2 8 287»»»3$

(3.11)2 828»»»»4& 8»»»»2)~

~L(»») =(Q»4» —8»»»g~ Qmmq Q»»p~ [(1—P)»jjsj+ Q]»»4~ Bg»»»)~

(3.12}

and replacing

»»j(»»~ «2 ~ i) ~ f»»j($~ 7f~ 'r).

e, in Eq. (3.6}is a small parameter. According
to the choice of scales (3.6), e is of the order of
the deviations Lk, of the wave number in the x,
direction from the critical wave number k, . Since
R(k, ) must have a minimum for k, =k„R(k,) =R„
the quantities (k, —kJ'-)R(k, ) -RJ-e' are all of
the same order; to take c small implies a restric-
tion to small ~R -RJ.

The choice of scale of x, is suggested by the
geometric observation that, in an otherwise iso-
tropic system, changes of the wave number in the
x, direction, Lkm, mill influence the absolute value
of the wave number only in second order; Ak
-sk', /2k, . Hence, s k', -nk, - e are quantities
of the same order. The choice of the time scale
in Eq. (3.6) is based on the assumption that
Xo-~R -RJ-e' for R close to R, . Finally, the
choice of the prefactor e in Eq. (3.V) contains the
assumption that the amplitudes of (v, T,p) are
proportional to ~R -RJ» j' for small amplitudes.
Since»»j($, »V, r) appears as a common factor of all
five unknowns (v, T,p), we have to substitute in
the equations of motion (2.1V)-(2.19)

Let us now turn to the inhomogeneity in Eq. (2.26),
given by the random stress tensor s,&

and the heat
flux q, . %'e are interested in the fluctuations
around the plane wave state -e"~"~. Hence, me
put (cf. Sec. IUD)

with the convention

&s» j 8».&
= o = &q» qj)

(3.1V)

(3.16)

By comparison with Eqs. (2.20) and (2.21) we find

&s»j(],»i, «„r)2»* (g', »i', x,', r'))

Q2(»» jm+»m j»)

x 5(( —]')6(»1 - »i')6(», «,') 6(-g -7'), (3.19)

&»f» (g, »V, x„~)q j (g', q', x,', r'))
= &'"Q»5» j5($ —(')5(»i n')6(—», «l)5(-» —r').

(3.20)

In all common liquids, Q, and Q, are very small
numbers (»»», «»I», = 10 "for tolulene at 20'C,
l =0.1 cm), and we will assume that

q q ~~5/2 (3.21}

I =[e»»" j 2»"»(i»»Ã»»/&2+8, s»s, i»»sm»/v2 +8,%„,

i »»83»/&2 + 8~843, —i»»»f»/&2 —Bqqq, 0)

+c.c.]+O(~"). (3.22)

Equation (3.21) is satisfied as long as ~R -RJ
& Q', /', Q', /', a condition mhich mill almays be met
in practice. In that case, s,&

and q, are small,
at least of order e' [cf. Eqs. (3.19}and (3.20)],
and contribute to Eq. (2.28) in the same order as
~L(»»), Eq. (3.15). Since this will be the highest
order mhich me shall consider, it is sufficient to
evaluate the inhomogeneity I [Eq. (2.2V)] in the
lowest order of e. Introducing the substitutions
(3.6) and (3.1V) into Eq. (2.26), we obtain in lowest
order

mith

Q = 2 8 g8 g + 8
v} 5y8g ~ (3.13)

Vfith this step, me have completed our decomposi-
tion of Eq. (2.2V} into parts containing different
powers of We.

L~ jm(»») = (-U2 8»»fl»~ -»»2 8»»»»~~ -»jm 8~~ »-»MPU2 8~»»4q 0)~

(3.14)

~L(»») -=(Q'»»„Q'»»„Q'»», + (WR- MR, )»»„

[PQ'+ (1 -P) 8»]»»4+ (vX —VR~)»»~, 0),

C. Iteration procedure

We now look for the solution of Eq. (2.26) in the
form of a power series expansion in vs; i.e., we
insert

with

Q 8 g Vy8g 8v ~

(3.15)

(3.16)

»» = c(»»»0'+ ~' j'»»»» jm» + ~»»»»'

+f »» +6»» +''') (3.23)
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1. Iteration

In order e' ' we obta, in

L,(u" ")+L,/, (u"') =0,

which has to be solved for u" ". Since ~L is self-
adj oint

(3.25)

(3.26)(q, L,(0))=(~L(y), 0),

and Lo($0) =0 [cf. Eqs. (3.2), (3.5)], we have

(y I (u(I /2))) (g L (u(I/2))) 0

From Eq. (3.25) we obtain the necessary condi-
tion

(3.2'I)

(g, ~L„(uto&)) =0 (3.26)

which is, in fact, =atisfied by ~L/, [Eqs. (3.11)

into Eq. (2.27), make use of Eqs. (3.10) and (8.22),
and collect equal powers of e. In lowest order,
i.e., -~, we obtain

L,(u'") =0, (3.24)

which has already been solved above [cf. Eq. (3.5)].

Z. Iteration

In order e' we obtain

L,(u"') +~L/, (u"/")
+ ~L(u"') = 0

with the constraint

(3.30)

(g,*,~L/, (u" /")+~L(u"')) =0.

Again, the orthogonality condition Eq. (8.31) is
automatically satisfied by $0*,~L/„~L. Solving
Eq. (3.30) for u"' we obtain

(3.81)

I(&) +(1)l ++(&)Nl (3.32)

and (3.5)]. Solving Eq. (3.25) for u ' 2 yields

u" "=(0, (2/v} s„w cosvx„0, 0, 0)e"" ~"*~+c.c.
(3.29}

This result has a simple geometric interpretation;
it simply gives the velocity component of the slow
mode in x, direction to first order if the preferred
direction, introduced in u"' [Eq. (3.5)], iS slightly
tilted with respect to the x, direction.

u""=e"" "~((2v2 ~/v'}[(vi/W2) e,+sg w cosvx„0, 0, (2/&3v')(v2 sic, +s'„)w sinvx„

(-4/x)(&2 vi a&+ a'„)w cosxx,) + c.c., (3.38)

u"'"' =(0, 0, 0, ( v3 P/4n)(-w~'sin2vx„(1+ —', P)[(—,'~w(') cos2vx, +w'e" '*~])+c.c. . (3.34)

u"'"' gives a small admixture of the spatial sec-
ond-harmonic mode to the components of the slow
mode, while u"" gives further corrections due to
a spatial variation of the roll amplitude. The con-
tribution of the second-harmonic mode to the slow
mode is a result of the nonlinear term in Eq.
(2.19).

In Eq. (3.33), we could chose one component of
the solution u"" of Eq. (3.30) at will. We made
use of this freedom to take its third component
v 3

' equal to zero. This choice wil 1 be repeated
in each further step of the iteration procedure,
where the choice is possible. In physical terms,
the possibility of this free choice results from
the fact that we can chose with which physical
variable we want to associate the amplitude w
most closely. Once we have made this choice,
the rest of the physical variables may be uniquely
expressed by w. We emphasize, however, that
the nonlinear part u"'"' is uniquely determined by
Eq. (3.30). Hence, the result (3.34), according
to which only the temperature and pressure com-
ponents contribute to zc"'"', is not a choice of
gauge, but reflects physical reality. For R =R„
this contribution turns out to be crucial for the

stabilization of the slow mode since, compared to
the linear theory, it provides an additional dissi-
pation mechanism, the only one which does not
vanish for R =R, . Later we will make use of the
proportionality to ~w~' of the second-harmonic
amplitude in order to discuss the mode-mode
coupling near R =R, .

3. Iterati on

In order c' ' we obtain

L,(u"/" }+~L/,(u"') +L(u"/") +~L/, (u"') = 0.

(3.35)

The orthogonality condition

(q*, L / (u"')+L (u" ")+L / (u'0'))=0 (3.36)

is again automatically satisfied. By solving Eqs.
(3.35) and (3.36) we find

u" "=(0, (4/ '
v(v}2 xieq+s') e„w cosvx e'" ~"*&

-(3/Sx')(1+ ',P) S„~w~'cos2wx„0, -0, 0)+c;c.,
(3.3V)

again with a linear and a second-harmonic part.
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u" ", like u" ", is nonvanishing only if w de-
pends explicitly on g.

4. Iteration

In the order e', we must now include the right-
hand side of Eq. (2.28), obtaining

L (u~'i)+L (u~'~'i)+L (u&'&)

+L,g, (u" ")+L (u"'}=I. (3.38)

The orthogonality condition yields

(g,*,~Lg, (u"~")+~L(u"')+~Lg, (u"~")+~L(u"'))

= (g,*, I) (3.3. 9)

Apart from the random term ($0, I), Eq. (3.40)
has already been derived by Newell and White-
head. " The random term in Eq. (3.40) acts as a
driving force, thereby turning the equation of
motion into a nonlinear Langevin equation which
has to be analyzed by statistical methods. Before
we proceed to this topic, we want to solve Eq.
(3.38) for u"'. When doing this, we can make use
of Eq. (3.40) to eliminate all time derivatives
from Eq. ,(3.38). We wish to calculate from Eq.
(3.38) only the corrections to the fundamental
mode, and for this purpose we will disregard all
higher-order modes, e.g. , third harmonics, as
well as the fluctuating terms in Eqs. (3.38) and
(3.40}. The following second-order corrections
are found by solving Eq. (3.38) for u"':

(1 +P) a,w = (—2s'(R R,)/R, —-&P'iwi'jw

+4[a, —(i/v 2 s) a'„]'w+ (&3). (3.40)

Equation (3.39) is not automatically satisfied.
Rather, it forms an equation which has to be satis-
fied by the yet-undetermined amplitude w. Eval-
uating Eq. (3.39) explicitly, we obtain the condition

(,) 2iv2, 3&2i, 2
n2

8
L 8(8

7r2

&& we'" ""~coswx3+c C.,

V(2) =0= V(2)
2 3

(3.41)

(3.42)

2(1+4P)
a'„w exp[i(w/vY)x, ] sin vx„ (3.43)

p"'= ' —,~w~' w —,(1+3P)a',w — (1+2P)a,a'„w(2) -3s R -R, P2, 4 2vYi
3m' 7r

(1 +2P)
2

8'w e""~2)"& cosnx .3' (3.44)

Once we have succeeded in solving the equation of
motion (3.40), we must use Eqs. (3.5), (3.29),
(3.33), (3.34), and (3.41)-(3.44} to obtain the physi-
cal variables v, T, and P from the complex func-
tion w($, q, r) It should .be noted that v, is related
to w in a particularly simple manner, since we
have

v, = (we'"'i ~~'+ c.c.) sinvx, (3.45)

to order e'. v, is also linearly related to w, con-
trary to T, which contains the second-harmonic
contribution (3.34}, and a cubic contribution to the
fundamental mode, Eq. (3.43). The latter term
makes an evaluation of the statistical properties
of T from w somewhat tedious. In order to cir-
cumvent this difficulty, we will use for T the ex-
pression obtained up to the third iteration step

T = (W3e'~~*& sinwx, [w+ (2/3m 2)(&2 via
L

+ a'„)w]

—( 3 P/4v) ~w~'sin2sx, +c.c.j. (3.46)

D. Evaluation of random force

The random force of the Langevin equation (3.40)
is evaluated by using the explicit form [Eq. (3.22}],
which gives I in lowest order in c. From Eq.
(3.40) we can now appreciate that the component
of I making a contribution has to be proportional
to exp[+i(w/W)x, ], which justifies Eq. (3.1V).
Putting

', (tl,*,I) = r(~, -n, ~), (3.4V)

we obtain

r(~, q, ~)

2w
dx, (s„—s„+&3q,) coswx,

3 Q

(-2S„s„—WSS, ) sssss,),
(3.48)

where we have already eliminated the derivatives
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s, in Eq. (3.22) by partial integration, making use
of the assumption that no fluctuations occur at the
boundaries. ~ We can now calculate the second-
order correlation functions of I and I * quite
easily, putting Eqs. (3.18)-(3.20) to use. We ob-
tain

(3.49)

(3.so)

& r*(~,n, ~) r (~', n', ~')&

(Q, +Q.)6($ —(')6(n n')6-(~ —~').

(3.51)

Since we want to stop the iteration procedure at
this point, we need no longer explicitly distinguish
several time and length scales. Formally, we
simply put e =1 again; i.e.,

—X„g—X2y T (3.52)

We have thereby completed our derivation of the
hydrodynamic equations (3.40) and (3.51) for the
fluctuations of the slow mode near the convection

instability. All following considerations will be
based on these equations.

IV. FOKKER -PLANCK EQUATION OF SLOW MODE

A. Fokker - Planck equation

To our Langevin equation (3.40) there corre-
sponds a stochastically equivalent Fokker -Planck
equation, "which governs the probability distribu-
tion 8' of the fluctuations of the slow-mode ampli-
tude w. Since this amplitude is a continuous field,
i.e., a function of the spatial variables x, and x„
its probability distribution must be a functional of
that field and, accordingly, the Fokker-Planck
equation must be a functional differential equation.
We will formally treat w and w* as independent
fields and denote by 6 (x) the functional derivative
with respect 'to w(x), where w* is kept fixed. The
horizontal vectors x= (x„x„o),k = (k„k„o),
6%=(hk„hk„o), %,=(k„o,o) will be used in the
following as a shorthand notation.

The Fokker-Planck equation is very simply re-
lated to the Langevin equation (3.40), and takes the
form'4

3 1 'L 2

(1+P)s,W= d'x (x) (--', v'v+-,'P'(w(x)~')w(x) —4 6, — s,'w(x)+Q6 g(x) W +c.c.~,2v i

(4.1)

P({w)~{w,);0)=6"&({w)-{w,$).

Here, 6"'({w)) is the 6 functional in the complex

(4.3)

with
Q = v2(Q, +Q, )/2(1+P), v = (R R,)/R, . -(4.2)

We correct here for an error of —,
' our correspond-

ing result-in Ref. 14. The spatial integral in Eq.
(4.1). is taken over the entire horizontal plane.
W({wj, t) is the probability density in the func-
tion space of w, w* for finding the complex func-
tions w(x), w*(x) at time t. Hence, W is a func-
tional w(x) and w*(x), and a function of time t."
The boundary conditions in function space, which
have to be satisfied by acceptable solutions of
Eq. (4.1), are that W and its functional derivatives
vanish for

~ w(x) ~-~, for any (measurable) sets
of points x.

Two special solutions of Eq. (4.1}are particularly
interesting. The first is the stationary time-
independent probability density W({w)), which is
obtained as a solution of Eq. (4.1) in the limit
t- , or by simply putting 8, =0. The second solu-
tion is the so-called conditional probability density
P({w)~{w,); t), i.e., the probability density for
finding the functions w (x),w*(x) at time t if w, (x),
w,*(x}are known to have been realized at time
t =0. P is the solution of Eq. (4.1}which satisfies
the initial condition

function space. " We will use this functional as a
purely formal device, which is an, obvious exten-
sion to functional integration of the common ~-
function concept.

Since we are concerned with a Markoffian ran-
dom process, P already contains the complete
information about the fluctuations. For t- ~, it
reduces to W({wj). Once P is known, correlation
functions of the random process can be evaluated
from functional integra1. s, at least in principle.
Unfortunately, only the time-independent solution
of Eq. (4.1) can be obtained in closed form (see
below). Furthermore, even for time-independent
correlation functions, the required functional in-
tegrals can be exactly carried out only in the
strictly one-dimensional case, where w(x„x,)
reduces to a function w(x, ) of x, alone. In all other
cases, we have to resort to certain approxima-
tions. Fortunately, their quality can be checked
for the exactly solvable time-independent one-
dimensional case. These topics will be dealt with
in detail in Secs. V and VI. In the remainder of
this section, we wi11 summarize what can be said
in general about Eq. (4.1).

B. Some symmetries

As a consequence of translational invariance, Eq.
(4.1) is covariant against the global gauge trans-
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formation

(M) (x) -w (x) e'~, (4.4)

where y is independent of x. The time-independent
solution W((s)}) of Eq. (4.1) can, therefore, be
only a functional of the product s) (x)auw(x'). All
moments of that distribution which contain factors
of u and w* in unequal number, then have to van-
ish. In particular, we have (w) =0.

The only conceivable exception to this result
would be the case in which the continuous transla-
tion invariance is spontaneously broken down to
some discrete lattice symmetry. This could, of
course, just be the case in which convection cells
appear and form a regular lattice in the horizontal
plane. A Goldstone mode would be connected with
the spontaneously broken symmetry which, in the
present case, would correspond to a collective
vibration of the lattice of rolls, i.e., a phonon
whose frequency approaches zero and whose life-
time becomes infinite in the long-wavelength limit.

We will analyze this question in some detail
and show that, in a sense, our system comes very
close to a spontaneous breakdown of symmetry, but
never really does quite make it. A breakdown of
translational invariance does, of course, occur
for the steady state without fluctuations, which is
described by a time-independent solution of the
deterministic hydrodynamic equations; however,
the fluctuations from the steady state are found
al~vays to restore the full continuous translational

symmetry. Phrased differently, the would-be
Goldstone mode of broken translational invariance
in the present case retains a finite, albeit large,
lifetime, even in the long-wavelength limit, and

is therefore a diffusion mode, rather than a zero-
frequency phonon.

Another obvious symmetry of the liquid layer,
the two-dimensional rotational symmetry within
the horizontal plane, is not a symmetry of our
Fokker-Planck equation (4.1). Clearly, the spa-
tial-derivative terms in Eq. (4.1) cannot be written
in covariant form without introducing a vector,
e.g. R„with a preferred direction within the
horizontal plane. This preferred direction has
first been introduced in Eq. (3.5}, where we de-
cided to treat fluctuations of rolls in a preferred
direction. By this ansatz, the continuous rota-
tional invariance was reduced to invariance against
rotations of 180' only. This latter symmetry is
still present in Eq. (4.1).

In order to maintain the full rotational invar-
iance, rolls in all directions [separated by angles
of order (e)', however"] would have to be consid-
ered. From a formal point of view, our considera-
tions up to this point would not change much. The
Fokker-Planck equation (4.1) would be amended
by a sum over all roll directions, in addition to
the spatial integral, and it would receive additional
terms, cubic in w, which describe nonlinear in-
teractions of rolls in different directions. Thus,
the rotationally invariant Fokker-Planck equa-
tion is of the form

I

(
( p)) WC=J c)'xg()C (x) --', x' g , „wC('(w — '' " ' w, +))C ~ (x) WI ~ c.c),

(4.5)

bl~ bfftl ' (4.6}

Since we want to restrict our analysis only to
rolls in one direction, we fortunately need not
calculate the coefficients b, explicitly here. "

C. Detailed balance

A further important symmetry of Eq. (4.1) is
expressed by its transformation behavior against

where we have introduced the horizontal gradient
s =(s„s„0), the index I numbers all directions
of the rolls, and k„ is a vector of length v/v2
in the l direction. The form of the mode-mode
coupling terms already follows from translational
invariance and local coupling. As a consequence
of rotational invariance, the coupling coefficients
b, can depend on l, m only via the scalar product

Hence, they satisfy the symmetry rela-
tion

time reversal t- -t. We will show that the con-
ditional probability density P, as obtained from
Eq. (4.1), satisfies the detailed balance symme-
try

P((s)}~(w };t) W(/w })=P((w*}~(w*};t) W([tv*}).

(4 7)

Equation (4.7} is an expression of important sym-
metries of correlation functions and implies, e.g. ,
that (w*(xt) w (x't'})= (w*(x't) s) (xt')) .

In order to prove Eq. (4.7), we will make use of
results obtained in earlier work, where the con-
ditions which any Fokker-Planck equation has to
satisfy [in order that its solution has the symmetry
expressed by Eq. (4.7)], have been found. For
the present case, a sufficient condition for Eq.
(4.7) to meet is the requirement that Eq. (4.1) be
put into the form
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+5..(x)]W}+c.c.)
(4.8)

with a suitably chosen functional 4 ({yu)). It is
easily seen that the sufficient criterion Eq. (4.8}
is, in fact, met by Eq. (4.1). Indeed, by com-
parison of Eq. (4.8) with Eq. (4.1}we find

O((wB=Q ' d*x (--,'~'vlwi'+9"iwi'

i
+4 s,~-

~2 s,'m . (4.9)

To be sure, the detailed balance property [Eq.
(4.7)], which we have thereby established for the
fluctuations of the slow mode, is a property of
this slow mode alone. For example, it may be
easily checked that the full hydrodynamic equa-
tions, Eq. (2.17-2.19), which still contain ar-
bitrary hydrodynamic fluctuations, do not have a
corresponding detailed balance symmetry, as long
as the temperature gradient -R is different from
zero. For R =0, the fluid layer is, of course, in
thermal equilibrium where detailed balance is
present simply as a consequence of the reversi-
bility of the microscopic motion. No such micro-
scopic symmetry underlies the detailed balance of
the slow mode, since external forces, R 10, destroy
these symmetries on the microscopic level. In the
present case, we may state in retrospect that the
potential, Eq. (4.9}, exists, and hence the sym-
metry, Eq. (4.'l), appears, for the combined rea-
sons that the slow mode dominates the fluctuations,
and that Eq. (4.1) is invariant against the trans-
formation (4.4) (i.e., translational invariancS), and
the invariance against rotations by 180'.

It is instructive to note in this context that in the
more general case, Eq. (4.5), detailed balance
of the slow-mode amplitudes is still preserved.
The sufficient condition, Eq. (4.8), is generalized
in an obvious way by a double sum over all roll
directions. The potential 4 still exists and is ob-
tained from Eq. (4.5) in the new form

4 =Q '
l d'xg ——;v'v)m,(x))'

s

+ —Q bg„/use(x)f'fzv (x)['

+2&kcs'~ kcs'~ k'c

k

(4.10)

For the existence of the potential (4.10), the

additional condition, Eq. (4.6), has to be satisfied;
this was found to hold by rotational invariance.
Hence, rotational invariance, in addition to trans-
lational invariance, underlies the detailed balance
symmetry in this case.

D. Time - independent solution

The Fokker-Planck equation (4.8) obviously has
the time-independent solution40

W({~j)=~e-'«», (4.11)

where 4 is given by Eq. (4.9}and N is a normal-
ization constant. The same form, with 4 given by
Eq. (4.10), satisfies the more general Eq. (4.5)
in the time-independent case.

This result, and the results of the preceding
Sec. IVC, make it clear that the potential 4 plays
a central role in our theory By .Eq. (4.11), 4' is
connected with the fluctuations from the steady
state in much the same way as a thermodynamic
potential is connected with fluctuations from an
equilibrium state. The steady state itself is ob-
tained as the most likely state by minimizing 4
with respect to m(x) subject to specific boundary
conditions.

Taking averages in Eq. (4.8), we obtain

&n (x, f)) =-[Q/(I+&)]&5 *(x)c'({Ã])), (4 12)

i.e., 4 acts as the potential of a generalized force
-&5 ~C ) which tends to restore the steady state
once it has been perturbed by a fluctuation. Drop-
ping the averages in Eq. (4.12), we come back to
the hydrodynamic equation (3.40}without the ran-
dom term; this equation has the property

2~
~f

dl~f5„(9E)e /' 0. (4.13)

Thus 4 has to decrease monotonically in time.
Since 4 itself can always be chosen positively by
adding a constant, it may serve as a Lyapunoff
function which, by Eq. (4.13), shows the relative
stability of the states which minimize 4.

All these properties have the potential @ in com-
mon with thermodynamic potentials in thermal
equilibrium, which is the reason why I have called
it a generalized thermodynamic potential. The
source of all these similarities is the detailed
balance symmetry [Eq. (4.7)] which is so charac-
teristic for systems in thermal equilibrium and
which holds, as we have pointed out above, for the
slow mode far from thermal equilibrium only as
a consequence of other symmetries.

The explicit form of 4, Eq. (4.9), is typical for
systems in the vicinity of an instability. For '

R &R„ the state zv =0 minimi. zes 4 and corre-
sponds to a stable steady state which realizes the
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translational symmetry in a trivial way. The
state w =-0 becomes unstable if the coefficient of
the second-order term in Eq. (4.9) turns negative.
The fourth-order term always acts in a stabilizing
way, and ensures the normalizability of the proba-
bility distribution. The spatial-derivative terms,
finally, tend to suppress or make unlikely spatial
fluctuations over short distances, and thereby
introduce coherence lengths into the fluid flow.

Landau has made thermodynamic potentials of
this form, together with the probability density,
Eq. (4.11), the basis of his well-known phenomeno-
logical phase-transition theory. He also proposed
hydrodynamic equations of the form (4.12) (with
the averages omitted) to describe fluids near the
transition to turbulence in a phenomenological way,
Our results up to this point suggest that, based
on the detailed balance symmetry, of the slow mode,
these two Landau theories can be unified to give a
phenomenological description of fluctuations near
hydrodynamic instabilities.

E. Extrema of generalized thermodynamic potential

Extrema of 4, Eq. (4.9), correspond to stable,
metastable, or unstable steady states. They satis-
fy the equation

Q5, (x) C = --.'v'vw+-, 'P'~w~'w

4 up to second order in the deviations from Eq.
(4.15}, it is easily shown that the states within
the range

0&gk & (~ v2v)~~2 0&»&1/+3 (4.1S)

~ &i(go+ Mzxz) (4.19}

with

K = (8/Ss'v)'~'6k

l„=4/[Sv v(1 —»')]' '
(4.20}

(4.21)

Equation (4.19) describes two different ideal lat-
tices for x, -~,x,- —~, respectively, which differ
only by their phase, and which are joined by dis-
torting them smoothly in a region of size l„around
x, =0. As one might expect, an increase 44, of
4 is associated with the lattice distortion. Its
value is obtained as

are stable, that states with hk, &0 are unstable
with respect to the growth of oblique modes, and
that sideband instabilities occur for Ak, & (-,

' v'v)'~'.
There are further solutions of Eq. (4.14}which

describe slightly disturbed lattices. In particular,
we look for perturbations which are localized in the
», direction; i.e., we require ~w(x)~'-Sv'v(1 —»')/
P' for ~», ~-~. Looking for solutions which do not
depend on x„we obtain"'"

w(» ) = (Svav/P2)~~~[(1 —3»2)'~ tanh(» /$ ) —i&2»]

—4 8,—~ 8~ w=0. (4.14) =9&ps'L v' '(1 —SK ) /QP (4.22)

The only boundary condition I want to impose is
that w(x) remains finite as ~x~-~. For R&R„
i.e., v&0, the only solution of Eq. (4.14) which
satisfies this boundary condition is the trivial
solution w =-0, which describes the purely heat-
conducting state. It is easily verified that, for
v&0, this state corresponds to the only minimum
of 4.

For R &R, (v& 0), w =0 is a maximum of 4', and
nontrivial solutions of Eq. (4.14) exist, e.g. , the
plane waves

w(x) =(Sw'v/P')' '(1 —8)' 'e"vo' "'"' (4 15)

where yo is an arbitrary phase and

tP = (8/Sv'v}(Ak, +6k,'/v2 v)'. (4.16)

These solutions, describing ideal lattices of rolls
with wave number R, +b. % give 4 the values

4' =4„=-(P/4QPI)(3»'v)2(1 —P). (4.17)

The absolute minimum of 4 is obtained for 6 =0,
i.e. , 6k =0 (i.e. , for rolls with the critical wave
number %,). This minimum is very' sharp, since
E/Q in Eq. (4.17) is a very large number.

The stability of the states (4.15) is determined
by the second-order derivatives of 4. Expanding

where L, is the diameter of the horizontal plane
in the 2 direction. The vanishing of 64„ for
hk', =-,' g'v, i.e., a' =-'„signals the disappearance
of the probability barrier for a lattice distortion
at this point and confirms the instability which
sets in for n, k, & vWv/2&2.

From discussions of free energies similar to Eq.
(4.9)," it is known that the states (4.19) corre-
spond to saddle points of 4, which are located in
function space between the minima of 4 given by
Eq. (4.15). Depending on the topology of the under-
lying function space, these saddle points may or
may not become instrumental in determining the
fluctuation processes which connect the plane-
wave states, Eq. (4.15). Thus, systems which
are unbounded in the x, direction can pass between
two minima of C described by Eq. (4.15), by a
continuous diffusion process, bypassing the saddle
points (4.19) and changing the phase factor of
w(x} in Eq. (4.15) in a continuous way. For sys-
tems which are bounded in the x, direction, the
function space is more restricted than before,
since the functions w, w* have to satisfy an addi-
tional boundary condition. Typically, the total phase
change of w(x) along the», axis is fixed and quan-
tized by the boundary condition. In this case, two
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V. FLUCTUATIONS IN ONE DIMENSION

For the sake of simplicity, we shall first re-
strict our attention to liquid layers which are in-
finitely extended only in the preferred x, direc-
tion, i.e., in the direction of the critical wave
number %, . It is assumed that the boundary con-
ditions in the orthogonal x, direction M;e such as to
strongly favor all modes with k, =0, compaxed to
modes with k, w 0. This condition requires that

I.,'«L, l . (5 1)

We may then simplify the potential 4, Eq. (4.9), by
putting 8~ =0, and obtain

d~, (--'x'vlw I'+ l&'lw I'+4I s,w I').

(5 2)

%'e drop the unnecessary index 1 and take x, =x in

the following calculations.

A. Time- independent correlation functions

'We can calculate all time-independent two-point
correlation functions, once we succeed in eval-
uating the average

neighboring minima of 4 can only be connected by
a macroscopic fluctuation (which realizes a dis-
crete phase jump by taking so through zex o some-
where} which is most likely to pass over a saddle
point of 4 given by Eq. (4.19).

The rate I" of such fluctuation processes for
h4»1 can be calculated from the Fokker-Planck
equation, 42 and may be written in the form

(4.28)

where Q is a frequency factor and 8 4 is the differ-
ence of 4 evaluated at the saddle point and at the
initial minimum of 4)." The fluctuation rate (4.28)
has been evaluated in detail" both for 4k increasing
and decreasing fluctuations. In the limit hk- 0,
these results take the form

(3v)'~' F, 8&3 v'I„vs™
4P(1 Z) (qf, )'" " q~'

(4.24)

For systems which are infinitely extended in the

x, direction, the result (4.24} becomes meaning-
less, since it then describes a diverging jump
rate between states which lie infinitely close to-
gether. A different approach to the fluctuation
x'ates then has to be used; it is described in Secs.
V and VI.

W(wx, wx)-W(w)W2(w) for Ix -xl-~.
Here W, {w) is the probability density that w ())') takes
on the value ae at point x. By translational in-
variance, W, (w} is independent of x. Hence, Eq.
(5.4) has to have an x-independent solution, which
requires that co is given by

c, =-,'s'v&lwl'&--, 'J"&Iwl'&. (5.6)

The "initial condition" to be satisfied by R~ is

W, (wx, ws} = 5 (2) {w -w}W, {w}. (5.V}

A numerical solution of Eq. (5.4) has been given
by several authors. " Figures 1 and 2 give the
results for

&Iwl'&= JPw Iw('w'&w) (5.8)

&Iwl'&-(Iwl')'= J&w Iwl'w(w)-&Iwi'&', (na)

as a function of v in normalized units. In Fig. 3
we plot as a function of v the two correlation
lengths g„E, which are obtained by fitting to ex-
ponentials the correlation functions

&w*(x)w (x)& =
& lw I*& e ~' *~~'~,

&I lw(~)l' -
& lw(~)l*&l tlw (~)l' —

& lw(~)l'&)&

=&(lwl'-&lwl'&)'& e t* 't"*.

(5.10)

(5.11)

Equation (5.3) defines the time-independent joint.
probability density for w (x) to have the value w at
point x, and the value so at point S. The angular
brackets in Eq. (5.8) define the averaging of the
enclosed expression with the probability density
8'-e ~. Since 8' is a functional, the averaging
requires the evaluation of a functional integral.

In the case in which 4 is given by a one-dimen-
sional integral of the form (5.2), functional inte-
grals of the form (5.3}may be evaluated by solving
a partial differential equation according to the
well-known Feynman-Kac theorem. " In the pres-
ent ease, that partial differential equation takes
the form

(5.4)

with the Hamiltonlan

ff = (q/41-, ,) s„s e+ (I,,/q)(=', v'vlw I'+ ,'P'Iw I'-+ c,),
(5.5)

whex'e eo is a constant which has yet to be deter-
mined. By physical arguments, we have to re-
quire that the solution of Eq. (5.5) factorizes into

W2{wx, wx) =- &5(2) (w -w(x)) 5(2) (w -w(x)}&.

(5.3)
We find that g, and g, are both small for @&0

[g, =2),= (9/3v'lvl}'~' in that region], but increase
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FIG. 1. Intensity of the slow mode as a function of the
Rayleigh number & = (B-Bc)/B~ in convenient units
t, 4& = (PI@/L2)~3/3n' ] (after Scalapino et a/. , Ref. 28).

as v approaches zero, to within a transition region
of width av = (P2Q/L, )'~'/Sw'. lt should be noted
that a transition region of the same width follows
from the exponent in Eq. (4.24). $, has a maxi-
mum of $ =2(L /P'Q)' ' at v =(P'Q/L, )' '/
Sm', and decreases again for v~v i )2=(—'. x Ivies'
in that region]. $, increases monotonically as v

g~ows, and $, =24m'vL, /P'Q for v & v,„.
Since, as will be seen in more detail below, $,

is associated with fluctuations of the phase of so,
its increase describes a change from a spatially
disordered roll pattern to one of increasing regu-
larity. In order to interpret our result for F„, we
recall that the amplitude of the second-harmonic
temperature mode, according to Eg. (3.34), is
proportional to lml'. On both sides of the transi-
tion region, the second-harmonic mode is domi-
nated by short-ranging fluctuations. %'ithin the
transition region, the range of these fluctuations
increases drastically; i.e., the coherence of the
fundamental mode is partially transferred to the
second-harmonic mode in that region.

In order to express correlation functions of the
physical variables in terms of our results [Egs.

(Iwf')- (Iwl2)2

—.2

FIG. 2. Second-order cumulant of the slow-mode
amplitude as a function of the Rayleigh number (same
units as Fig. 1); (after Scalapino et a/. , Ref. 28).

FIG. 3. Coherence lengths g& (right-hand scale) and $2
(left-hand scale) as functions of the Rayleigh number
(same units as Fig. 1}; (after Scalapino et ul. , Ref. 28).
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(5.10), (5.11)], we have to make use of the results
of Sec. III. For the correlation function of v„we
directly obtain

(v, (x,x,)v, (x,'x', )&=2&~w~'&sinn«, sing«,'

xcos[(v/))2)(x, -x[)]e ~*) ')~ a).

(5.12)

According to Eq. (3.46), T is obtained from w in
the one-dimensional case by

T = (&3e'"").+' sinvx, [w(x, )+ (2)(2 i/3v) s,w(x, )]
—(v & P/4s) ~w~' sin2vx, ] +c.c. . (5.13)

In the evaluation of the correlation function of T,
we make use of the relation

) ( ))
(x x ) ([w[ )

) )/L

(5.14)

Consistently neglecting the &a, ws, w~) term, we
obtain

I

(T(x,x,)T(x,'x', )&=ssinv«, sinvx,'&~w~'&xe '~ "» cos
2 (x, -x,') +, 3 &

sin
2 (x, -x,')fv, (x, -x,') 4v2

+(3p /4x ) sin2vx~sin2wx, '[(& )w I'& —&lw I'&') exp(- l«i- «l~/4&+& ~w ~'&'] &5»)
I

Experimentally, one should be able to distinguish
the second-harmonic fluctuations in Eq. (5.15) by
their typical x, dependence. Hence, $, should be
determined by examining either the velocity fluc-
tuations or the temperature fluctuations at the
vertical wave number g, while $, has to be deter-
mined by examining the temperature fluctuations
at the vertical wave number 2m.

B. Quasilinear approximation in heat - conduction region

Since exact methods of solution are not available
for time-dependent correlation functions or, gen-
erally, for fluctuations in systems with more than
one spatial dimension, we will evaluate correla-
tion functions by introducing a quasilinear approxi-
mation. First, some of the results of the preceding
sections will be rederived in approximate but
analytical form. Then, the same method will be
applied to more general cases. 44

For R &R„ i.e., v&0, the term of fourth order
in the potential (5.2) is hardly crucial, since the
second-order term already limits the size of the
fluctuations. Its main effect will be to change the
size of the second-order term slightly. This effect
is taken into account in an averaged fashion by re-
placing ~w~' by the partly averaged term
4&)w)'&(w)'. Hence, we replace Eq. (5.2) by

4' = dÃ —2'' v+P R w +4 ~~w )
Q

(5.16)

where &(w~'& is still to be determined self-con-
sistently.

Introducing spatial Fourier transforms

(5.17)

we may write the Fourier transform of the corre-
lation function

K (q) = Jdxe'"(w (x)w(x')& (5.16)

in the form

(w*(q) w(q')) =2v5(q —q')K. (q). (5.19}

The potential (5.16) is diagonalized by Eq. (5.17),
and the average (5.19) is readily evaluated. We
obtain

Q/L,
-3vmvyP &~w~m&/4q

Equation (5.19) implies the sum rule

(5.20}

(5.21)

which, together with Eq. (5.21), gives a closed
expression for &~w~'& which may be cast into the
form

(iwi'&' ,'(v'/P ) v(iwi'—&—' Q'/16P'L, '=0-. (5.22)

We obtain the asymptotic results

&~w~'&- (Q/4PL, )'~' for v-0
and

&lwl &-Q/ 2vL(
1
6l)"vfor v&0, [v)»1.

(5.23)

(5.24)

These results are in reasonable agreement with
the numerical result of Sec. VA.

Equation (5.20) shows the advantage which the
quasilinearization procedure has over a simpler
straightforward linearization. ' The latter proce-
dure would give Eq. (5.20}without P~(~w~') in the
denominator. It would thus describe a diverging
fluctuation spectrum for v-0. In the present
approximation, the point of this divergence is
shifted by 2P'&(w('&/3w' in Eq. (5.20}. Since &~w~'&

diverges itself at this point, the critical point
v =0 is shifted to v-; i.e., it is completely re-
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moved. Of course, for v&0, our quasilineariza-
tion procedure lacks any justification, and the
results of Eq. (5.22) cannot be simply extended
into that region. However, we may expect that
Eq. (5.20) retains its validity for small positive

2P'(lwl'& 2(QP'/4L, )' '
3 p 0 37T

(5.25)

(5.26)

Equation (5.25) gives a measure of the width of the
region in which the continuous transition from the
heat-conducting state to the heat-convecting state
takes place. It agrees well with the previous
numerical result.

Equation (5.20) may be written in the form

L, (3s'v)'
Q g2

dx p x + 8 p + 1+p 8„(p

(5.30)

The volume element in function space will be
changed by the nonlinear transformation (5.29}, in
general. However, in the region where R is well
above R„ i.e., l p(x}l«1, that change of the volume
element may be neglected. Averages of functionals
of p(x) and y(x) are then easily calculated from
the Gaussian form (5.30).

Introducing spatial Fourier transforms of p(x)
and y(x), as in Eq. (5.17), and defining K~(q), K„(q)
a,s in Eq. (5.18), we obtain

where the correlation length

( =(--'v'v+-'P'&lwl'&) "=8LR(lwl'&/0

takes on the limiting values

$, - 2(2L,/P'Q)' ' for v -0,

(5.27)

K,(q) = 2& p'& h. /[I + (h.q)'],

with

(p') =P'q/8L (3v'v)' '

g, =2/(3vml vl}»2

(5.31)

(5.32)

(5.33)

P'q
+ (l l)~, for v 0, lvl 1.

(5.28)
K,(q) =2&,/(&, q)',

with

(5.34)

Again, these results are reasonable approxima-
tions of the previous numerical results.

Within our present Gaussian approximation,
higher-order correlation functions may be ex-
pressed in terms of (w*(x)w(x')); i.e., we have

(lw(«)l'lw(«')I'& = &lwl'&'+1&w*(x) w(x')& I'

It is clear, therefore, that the correlation length

$, defined by Eq. (5.11) is given by (, = —,'$, within
the present approximation.

(, =16L,&lwl'&iq. (5.35)

Clearly, the correlation function K„(q) diverges
in the limit q-0 and therefore dominates the long-
range part of the correlation function (w*(x)w(x')&.
From Eq. (5.29) and the Gaussian property of

qr(»), we have in the long-wavelength limit

(w'(x)w(x')&-(lwl'& exp[--,'([rp(x) —rp(x')]'&}.

(5.36}

C. Quasilinear approximation in heat - convection region

We will restrict our attention to the region where
R is well above R, so that the convection rolls are
well established. We will not try to give an ap-
proximation which remains valid near the con-
vection threshold from above. Within these re-
strictions we may write the complex amplitude se

in the form44

The average in the exponent is evaluated from Eq.
(5.34) by the relation

([y(x) —q(x')]'&=2 K~(q)(1 —e "'* '),

(5.37}

where the principal part of the (otherwise diver-
gent) integral has to be taken. We obtain

w(x) = (3w'v/P')' '[1+p(x)]e'"'*' (5.29} &[q (x) —
q (x')] '& = 2l» -«'l/k, . (5.38)

where p(x) represents a small amplitude fluctua-
tion, which we will treat as a Gaussian random
field, and y(x) represents a slowly varying phase
fluctuation. Inserting Eq. (5.29) into Eq. (5.2),
keeping only terms up to second order in p and
approximating functions of p which are multiplied
with (s,y)' by their averages, we obtain

This result, together with Eqs. (5.35}and (5.36),
correctly reproduces the asymptotic behavior of
the correlation function (5.10). A comparison of
Eq. (5.35) with the result (5.26) for v&0 shows
the latter result to be incorrect by a factor —,

' for
v&0. Finally, from Eqs. (5.29) and (5.31}we ob-
tain the correlation function
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&[lw(x)l' —&Iw(x)l'&] [Iw(x')I' —&Iw(x')I'&]&

=[Q(3v'Ivl)' '/2I. ,P') e i" *' '2, (5.39)

again in agreement with the asymptotic behavior of
the previous result (5.11).

D. Time - dependent correlation functions; v (0
Correlation functions which depend on time have

to be evaluated from the Fokker-Planck equation
(4.8). While an exact solution of Eq. (4.8) for
time-dependent distribution functions is impos-
sible, it is very simple to solve that equation
within the quasilinear approximations introduced
in Secs. VB and C. An extension of these approxi-
mations to the time-dependent case is simply
achieved by inserting the approximate forms of
4 [Eqs. (5.16) and (5.30), respectively], into Eq.
(4.8}.

First, we will treat the case v&0. Introducing
the Laplace Fourier transform

K(z'(qz) = dt' ~Idx'e""' '"
N P

(5.22) respectively, and the correlation time v, is
given by

2(1 +P) 1 +P"= -3v'v+2P'&lwl')
=

4
(5.47)

In particular, we obtain the asymptotic results

v, —(1+P)(4L,/P'Q)' ' for v-0,
2(l +P)

3v'I vl+P'Q/I, ,(6I vl)'"

(5.48)

It is plain from Eq. (5.47) that the increasing order
of the roll lattice, which is established when the
Bernard point is approached from below, is ac-
companied by a slowing down of the fluctuations.
Invoking once again the assumed Gaussian property
w (xt), we have

&lw(«)l'lw(x't')I'&- &lwl'&'

= &Iwl'&'exp — —,(5.49)
72

where

x &w*(x+x', t+t') w(xt)), (5.40) v, =z(1+P}$, = —'v, . (5.50)

we obtain from Eqs. (4.8) and (5.16)

[(1 +P)iz ——', (('v+-,'P'&Iwl'&+4q']K' '(qz)

=(1+P)K (q), (5 41)

which is readily solved for K'z'(qz)

K.(q)(1+P}
(1+P)iz+-', v'I vI+P'&Iw I'&+4q'

(5.42)

From the detailed balance symmetry, Eq. (4.7},
the following connection between the Laplace trans-
form K'~' and the Fourier transform

Hence, the slowing down expressed by Eq. (5.48}
also occurs in a somewhat milder form in corre-
lation functions of higher than the second order,
e.g. , Eq. (5.49). Physically, such higher-order
correlation functions describe the statistical prop-
erties of admixtures to modes which are spatial
harmonics of the hydrodynamic modes at the criti-
cal wave number.

E. Time -dependent correlation functions; v) 0

We proceed as in Sec. VD. Inserting Eq. (5.30)
into Eq. (4.8) we obtain

K(F'(qv) = dt' dx e"*
ttl

x &w*(x+x', t+ t') w(xt)&, (5.43)

(z, ) (1 +P)K,(q)
(1 +P)iz + 3v'v+4q' '

K(z&(, )
(I+P}K.(q)

(1 +P}iz +4q'

(5.51)

(5.52)

is easily established:

K'F'(q(v) =K'~'(q(d)+[K' '(-q(d)] *

Making use of Eq. (5.20), we obtain

(5.44)
in a notation analogous to Eq. (5.40). Making use
of detailed balance, we express the Laplace trans-
forms in terms of Fourier transforms as in Eq.
(5.44), we obtain

(F) )
4& lwl'& t'v,

(~,~)'+[I+ (5,q)']' ' (5.45) K(F) ) &P &kg 2

(~.~)'+[I+(q(,)']' ' (5.53)

or, in the space-time domain,

(w (*t) (e't'))=(lwI'I e*tt(- lx -x'I

(5.46)

K(P') f ~) ~1 (5.54)

where (p'&, $„and $, are given by Eqs. (5.32),
(5.35), and (5.33) respectively, and

where (, and (Iwl'& are given by Eqs. (5.26} and r, =g(1 +P)f„'t 7', = —,'(I +P)P, . (5.55)
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A comparison of Eq. (5.55) with the results (5.47)
and (5.50), which hold for v & 0, shows that the
quantities 7, and $, are related to each other in the
same way, regardless of the size of v. It appears,
therefore, that v, = ~(1 +P) P, is also a good ap-
proximation within the transition region. The
same is not true for v„since the relations (5.55)
and (5.50) differ by a factor of 2. By interpolation,
T, = —', (1+P)$,' is likely to be a good guess of the
correct size of v2 within the transition region.

VI. FLUCTUATIONS IN TWO DIMENSIONS

, K(%}=&lwl'&

which yields the self-consistency condition

lw I 2)—
8[-3v+ (2P'/v')&lwl &]

'

-Z/2
x ~1+—are tan -3v+, (Iwl'&

7r r'

For

(6.7)

(6.6)

The results of Sec. V are subject to the restric-
tion (5.1). We will now lift this limitation and treat
the case of fluctuations propagating in all direC-
tions within the horizontal plane. The x, direction
is, of course, still preferred, since it is the
direction of the wave number k, of the rolls which
are finally established. Since exact methods of
solution do not exist for this problem, we will
employ the quasilinear approximation which was
introduced in Secs. VB-VE, and which was found
to be in reasonable agreement with exact results.

A. Heat - conduction region: v(0
A quasi-Gaussian approximation of the potential

4, Eq. (4.9), is obtained as in Eq. (5.16),

3I vl» 2P'&Iwl'&/v' (3I vl)' '« I

Eq. (6.8} reduces to

& lwl'& =Q/4(31 vl)"
which, according to Eq. (6.9), is correct for

v&0, 4»lvl» —,(P'Q/2v'}' '

(6.9)

(6.10)

(6.11)

The right-hand side of Eq. (6.11) is a measure of
the width of the transition region. A comparison
with the result (5.25) for the one-dimensional
case shows that, apart from numerical factors,
the length L2 of the layer in the x2 direction is re-
placed by the basic interaction and coherence
length l =1 in the result for the two-dimensional
case. The same rule is found to be valid for all
other results as well. In the case

Q-1 d2~ 3 ~2v ++2 M)
2 ~ 2

+4 B~W —~ 82W (6.1)

v =0, 2P &Iwl'&/m'

Eq. (6.8) is reduced to

&lwl'&=l(~/v2 P)".

(6.12)

(6.13)

k —= k, + q, K(%) =K(q), (6.3)

and noting that to within the accuracy used in Eq.
(6.1) the relation

(q yq~/2y )2 =[(km k2)/2y ]' (6.4}

is applicable, we may write our result (6.2) in the
rotation invariant form

Instead of Eq. (5.20), we obtain

K (q) =Q[-z~'v+P'&lwl'&+4(q, +q,'/&2 v)'] '.
(6 2)

Defining the quantities

The transition point, according to Eq. (6.2), is
effectively shifted from v =0 to small positive v,
which may be estimated from Eq. (6.9)

v = (2P'/3v')(&Iwl'&) = '(QP'/W2~')—' '

(6.14)

(6.15)

outside the transition region while, for v-0 it is
given by"

and is of the same order as the right-hand side of
Eq. (6.7}. The correlation length (, as obtained
from Eq. (6.6), has its old value

(, = 2v2/m(3I vl)'i'

~Q k',

1+[5,(P -P)/» ]' ' (6.5) (, =4(v2/vQP')"' (6.16)

with

( =(-—'v v+ —'P &Iwl')) ' ' (6.6)

Time-dependent correlation functions are ob-
tained as in Sec. V. For the Laplace Fourier
transform K'~'(qz) we obtain

The result (6.5) is formally identical to Eq. (5.26).
However, (Iw I'& has to be determined from the
new sum rule

K (q)(1+P)
(1 +P)iz —-', n'v+P'&lwl'&+4(q, +q,'/v'2 w)'

'

(6.17}
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The transition to the Fourier transform with re-
spect to time can be made as in Sec. VD invoking
detailed balance. Also making use of Eqs. (6.3)
and (6.4), we finally obtain

K '(q&4)) =K& '((«4))

with

6.16}~2&d2+ [1 + t'2(k2 P}2/4k2] 2

r, = —,'(1+P)P, . (6.19)

The same simple relation between correlation
time and correlation length, which was found for
the one dimensional case subsists, therefore, in
this more general case also.

The Gaussian assumption upon which the present
results are based, allows in principle the calcula-
tion of all higher-order correlation functions from
the second-order correlation functions given above.
However, since the results are algebraically much
more complicated than in the one-dimensional
case, we will not proceed in that direction.

We note that-for v & 0 outside the transition re-
gion, our results (6.15) and (6.19) are in agree-
ment with the earlier results of Zaitsev and
Shliomis, "if the latter are corrected for a mis-
print. Our Eqs. (6.6) and (6.6) give an extension
of these earlier results and cover the transition
region also, where Eqs. (6.14), (6.16), and (6.19)
give at least a qualitatively correct description. "

Let us finally express correlation functions of
physical variables in terms of our result (6.16).
Defining the Fourier transform

(5.29) into Eq. (4.9), and keeping only functionals
to second order in p and y, we obtain

Kp~(q) = d'x'e""'(p(x't)&(&)(xt)}, (6.24)

which is connected to the correlation function of
Fourier transforms by

(p(qt)q)~(q't)}=(2w}'Kz (q)6'K'(q —q'). (6.25)

From Eq. (6.23) we obtain, by averaging,

)
P'Q (/3wv)'

1+4(q,'-q,'/2w'}'/3w'v(q', +q,'/2w') '

(6.26)

4 1 2+
3 2V 'i& ~2, ~2P ~

(6.23}

This expression should be compared with the re-
sult (5.30) for the one-dimensional case. Al-
gebraically, Eq. (6.23) is more complicated, since
fluctuations of p and y are no longer independent
of each other. Nevertheless, the Gaussian form
(6.23} may be diagonalized with respect to the
integration variable by introducing Fourier trans-
forms. In addition to the two-dimensional ana-
logs of Kz Eq. (5.31), and K„, Eq. (5.34), we
have to consider the cross-correlation function

K, (k&4)xs xK)

+oo

dt'
J

cPx'e&"'" ' ' (v (x'x't')u (xx t)}
3w v

K~(q) =K,(q) ) ~
4( . ,~q, ) ), (6.2V)

and, correspondingly, Kr(k~x, x', ) we have

K,(fuox, x', ) = 2 sinwx, sinwx, 'K&r)(%&d),

Kr(knox, x,') =6 sinwx, sinwx, '

x (I 4( P P)/3w 2)K&&)(/&4))

(6.20)

(6.21)

—t))2 q&qq"(q)=".(4) .(4 4/qp)). (6.28}

The functionK„(q) diverges for ~q~-0 and domi-
nates the long-range part of the correlation func-
tion

(6.22)

In Eq. (6.22), use has been made of Eq. (6.4), in
order to cast the result into a rotation invariant
form. Furthermore, nonlinear terms in the rela-
tion between T and w have been discarded, as is
consistent with our earlier approximations.

(«) *(xt)«) (x't))- (3w'v/P')

&& exp[--,'([q)(xt}—&p(x't)] ')j
(6.29)

similar to the one-dimensional case. From

([q)(xt) —
q (x't)] ')

B. Heat-convection region: v) 0 K (-)(1 e-&q &K-x'))
(2w)* (6.30)

As in the one-dimensional case, we will restrict
our analysis to the domain v» v . Inserting Eq.

we obtain, retaining only the infrared divergent
part of Eq. (6.2'I),
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PQ ( 2

([q)(xt) —q)(x't)]'& =, ~ Ix, -x,'I+ ()('2 Ix, -x,'I)'i' exp (6.31)

In the limit

I». -«ll«I», -«,'I/I.
we obtain

(6.32)

This expression, indeed, satisfies the sum rule

Pq 3+2v " d2q

(2 ), K„(q)=, 1+
( ), K, (q) = (Iwl*&.

(6.41)
(2() *(xt)2() (x't)&-, exp—

with the correlation length

5„=(24w'v/P'Q)'.

In the opposite limit

I». -«.'I'» I», -«ll/t. ,

our result (6.31) takes the form

(6.33)

(6.34)

(6.36)

With

(2() (xt)2()(x't)&- 2 exp — ' ', (6.36)
3w'v Ix, —x,'I
P2

However, since the expansion (6.39) can be justi-
fied only for lqlt0 [since (p(q) becomes soft in the
limit lql-0 and need not be small], the result
(6.40) is only valid for "large" lql. In fact, our
previous results (6.29) and (6.31) show that the
singular 6"'(q) in Eq. (6.40) has to be replaced
by a function of q which, though sharply peaked
around lql =0, must have a finite width of the order

with respect to q, and q „respectively .
For large lql, this sharply peaked term may be
omitted altogether. We obtain then

3 VK (q) =
2 [K2(q)+K~(q)+ 2 1m'~(q)]

]~=24v2 wv/P'Q. (6.3'I) Q 3w'v+8(q, -q2'/)(2 w)'

4 3w'v(q', +q,'/2w') +4(q', -q', /2w')' '

For large v thy correlation length in the x, direc-
tion is much larger than the correlation length in.
the x2 direction. Hence, we expect the periodicity
of the roll lattice in the x, direction to be rather
pronounced, while there should be less stability
of the lattice against fluctuations along the axis of
the rolls in the x2 direction. For example, fluc-
tuations which involve a simultaneous bending of
all rolls would leave the periodicity transverse to
the axis of the rolls unchanged, but would reduce
the correlation length in the x2 direction.

The result (6.26) may be used to calculate the
correlation function

(6.38)

(6.39)
and obtain

371 V d2 I

((.(i))= ", ' (aii) (-,( '.„'.(((i)'))oi (i()

+Kp (q) +K~(q) + 2 ImK2~(q)

(6.40)

i
.I2(q) = (2w)'(ltvl'&'6")(q)

+ (6w'v/P')'Kz (q),

where the notation is analogous to Eq. (5.18). In

order to calculate also the short-range part of the
correlation function (2v~(xt)2v(x't)& we expand Eq.
(5.29) to second order in p and (p

w(xt) =( Swv 2P/)'2i [21+p(xt)+ i((()(xt)

+ ip(xt)(p(xt) ——2'q)(xt)2]

(6.42)

Hence, the fluctuation spectrum behaves like lql
'

, for large wave numbers, and has a resonance for
q, = ~q22/2k„ i.e. , for fluctuations whose wave vec-
tor q satisfies the condition lq +%,I

= IR,I.
For the sake of completeness, let us finally

analyze the time-dependent correlation functions
of p and y. Introducing Laplace transforms, we
obtain the set of equations

[(1+P)iz+3w'v+4q,'+2 ,q2/w]2K i(~()q z)

-(4)(2 iq, q22/w)K~(i2)(qz) = (I+P)K2(q),

[(1+P)iz +4q, + 2q /w']K,', '(qz)

+ (4&2 iq,q,'/ )Kw' (qzz)) = (1+P)K,(q),

[(1 +P)i z 4q+'+ q',2/ ]wK'i (q)z) (6.4

+ (4&2iq, q22/w) K~(z'(qz) = (1 +P)K~(q),

[(1+P)iz + 3w'v+4q', +2q'2/w2]K(z)(qz)

-(4V2 iq,q,'/w)K„' '(qz) = (I +P)K2~(q).

The explicit solutions of Eqs. (6.43) become rather
opaque. The Hermiticity of the matrices in Eq.
(6.43) implies that the strength of the fluctuations
is always centered around zero frequency. Both
K z and K ~ contain two different correlation
times. In the limit Iq I-0, these are the time con-
stants
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r, = (1 +P)/3s'v

(6.44)

associated with phase and amplitude fluctuations,
respectively. Since the coupling between p and y
in Eq. (6.43) is proportional to q,q,', the amplitude
and phase fluctuations are completely decoupled in
the x, and x, directions, respectively, but are
mixed in all other directions. As in the time-in-
dependent case, the main effect of this coupling

is to increase the correlations at wave numbers

q„q, satisfying Iq, l=q,'/3&. ' i e, IC+&.I=I&.l.
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