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We discuss the problem of calculating the superradiant behavior in samples small compared to a

radiation wavelength. Difficulties associated with the analysis of Dicke are considered in the framework

of quantum electrodynamics and equivalently from a classical point of view. The evolution of super-

radiance in a small sphere is followed numerically with attention to spatial variation of the Bloch

dipole density. Coherence is. maintained except in the region (kR.) ' ~cos8
~
6 2 which is at the Bloch

equator, where it suddenly disappears. Away from the equator, the spatial variations of dipole density

oscillate with amplitude —(kR) sin8 and frequency —(kR) 'gos8 ~. All these results agree with the

predictions of a theoretical discussion previously published.

I. INTRODUCTION B. Small-sample problem

Since the classic work of Dicke' the problem of
superradiance has attracted considerable interest.
Coherent spontaneous radiation of atoms cannot
generally be treated as though the separate atoms
radiate independently of each other. As pointed
out by Dicke this simplified picture would overlook
the fact that all atoms are interacting with a com-
mon radiation field. The method he chose was to
treat the atom ensemble as a single quantum-
mechanical system with energy states representing
various degrees of correlation within the system.
He began by treating a sample small compared to
~ and then extended his work to large samples.

A. Large-sample problem

For samples large compared to a wavelength,
the Dicke analysis of time evolution is complicated
because from any given energy state there are a
multitude of energy states to which one can proceed
by spontaneous emission of radiation. This evolu-
tion from a single Dicke state to an ensemble of
Dicke states can be understood from the elemen-
tary observation that light passing through an in-
verted medium is amplified and hence is spatially
nonuniform along its direction of propagation. This
complication has so far limited progress in under-
standing the evolution of large sample superradi-
ance by a Dicke state analysis. Single-mode and
phenomenological analyses of this process, which

ignore this complication, abound but they are nec-
essarily of limited use in predicting time-depen-
dent behavior. " If, on the other hand, one attacks
the long-rod problem semiclassically by a cou-
pling of Maxwell's and Bloch's equations, the mul-
timode character of the problem is readily handled
and one obtains reasonable agreement with experi-
ment. 4

The small-sample problem has been considered
relatively simple by Dicke and others because it
has been thought permissible to replace e'"' by 1.
It then follows that there is only one Dicke state
to which a given Dicke state will radiate. The re-
sulting simplicity makes this problem quite tract-
able and it has consequently been studied exten-
sively. " This notion oversimplifies the problem,
however, because it neglects the spatial variation
of the electric field which arises not in the radia-
tion component but in the near dipolar component
of the field. (Quantum mechanically, the near
field involves virtual photons of high momentum,
for which the approximation e'"'-1 must fail. }

We have recently argued that the major effect
of these nonuniform fields is to induce spatially
varying frequency shifts which render the super-
radiant state unstable. ' However, for a small
sphere to which we specialize herein, we have
found the time evolution to be bizarre inasmuch
as there are large regimes where it surprisingly
follows Dicke's equation

8 = (I,r/Ntu, ) sin 8 (&)

in spite of the effects of the nonuniform fields
mentioned above. It is only near the equator of the
Bloch sphere that superradiance in a small sphere
changes abruptl. y to incoherence, and presumably
the radiation then remains incoherent until all
atoms are in their ground state. ' (The angle 8 is
the tipping angle of the Bloch vector on the Bloch
sphere. I, is the incoherent intensity, r is the
cooperation number, and E is the energy separa-
tion of the Dicke states. )

In support of the findings noted above we propose
to present a numerical analysis which we will de-
scribe in detail and whose results we will compare
with the formulas of Ref. 8 which predict stability
behavior and instability thresholds. But first we
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will discuss to what extent superradiance in a
small sample is understood and indicate the lack
of any connection between Eq. (1}and any radiation-
damping experiment of which we know.

II. SUPERRADIANCE: BASIC NOTIONS

A. What is superradiance?

According to Dicke "a gas which is radiating
strongly because of coherence will be called super-
radiant. "' This definition applies to states ex-
cited by the pulse technique commonly used in
magnetic resonance, even though these states
cannot be assigned a Dicke quantum number m.
The so-called Dicke states (r, m) have (for large
r) an abnormally large spontaneous emission rate,
but as noted by Dieke' their stimulated emission
rate is normal. ' The NMR pulse technique, on the
other hand, produces states whose spontaneous
and stimulated emission rates are both abnormal;
these states are described as a linear combination
of Dicke states of fixed r with varying m, or by a
Bloch vector with magnitude r and direction (8, 9)).

There is no essential difference between the
Dicke state (x, m) when m =r cos 8 and the Bloch
state (r, 8, y) except that the phase of the pre-
cessing dipole moment in the latter case is known.
The relation of this phase to that of an incident
e-m field determines whether the stimulated pro-
cess will be emission or absorption and how (ab-
normally) fast it will take place. For a Dicke
state the phase of the dipole moment is not known,
and stimulated emission and absorption are nearly
equally likely. The average over many trials will
be the normal stimulated emission rate (if the
population is inverted) or the normal absorption
rate (if it is not). This point enters into Planck's
derivation" of the equilibrium partition of energy
between a resonator and the field.

In other words, the dipole moment, which con-
trols stimulated emission, has an expectation
value ~sin8 in the Bloch state but 0 in the Dicke
state. In both eases, the expectation value of the
square of the dipole moment, which controls spon-
taneous emission, is the same. Since we are con-
cerned in this paper with spontaneous emission, we
shall consider the term "superradiant" equally
applicable to a Dicke state with (x + m) (r —m + 1)
»-,'N+m and to a corresponding Bloch state. "

8. Superradiance with strong inhomogeneous broadening

When the inhomogeneous broadening is very
large, the time development of superradiance is
easily calculated. In fact, the dipole moment de-
cays according to the Fourier transform of the
line shape; this behavior is called free-induction

decay. The origin of this decay is not in any change
in the system's state due to radiation reaction, but
in the loss of coherence through dephasing among
atoms with different natural frequencies. The
radiation is, to be sure, temporarily enhanced by
coherence and therefore "superradiant, " but it is
not strong enough to deplete the system's energy by
a significant fraction during the dephasing time T, .
Therefore, one may just as well neglect radiation
reaction in the calculation. " The condition for
this approximation is roughly T, » T,*, where T, '
is a measure of the atomic radiative decay rate as
enhanced by super radiance. "

C. Superradiance with negligible inhomogeneous broadening

It is the opposite limit T, «T2 that chiefly con-
cerns us here since in it the time development of
the system is dominated by cooperative effects.
Here we can consider the resonant atoms as truly
identical and write the interaction Hamiltonian as

N

H H ~ I(ta gRz=-QX(r&) (i, R&& ~ ( R,&), (2)

R~~ + R» =x r+1 -m', (4)

where r(r+1), m are respectively the eigenvalues
of Q'„,(Q, R„,)', Q~R, ~

for the initial state of the
sample.

The crucial point in Dicke's analysis of the time
behavior is that the Hamiltonian (3}commutes
exactly with Q', (QR„z}', so that the quantum
number x in (4) is a constant of the motion. The
quantum number m decreases at a rate propor-
tional to Eq. (4), so that if we take cos8 =m/r we
arrive at Eq. (1}. This equation is supposed to
describe not only the initial rate of change of 8 but
its whole subsequent behavior, so that by integra-
tion one obtains

cos8(t) = -t an[h(Ip /ff(())(t —t»o)], (5a)

where &0 is the natural frequency including the
single-atom Lamb shift; r~ is the position of the
jth atom; and R», R», R» are the 2&2 matrices
defined by Dicke. '

Dicke treated this Hamiltonian for a sample
«X by two approximations. First, he replaced
A(r&) by X(0) on the ground that the field does not

vary much over a small fraction of a wavelength.
Thus, he obtained

N N

H=H +II~O+R, q
—A(0)» Q(C, R,)+C,Rnq} (3}.

/=1 j=1

Second, he considered only that part of the last
term of Eq. (3} leading to real radiative transi-
tions. This led to a transition rate proportional
to
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or in terms of T, "
cos 8( t) = -tanh[(2/T, )( t —t»o)] . (5b)

It must be emphasized that the validity of Eqs. (5)
depends on the constancy of r in time.

V = R» + R» . d,

where f need not be examined at present, but

(6)

D. Critique of Dicke's second approximation

What has been omitted by Dicke's two approxi-
mationsV If we continue to make the first one,
leading to Eq. (3), and apply the Wigner-Weisskopf
technique to the last term of Eq. (3), we obtain a
self-interaction of the form

spherical sample, however, the Coulomb term
vanishes.

At any rate, the Coulomb shift raises no new
difficulties. The precession of the Bloch vector"
just takes place faster when it is present. We con-
clude that Dicke's second approximation [dropping
the first term of Eq. (7)] causes no serious error
with respect to Eqs. (1}and (5), provided that one
accepts his first approximation [replacement of
Eq. (2) by (3}]. But this approximation is highly
questionable.

E. Critique of Dicke's first approximation

Let us apply the Wigner-Weisskopf approach
directly to Eq. (2), with the Coulomb term added.
Instead of Eq. (6), we obtain (dropping the single-
atom Lamb shift)

f(&) d ~
" f(&) d„ f( )J ~ (d —Q)0+ j, g ~ (d —(do V = Q (R,qR, ~~ +R2~R2~~) V~~,

f &i'
(8)

(7)

In Dicke's treatment the first term of Eq. (7) is
dropped, and the second term yields the decay
rate given by Eqs. (5) and (1). But how large is the
pr incipal-part term' ?

As it stands, the integral in Eq. (7) diverges.
However, Fain and others' have pointed out that it
should be cut off at tu-c/a, where a is a dimen-
sion of the sample, since coherence is lost at high-
er wave numbers. As f (&u) - &u for &o» &u„ this
makes the first term of (7) exceed the second term
by 0[A], where A = &,/a» 1.

This in itself is no catastrophe; it means only
that the real part of (6), which Dicke's treatment
ignores, causes a frequency shift' of order
(Ip/h&, )A cos8'. The fact that this shift far ex-
ceeds the inverse lifetime of the system, and that
it also varies with 8 and hence with time, does
not invalidate Dicke's equations for 8. A rapid
azimuthal precession of the Bloch vector" is sim-
ply superimposed on the decay described by Eqs.
(1) and (5).

At this point we should mention that the Hamil-
tonian (2) is incomplete and should be supplemented
with a Coulomb interaction between dipoles. Equiv-
alently, "we may take Eq. (2} as it is except that
the interaction term is replaced by one involving
not A but E~. The latter form is more convenient
for making Dicke's first approximation; we replace
E~(r&) by E~(0}. The result is that f in Eq. (6)
grows as +' instead of as , so that after making
the cutoff we find that the first term of Eq. (7)
contains an additional part corresponding to the
Coulomb interaction and yielding a frequency shift
of order (I,r/ff~, )A'cos8. Such shifts have been
discussed by Lorentz, Kittel, and others'; in a.

where V,.&. depends strongly on the distance r&&

=~r& —r& ~; in fact, V» is just the classical de-
layed dipole-dipole interaction, also called the
Stephen potential. " Its real part consists of the
Coulomb interaction -1/r&&. , plus a correction
whose leading term is -I/r», . Its imaginary part
is constant for distances «A,

It is evident, then that the replacement of Eq. (2}
by (3) is valid only as far as the imaginary part
of V~ze is concerned, and not the real part. Another
way to say this is that the Fain cutoff should be
taken at &-c/r&&i rather than tu -c/a, so that the
principal part of the integral in Eq. (6} really de-
pends on which term of the expansion of (QR,~)'
or (QR»)' one is considering. Or again, the re-
placement A(r, )-A(0}depends on the smallness
of the sample compared to wavelength, yet the first
term of Eq. (7} is dominated by short wavelengths
«Ao (very high-momentum virtual photons} for
which this condition is not satisfied.

We now see that the replacement of Eq. (2) by (3)
omitted a serious complication. The atomic opera-
tors Q&R» and QR» in Eq. (3) commute with

Q,', (gR»)', and consequently Dicke's x appears
as a constant of the motion in any treatment based
on Eq. (3). But the Hamiltonian (2) does not have
this property. Accordingly, V as given by Eq. (6},
as opposed to (6), fails to commute with+,'=,(QR,P
because of the variations of Vz&. . Therefore if the
real part of V». is retained and its dependence on

r,~. is respected, Dicke's r is no longer a constant
of the motion.

An alternative statement of the same difficulty
begins with the observation that the real part of
the electric field (that part in phase with the col-
lective dipole moment) gives rise to a frequency
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shift. Since the strength of this real field varies
throughout the sample, coherence between parts
of the sample is lost in a time inverse to the var-
iation of the shift; but this time is much too short
for appreciable damping to take place according
to Eq. (5}, because the real field varies by an
amount far exceeding the imaginary (damping)
field.

Dicke's original intention may have been to ab-
sorb the short-range part of V&& into Ho. This
would be permissible if the interaction were very
short-range (-1/r» or faster as r&&, -~) since
then it could be claimed that all atoms, except a
small fraction near the surface, have similar
neighborhoods and therefore feel nearly the same
total field Th.at is, Q, V»i R»i would then be
nearly independent of j, if R». were assumed in-
dependent of j'. But the terms in I/r' and I/r& ~

fall off too slowly to be treated in this way, and

yet too quickly to be taken as constant.

F. NMR with high-Q coil

The above objection may be greeted with some
skepticism because behavior resembling Eq. (5}
has actually been observed in small-sample NMR

experiment. " However, it must be stressed that
such experiments are not performed on a sample
radiating into free space. They contain an addi-
tional element, a high-Q coil surrounding the sam-
ple and tuned to the frequency &0. Under these
conditions the deexcitation of the sample is not
caused by its own radiation field but by the quasi-
static field of the coil. In fact, the whole process
involves no radiation at all but merely nonradia-
tive transfer of energy from the sample to the coil,
where the energy is dissipated ohmically.

It may be instructive to examine the formula"

d8/dt =2m QyMosin8 (9)

describing this process. Superficially, it resem-
bles Eq. (1). However, the quantity yMO (y is the

gyromagnetic ratio, M, is the magnetization den-

sity} is of order A'I, r/S&o„so that the decay pro-
ceeds -A'Q times faster than in the process studied

by Dicke. The factor A' arises from the nonradia-
tive nature of the process; it is the real (quasi-
static) field of the sample that excites the coil,
not the much smaller imaginary (radiative) field.
This is quite evident in the derivation'9 of Eq. (9).

The tuned coil does three things to the quasistatic
signal it receives from the sample: it amplifies
it by Q, retards it by 90', and throws it back to the
sample. Thus, the sample feels a damping field
-A'Q times its own radiation field. Since the non-
uniform frequency shifts that should lead to loss of
coherence are of order A' T, ', whereas the en-

hanced damping rate is of order A'QT, ', coherence
is maintained during the damping process. (It is,
of course, also necessary that A'QT, '» T,* '; this
was the original purpose of the high Q. )

Behavior similar to Eq. (5) could also be ob-
tained, in principle, by placing the sample in a
tuned cavity with enormous Q (»A'). The process
would then be radiative and the enhanced damping
rate would then be -QT, ' instead of A'QT, '. How-

ever, the damping field would have the cavity walls
as its source, and not the sample.

We may sum up by saying that a sample may in-
deed be made to follow a modification of Eq. (5)
with enhanced damping rate»A'T, ' by placing it
in a tuned (here necessarily reflecting} cavity or
tuned coil; but this fact does not mean that coher-
ence is not lost in the manner describedinSec. IIE,
only that the enhanced damping rate is sufficient to
outrace the dephasing. The NMR experiments do
nothing to show that Eq. (5) would correctly de-
scribe radiation into free space, for which the
damping rate is not enhanced by any external ele-
ment.

III. SMALL SPHERE

A. Shape dependence

Because of the tensor nature of the dipolar inter-
action, the field-induced dephasing effects are
highly geometry dependent. There are, in fact,
pathological cases where the dephasing effects are
missing. This occurs when the symmetry is such
that each atom sees exactly the same field and is
exemplified by a ring of atoms ordered in single
file. Two interacting dipoles are just a special
case of this configuration.

Aside from these pathological cases it is worth-
while distinguishing between those shapes called
regular, in which the electrostatic field due to s
uniform density is uniform or nearly so (any ap-
proximately ellipsoidal shape) and all other (i.e.,
most) shapes, which we call irregular. The regu-
lar shapes are the most stable, because the de-
phasing rate is only -AT, ' instead of A' T, '.

B. Superradiant line shapes

A relative measure of the importance of two
processes can be obtained from a comparison of
the linewidth they give rise to. For incoherent
spontaneous emission the linewidth is Lorentzian
and given by the formula

g ((u}= (I/v) T, '/[((u —(u,}'+ T, '],
where T, is the lifetime. (T, is the half-width
at half-maximum. ) This is to be compared with
the Fourier transform of the free decay pf N atoms
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in a volume «X after excitation by a &w pulse as
calculated by Dicke,

a(&) = —,
' v(1/a) sech[~ s(& —&,)/o.'],

n = (I,/a~, )(-,'N),

which has a full width at half-maximum of

1.12 I~ N
2 1~0 2

(11)

(1.2)

(13}

which yields a frequency distribution given by

p(~) =
4 sq~ (p —1~0 —p —&I)'~' for ~0 —2p& ~«u,3

(15)

and p(&u) =0 otherwise. The quantity p is +0(N/T, )
&&(kR) '/~cos&j '. The rms second moment is

(&&')' '=-'(—')' '(N/4T)(kR) 'cos8.

This distribution is a factor (kR) ' wider than the
Dicke shape and consequently cannot be neglected.

A comparison of these line shapes is given in

Fig. 1 for a sphere of 20 atoms spaced so that
(kR} '=15.

C. Stability in regular shapes

The frequency distribution given in Eq. (15}and
in Fig. 1 refers only to the initial time, when the
polarization density is uniform throughout the
sample. As parts of the sample dephase under the
nonuniform shift (14}, the polarization density
P(r) becomes nonuniform and the field it produces

and since Eo/Ks&0 = T, ' it is a factor of 0 (N) larger
than the incoherent width. But the frequency dis-
tribution induced by the spatially varying real field
from a uniform polarization is even wider since
the spatially varying local frequency shift in a
small sphere has been calculated to be""

n, ~ =-',NT, '(kR) '(I --', (r/R)'[2 —(P, ~ r)']}cos8,

(14)

is altered. A little thought shows that when the
fractional variation of P is as large as A ', the
Coulomb field due to variations of P is of the same
order as the field giving rise to Eq. (14). [This
is true only of regular samples, in which Eq. (14)
receives no Coulomb contribution and is thereby
reduced by A'. ]

It follows that all we have said so far in the
present paper and in Ref. 7 is insufficient to deter-
mine whether Eq. (5) is valid for regular samples.
Ne have shown only that the initial rate of de-
phasing is such that, if it continues, coherence
will be lost in a time -A 'T, . But does it continue?
That question can be answered only by studying
the nonuniform Coulomb field produced by the non-
uniform polarization density produced by Eq. (14).

D. Predictions for the sphere

In a recent papex' we carried out such an analy-
sis and predicted that small samples of regular
shape would follow Dicke's equation (5) to some
extent in spite of the fact that the dispersion in the
real field exceeds the imaginary field byO[Acos8].
For the sphere, with atoms feeling a local field
E+—', wP, the following predictions were made:

(i) If all atoms begin in the same state, corre-
sponding to a Bloch vector reasonably far below
the equator (8& 2 v) the decay will follow Dicke's
equation down to the ground state.

(ii) Under the conditions of (i) but with initial
8& &m, the decay will follow Dicke's equation down

to the vicinity of the equator.
(iii) Under the conditions of (i) and (ii) the Bloch

vectors of different parts of the sample will re-
main nea~ly equal, but their .small differences
will oscillate with transverse amplitude -A ' sin8
and with a mixture of periods -T,A '~sec8~.

(iv) If the initial Bloch vector is sufficiently close
to the equator,

~
cos 8~ s A ', the system will re-

main coherent for a time T~-T,A ' after which the
local Bloch vectors will suddenly (in a further time

SU
E
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0 -45 -36 -27 -I6 -8 -4 0 4 8 16 22 26 30
(QJ 4)o) IN UNITS OF Ti

40 45

FIG. 1. Normalized line
shape plotted as a function
of (m ~0) in units of T&

for (a) incoherent spontan-
eous emission, (b) super-
radiant emission of 20
atoms assuming that coher-
ence is maintained through-
out the decay, (c) 20 atoms
with (kB) = 15, taking the
initial position-dependent
shifts into account with the
Bloch vector near the north
pole.
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-T,A ') develop large spatial variation and the
radiated intensity will drop to the incoherent rate.

(v) Under the conditions of (iv) the relation be-
tween T~ and 8 can be written A'T~/T, =f (AI cos 8~),

where f is a universal function (independent of A)
for which an expression was given.

(vi) If the initial 8 has [A '(z [cos8)&1/In)A[,
dephasing should occur as in (iv) but after a delay

T~ somewhere between T,A ' and T,. This predic-
tion was less certain than the others.

In view of the bizarre appearance of some of
these predictions and the unfamiliarity of the anal-
ysis that led to them, we have checkedthem against
a straightforward computer calculation in which
no account seas taken, a Priori, of the conceptual
methods of Ref. 8—in particular, of the electro-
static modes described there. Our results have
fully confirmed predictions (i)-(iv) and agree quite
closely with prediction (v). Further computation
at large values of (kR) ' will be required to check
prediction (vi).

BE„BE„BEg BP"+ "+ ' =-4n
BX By BZ Bz

(V'+k')E =0 (V'+k')E =0

(V' + k') E, = 4vk'P, -
(18)

with outgoing boundary conditions at infinity. (P is
zero outside the sphere }The local .Bloch vector
develops in time according to Bloch's equation

Bt p(x, y, z, t) =yp(x, y, z, t) & 8(x, y, z, t), (19}

where

(2o)

The behavior of the system is completely deter-

IV. NUMERICAL COMPUTATION: METHOD

A. Ideal system

The system we studied has ideally the following

physics. A sphere of radius R is alone in free
space. The matter within the sphere is described
by a local Bloch vector p(x, y, z, t) where x, y, z

are the coordinates of an arbitrary point and t is
the time. The first two components of p in Bloch
space determine a complex polarization density

P(x, s, z, I) =P,[p, (x, x, z, t) —iP, (x, 3', z, t)1,

(17)

which is taken to be in the z direction in real
space. The electric field (E, , E„,E,) is deter-
mined as a function of x, y, z, t by Maxwell's equa-
tions in the form (henceforth we write k rather
than k, for the wave number of resonant light)

mined by Eqs. (1V)-(20), if p is given everywhere
at t =0. Since the magnitude of p is time indepen-
dent by Eq. (19), we take it to be unity at all points.
The constants y and P, enter the behavior of p only

through their product yP„which should be identi-
fied with (9/16m)(kR) 'NT, ' = (9/4v)(kR) 'T, for
comparison with Dicke's equation. [This identifi-
cation depends on the fact that a uniform polariza-
tion density P, would produce a damping field
—', ik'(—', vR')P„ to leading order in kR. ]

The steps by which one passes from a realistic
situation to the ideal system described above are
generally familiar. We have neglected all but two

atomic levels; we have replaced a discrete set of

N atoms by a continuum; we have ignored the x and

y components of the dipole moment operator; we

have used E+—', wP as the local field; we have ne-
glected the incoherent linewidth in comparison to

T, '; we have passed to the "rotating coordinate
system" in Bloch space; we have neglected yP, in

comparison to kc, the natural frequency. The
limits of validity of these steps do not concern us
here. We address ourselves only to the question,
whether if we set kR «1 this ideal system will
follow the prediction of Ref. 8.

&&P(x', y', z', t)dx'dy'dz', (21}

where the integration need not be carried outside
the sphere since P vanishes there. We intended

to divide the sphere into M small regions, where
M would be as large as practicable. Within each
(the ith) region we would choose a representative
point (x, , y, , z, ). The various quantities p, P, 8, E,
would be evaluated only at these points. The basic
approximation would be the replacement of the
integral in Eq. (21}by a sum

E,(xg, gt, z &, t) =+Q& G(x&, pl, z g,' x» p» z&)

XP(x„y, , z, , t), (22)

where 0& is the volume of the jth region.
This strategy, however, runs into a difficulty

that turns on the question, whether Eq. (22) should

include a term with j=i. The trouble is that G

contains the I/r' singularity of the electrostatic
dipolar field. Hence the integral in (21) is not
absolutely convergent. It can, of course, be made

B. Removing the Coulomb singularity

In submitting this question to computer analysis,
our intended strategy was as follows. Equations

(18) do not involve time derivatives and therefore
admit a solution in terms of a retarded spatial
Green's function

E,(x, y, z, t) =
I G(x, y, z; x', y', z')
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to converge by matching the contributions from
dipoles located near but in different directions
from the field point. However, the resulting con-
vergent integral receives a contribution from the
region j = i that depends strongly on the shape of
the region and remains finite when the size of the
region is shrunk indefinitely. Therefore a sub-
stantial error is made in (22) if the term with

j=i is excluded; but the correct evaluation of this
term would require a separate and awkward calcu-
lation.

To evade the difficulty, we modified our strategy
by writing

P(x', y', z', t) =P(x, y, z, t)+[P(x', y', z', t)
-J (x, y, z, t)]. (22)

If this decomposition is applied to the right side
of (21), we obtain two terms. In the first term
P(x', y', z', t) is replaced by P(x, y, z, t), which
can be taken outside the integral. This term can
be evaluated analytically by solving Eqs. (18) for
E, in the case of uniform P. In the second term,
the singularity in G is partially cancelled by the
vanishing of [P(x', y', z', t) P-(x, y, z, t)] as the
two points coalesce. This term can be computed
numerically by turning it into a sum analogous to
(22); the error in omitting a term j = i is now small
when M is large, because the singularity has been
weakened.

By solving Eqs. (18) with P uniform throughout
the sample, we obtain'

JG(x, y, z; x', y', z')dx'dy'dz'=F(x, y, z)

=-—,((+ ~ v(kR) [1 ——'(g +2o )]+ "i v(k—R)'+O((kR)4), (24)

where

o' = (x'+y2)/R~ $2 =z2/R2 (25)

Using this formula for the first term discussed
above, and replacing the integral by a sum in the
second term, we obtain instead of (22)

E((& F P(() yg II G (P()) P((&}
g &1'

(26)

where we have simplified the notation by writing
F, for F(x, , y, , z, ),P"' for P(x, , y, , z, , t), etc.

C. Annular regions

The number of regions required for a given ac-
curacy is greatly reduced by the azimuthal sym-
metry of the ideal system. Supposing that at t =0
the function p depends on x, y, z only through the

variables o, &, the same will remain true of the
exact solution to Eqs. (17}-(20)at all later times.
Therefore, we can make each region a thin ring
centered on the z axis, so that its extent is small
in the o and & directions. but ranges from 0 to 2m

in the representative circle, the locus of equa-
tions o = o(, g = g( . Equation (26} is still a good
approximation, but G, ~

must now be defined as an
average over the representative circle in the jth
region. That is,

Q 71

G()
—— G(R(r(, 0, Rt'(,' R(t) cos)(, Ro) sin)t, Rg)) d)

7T 0

(27)

If we substitute Eq. (27} into (26}, using the cus-
tomary expansion for the retarded Green's func-
tion

G(x„y„z„x„y„z,) = (Sz2» —r»)/r, ', + (z~»+r»)k'/2r, ', +-', ik'+0[k'r»], (28)

where z» =z, -z„rm» =(x, -x,)'+(y, -y, )'+(z, -z,)' and use the result in (24), we obtain

g(&)
= (kR)'[I --'(g'+2o')]p")+ pR '0) [g()+ (kR)'k ](p' ' -p,"') +-', (kR)'QR 'Q, p,"),

0 f &1

{f)
= (kR)~[1 ——,'(g'+2o )]p"'+ gR 'n)[g)+ (kR) k ](p )' -pm"') ——', (kR)'pR a)p,' ',

0 jAj

(29)

where ifwewrite&,
& =/, —&, , e,~

=o',. ~g~, p, &
=2o,g&, we have

dXp
2(&& —&~& —

P&s cosX
2z (g' + n + p„cos)()'~'

2&~~+ e~q+ P~& cosX
2r 0 2(f(~+ ~() + p() cosg)

(30)
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o,/ti = odd positive integer,

(,./p. =even integer (positive, negative, or zero)

0]+fg ~~1. (31)

The equations actually submitted to the computer
were only (19), (29), and (30). We began by choos-
ing a number p, , considerably smaller than 1, to
determine the region thickness. We enumerated
all pairs (o, , &, ) for which

D. Steps in time

In following Eqs. (19) and (29) through time, we

took care not to use any approximation that would

violate the equation

8—Ipl=o
Bt

which is a consequence of Eq. (19}. In simplest
form, our method was as follows. A small number

v was chosen in advance, and each step in the
calculation covered an interval of duration

The ith region consisted of all points for which
At = v(P,y} '. (ss)

{32}

e p(s) 0 p(&} eos8 (34}

The subsequent behavior of the p's was then fol-
lowed by means of Eqs. (19}and (29}with the small
number kB chosen in advance and the numbers
R '0, ; deterniined by (33).

We should make two remarks about (29}. The
first is that we have neglected O[(I&R)4] or higher
on the right-hand side —see Eqs. (24) and (28). We

reason that the neglected fields are much smaller
than the coherent damping field [the last term of

Eq. (29)] and that they cannot therefore exert a
significant effect within the coherent radiation
lifetime O[T,]=0[Pay(I&R)'] .

The second remark is that the leading term of

{24)has cancelled the term —', &(P in (20). Conse-
quently, the electric field is not larger than

O[P,(kR)'], as long as the differences among the
p"' are only O[(kR}'] . In other words, we have

let our program "know" a priori that the local
field in a uniformly polarized sphere vanishes in

the electrostatic approximation. This property
of the sphere, which is essential to the predic-
tions of Ref. 8, has been buUt into our computa-
tion exactly and will not be disturbed by any of our
approximations —for example, by the fact that the

regions defined by (33) and (34}do not constitute
precisely a spherical volume. We emphasize,
however, that our program does not "know" any-

thing about the electrostatic modes of excitation,
which play a major role in Ref. 8.

and its volume was

87/, vj B
t

The numbers g(& and Ii(i were evaluated from (30)
for each pair of regions, with the aid of fast sub-
routines for complete elliptic integrals of the first
and second kinds. (All the above procedures were
carried out by the program at the start of each
run. ) An initial tipping angle 8 was then chosen,
and all the p"' were set equal at t =0 with

Letting to be the value of t at the start of the in-
terval, and supposing all the p"'(to) to be given,
the program calculated all the S"&(t,) from Eq.
(29). The incremented Bloch vectors p&(&(to+t(t)

were then evaluated as

p&(&(t + Et) = E'(i& .P(i&(t ) g

+[g&(& xp&(&(t )]xe&(&cos~e((

+p(i& xi((& sin~ 6(i&~, (3

"e'=I "e'I ~'=~& (t ). (Ss}

This procedure is equivalent to replacing ((&(t)

by $(to) in (19) and solving the resulting equation
exactty for p. Equation (35) is then satisfied be-
cause it follows from the form of Eq. (19) regard-
1.ess of how g behaves.

Several improvements were also tried. The

most important was the. use of S(t, + 2At} instead-
of $(to) in Eq. (38). A preliminary value of

8(t, +-,'b, t) could be obtained either by extrapola-
tion from the previous step or by interpolation
from the approximation to p"'(t, +b.t} given by Eq.
(O'I) with (38}as it stands. The step could then be
iterated a few times, each time deriving ((&(t,+-,'b, t)
by interpolation from the result of the previous
iteration.

V. NUMERICAL COMPUTATION: RESULTS AND

DISCUSSION

A. Mode analysis

With 8 initially at any value not too close to &m,

the principal prediction of Ref. 8 is clearly con-
firmed: variations in phase of the dipole density
throughout the sample, which at first grow linearly
at a rate -T, 'A, presently (in a time -T,A ') cease
to grow and experience a restoring effect. There-
after, these variations oscillate irregularly in the
neighborhood of zero, so that the total dipole mo-
ment of the sample remains near its (initial) maxi-
mum value for the given e.

The irregularity is only apparent and comes
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from the simultaneous presence of two modes.
According to the theory of Ref. 8 as applied to the
sphere, there are only two spatial modes directly
coupled to the uniform mode (i.e. , for which g

0 0). Their spatial distribution can be expressed as

q, =a,a +b, & +c»2 2

q2=a2V +52/ +C»

where

b, /a, =3+v~ =5.74,

(39)

(4o)
b, /a, = 3 —P, = 0.261—.

The corresponding eigenvalues (see Ref. 8) are

lh =-(—,', v)(1 —3v —,
' ) =2.74,

li, = -(—,', v)(1+ 3M) = -5.13.
(41)

It follows that the deviations of the local Bloch
vector density from its value at the center should
behave in space and time as

Ip(o, i, t) -p(0, 0, t)l

= (A,o'+B,P)A ' sin8sin(&u, t T, 'A' cos8)

+ (A,o'+B,f')A ' sin8sin(+, t T, 'A'cos8),

(42)

where we now take A to be precisely (kR} '. The
parameters A»B» A» B» ~&~ ~2 should all be in-
dependent of A and of 6) as long as cos6) is not
small. The ratios B,/A„B, /A, should be the same
as b, /a„b, /a, in Eq. (40). The size of A„A,
must be such that the initial rate of growth agrees
everywhere with the first term of Eqs. (29}. The
values of &„~2 should be

~, =(9/4s)lq, l
=-;(3W —1) =1.960,

~, = (9/4~)lq, l =~7 (3~8+1)= 3.674.

To check these predictions, we fitted the com-
puted deviations to the formula

lp(g, i, t) p(0, 0, t—)l =[A(t)o'+B(t)f')A 'sin8

(44)

at each step in time. Each of the temporal func-
tions A and B was then fitted independently to a

CA

0.5

4
4J .25

LU
cL 0
4-
U

~ -.25
4A

Lal

I
UJ

lD
CL

superposition of two sine waves of arbitrary am-
plitude and frequency

A(t) =A, sin(a, t T, 'A'cos8)

+A, sin(o. ,t T, 'A'cos8),

B(t)=B, sin(P, t T, 'A'cos8).

+B2 sill(p2t T~ A COB 8).

(45}

The goodness of these fits is shown in Fig. 2.
As shown in Table I, the parameters A„B„&„

P, (i =1,2) remain nearly constant as predicted
over a wide range of values of 8 and of A= (kR) '.
Moreover, the prediction a, = p, =~„&2=p2=&2
is very well satisfied. The ratios B,/A„B, /A,
agree to about 10% with those predicted in Eq.
(40); we think the discrepancy has to do with the
replacement of the spatial continuum by a set of
discrete rings. It is well known that a small change
in a Hermitian operator affects the eigenfunctions
more than it does the eigenvalues.

The oscillations discussed above take place in a
time O[T,A ']. Therefore the radiative decay of
the overall Bloch vector, while present in our

I

2

(&R) 'Cote t&TS

FIG. 2. Time variation of A(t) and B(t), the coeffi-
cients of 0' and f [Eq. (44)] in the computed difference
between the dipole density at the center of the sphere and
its average throughout the sphere.

TABLE I. Spatial fitted two-mode decomposition parameters.

(kR)-1 A( A2 B2

10
100
100
100
100
100

0.1
0,1
0.2
0.6
1.0
1.4

1.92 3.70
1.94 3.67
1.94 3.67
1.95 3.61
1.95 3.67
1.94 3.68

-0.588
-0.580
-0.579
-0.583
-0.581
—0.580

-0.0173
-0.0182
—0.0180
-0.0204
-0.0201
-0.0187

1.91
1.93
1.93
1.94
1.94
1.93

3.69
3.67
3.66
3.65
3.66
3.67

-0.143
-0.140
-0.140
-0.145
-0.141
-0.141

—0.0858
-0.0868
-0.0866
-0.0889
-0.0885
-0.0872
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Te) (~ 490')

(kR) '=to

I

I.O

FIG. 3. Time dependence
of the average value of the
third component of p for
several initial conditions.
Each arrow gives trajec-
tory for a particular com-
puter run whose end points
are indicated by the dot at
the tail and the arrowhead.
The star burst indicates
coherence loss. The
Dlcke decay is shown as a
dashed line.

machine computation and detectible in the results,
has a negligible effect during a few oscillations.
Hence the Bloch angle 8, in all the above equa-
tions, is to be understood as the initial value, the
error in this replacement being small.

(p, ),„ for a particular computer run. The two star
bursts replacing the arrow tips indicate the sudden

disappearance of the macroscopic dipole moment
because of superradiant instability. The time tra-
jectories follow the Dicke decay formula very well.

0 a ~ a

0 I 2 3

XI00
SCALE
CHANGE

333 3.35 3.37

FIG. 4. Time development of 4(i'�~~„starting from
the coherently excited state PrR) ~ cosa = 0.2 in the in-
stability region of the Bloch sphere.

8. Dicke decay

%'e did, however, run the program for many
oscillations with A=10, so as to follow the system
for a time comparable to T,. 'We found that the
oscillations continued with small amplitude and

full coherence was maintained through large chang-
es in 8, as long as we did not pass through the
region 8=&m. %e show in Fig. 3 the spatial aver-
age of the third component of the Bloch vector as a
function of time for various initial conditions cor-
responding to Eq. (34). We only follow the time
evolution of (p, ),„ for times of order (1/4)T, The.
dashed curve is the Dicke decay obtained from Eq.
(1). Each arrow follows the time trajectory of

C. Equatorial instabBity

v~ =q' cos'8- q~g'„sin'8, (46)

so that instability is possible when q g' &0. The
parameters for the unstable mode in the sphere
are given correctly, with q and g'„both positive.
The expression (kR) ' should be replaced by kR

on the right-hand side of (22) and (24), but the
numerical result of (24) is correct. "

For initial values of 8 close to —,'m, the predic-
tion of complete dephasing was dramatically con-
firmed. A typical plot, showing the root mean

square of the magnitude of the total Bloch vector
as a function in time, is given in Fig. 4. As pre-
dicted, the dephasing takes place after a delay
Tn-O[A 'T,] and the duration of the dephasing
process is even shorter O[A 'T,j.

In Fig. 5 we plot the computed values of T~, in
units of T,A ', against the initial value of cos8 h
units of A ', for two very different values of A.
The two sets of points coincide perfectly, as they
should according to the theory of Ref. 8.

In the same figure we show the detailed curve
expected on the basis of Egs. (22) and (23) of Ref.

Before discussing our results for 8- &g, we cor-
rect some sign misprints in Ref. 8. The sign of

(ij„-ijo) in Eqs. (16) and (17) and q„ in Eqs. (19)
and (20) should be reversed. Thus Eg. (20) shouM
read
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FIG. 5. Threshold time
T~ in units of T~(kR)2 for
dephasing of the dipole
moment density is plotted
as a function of (kR) icos&
for two-val. ues of (kR) ~
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(kR) &ose
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n 8 = (2/T, ) sin 8 T~ (47)

from Eq. (1). From Fig. 5 we note that the plateau
of T~ corresponds to TJT, = 3(kR)' so that (setting
sin 8 =1}

a[(kR) 'cos8j = (kR) 'n. 8=6(kR}. - (48)

8. The computed points confirm the shape of the
curve, a steep nearly square well with a cusp at
the center, and the value of Tz, in the floor of the
well is in good agreement. However, the computa-
tion gives the width of the well as about 2X larger
than expected from the theory. This means that
the first mode appears to be blowing up even at
values of ~cos8~ which according to Eq. (20) of
Ref. 8 ought to be large enough to make v'„slightly
positive, ensuring stable oscillations. We think
the explanation lies in some combination of mode
mixing and nonlinear effects, not yet understood.
We note that whereas the data of Fig. 5 shows that
superradiant instability sets in once ~(kR) ' cos8~
s 1.8, the trajectory of Fig. 3 shows that for (kR) '

=10 instability was not macroscopically apparent
until (kR) 'cos8=1.2. The reason is that the
change in 8 due to superradiant damping in the
time Tz, varies as

For (kR} ' =10, we obtain (kR} '68=0.6 which is
exactly the difference between the values of
(kR) 'cos8 of 1.8 and 1.2.

VI. CONCLUSION

We have verified by direct computer calculation
that superradiance from a coherently excited
sphere follows Dicke's equation except in the equa-
torial region of the Bloch sphere where it suddenly
dephases and all coherence is lost. These results
obtain for kR «1, that is, for sphere of small spa-
tial extent. We have also obtained agreement with
the major predictions of Ref. 8 governing the size
of the equatorial region of instability and the mini-
mum time it takes to achieve macroscopic de-
phasing once this region is reached. We note here
that for larger spheres we might expect to be able
to pass through the equator without complete de-
phasing. For kR = 1 then Eq. (48) gives (kR) 'n, 8

=6 which is of the order of the extent of the in-
stability region. The approximation associated
with kR being small is not very good in this case
but it gives rise to an interesting possibility which
should be investigated further.
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