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Spin waves in superfluid 'He are studied in the collisionless regime by introducing a canonical
transformation in the kinetic equation for the distribution-function matrix. This transformation is a
space-time-dependent spin rotation, which takes into account the fluctuations of the direction of the
order parameter which are coupled to the spin-density fluctuations. After the transformation, the
order parameter is invariant. The kinetic equation is then expanded to lowest order in co and g and
diagonalized. Fermi-liquid effects are taken into account. The result is a set of equations describing the
coupled motion of the superfluid parameters and the quasiparticle distribution. In the axial state, only
two degenerate spin-wave modes exist. These have their spin polarization perpendicular to the direction
of the order parameter in spin space. In the isotropic state, one longitudinal and two transverse modes

. are obtained. Equations giving the velocity of these modes are written.

I. INTRODUCTION

The recent discovery of superfluid phases for
'He at very low temperature" has given rise to
an increasing interest in the theoretical under-
standing of these phases. The early hypothesis' '
of a BCS-type superfluid has been confirmed, but
it has always been recognized that the pairing in
the superfluid phases cannot be of s-wave type. A
problem of interest, therefore, is to find which
nonzero-momentum pairing is responsible for the
various superQuid phases. There is some evi-
dencee that only odd-momentum pairing is present.
Accordingly, theoretical work has been mainly
focused on the simplest case, P-wave pairing.
However, a general analysis of P-wave pairing in
the framework of the Landau-Ginzburg theory
shows that many possible states must be consid-
ered, depending on the value of the parameters
appearing in this theory. So experiments are
needed to rule out some of these states. Among
many possible experiments, those that excite vari-
ous collective modes of the system appear to be a
powerful probe of the microscopic nature of the
involved states. In fact, possibly the strongest
support that the A phase of 'He is the so-called
axial state is from NMR experiments, "'inter-
preted by Leggett. ' In the same way, zero-
sound ' and f'ourth-sound ' experiments are
useful tools in testing existing theories.

One way of investigating these collective modes
is to calculate by the standard Green's-function
technique the appropriate correlation function and
to find its poles. This method is very powerful and
is especially convenient if the collective modes
are ill defined. This approach has been used re-
cently within the random-phase approximation
(RPA) by Maki and Ebisawa to study zero-sound
propagation and attenuation, "nuclear magnetic

. resonance, "and spin-wave propagation" in the A.

phase of He; however, this method provides little
physical insight. Another approach is to perform
a canonical transformation to introduce physical
quantities which describe explicitly the collective
modes. One can then write transport equations
governing the evolution of the collective mode pa-
rameters. This method is more tractable than
the first one and yields a better physical under-
standing of the problem. This approach also al-
lows the introduction of a two-fluid description of
the superfluid. Such a description is known to be
extremely useful. The two-fluid approach has
been used by Betbeder-Matibet and Nozieres" for
a superfluid Fermi liquid with s-wave pairing.
More recently, Wolf le" has applied this method to
study zero-sound propagation in superfluid 'He.
Although his paper deals more with an anisotropic
s-wave superfluid than with P-wave pairing, his
results are valid for zero sound in 'He.

In this paper, we extend the method of canonical
transformation to the study of spin-wave propaga-
tion in superfluid He, assuming P-wave pairing to
be responsible for the superfluidity. The complex-
ity of the order parameter for P-wave pairing
leads to a large number of possible modes. For
example, if the dipole-dipole interaction is neg-
lected, there are separate degeneracies with re-
spect to rotations in the spin space and in the k
space. This permits modes associated with the
k-space degeneracy. We ignore this possibility,
leaving it to further study. Although the weak di-
pole-dipole interaction is very important in NMR,
we neglect it. Throughout the paper, quasiparticle
relaxation is also ignored, and only the collision-
less regime is considered. Since the low relaxa-
tion time of the quasiparticles is of order of 1 MHz
in the millikelvin temperature ra~e, this regime
can easily be reached experimentally.
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In Sec. II, the theory is developed without con-
sideration of Fermi-liquid effects. These are in-
troduced in Sec. III.

II. FORMALISM

When zero sound is propagating in superfluid
'He, the density fluctuations are coupled to the
phase fluctuations of the order parameter. In the
spirit of the method of canonical transformation,
these phase fluctuations are described by a super-
Quid velocity, and one gets equations coupling the
superfluid parameters and the quasiparticle dis-
tribution. In the same way, spin waves are cou-
pled to order parameter rotations in the spin
space. For P-wave pairing, the order parameter
is a 2&2 matrix and may be written

~(k}= i o.Z(k)v„,
where o„o„and o, are the Pauli matrices and

B(k} is a spin vector which depends linearly on k.
The spin waves will be coupled to rotations of
B(k). Naturally, it is, in general, invalid to use a
space-dependent 8(k) unless only processes on the
scale of the coherence length are of interest. In
fact, we are interested in Quctuations on an even
larger scale. If we consider spin waves with

wave vector q -1/(0 and fre((luency &u
- n, they

merge into the continuum of the excitation spec-
trum and are no longer well-defined collective
modes. Accordingly, we will be interested in the
long-wavelength, qv~«h, and low-frequency,
co «4, range. In this region, spin waves are well
defined, because of the gap in the excitation spec-
trum. Naturally, at nonzero temperatures,
there is some attenuation due to thermal exci-
tation. This attenuation increases with increas-
ing ~ and q and with increasing temperature.
When the temperature is such that tA(T) g/7, -
where ~ is the quasiparticle relaxation time, our
calculation is no longer valid, since it is impos-
sible to satisfy g/T «&d) «6(T). A simple calcula-
tion, however, indicates this situation occurs only

very near T, (-10 "K from T,) so that one can ig-
nore this region. Actually we are interested in
states where the gap may vanish at some point on
the Fermi surface, allowing Landau damping at

any temperature, but by a convenient choice of
the frequency, the phase space corresponding to
this process may be made small, except near T„
just as before. So this effect may also be neg-
lected.

In order to describe the spin waves, we perform
a canonical transformation to a new representation
where the ct(k) vector is space and time indepen-
dent. In other words, we follow the motion of the
8 vector by a local spin rotation. Naturally, the
canonical transformation is space and time depen-
dent. Since it is more general and not more com-
plicated, we also include phase variations which
lead to gauge transformation.

We start with the BCS Hamiltonian. In the space
representation (g = 1),

X,=- d'r V' ~ r V'g r

+2 d'rd'r'g r —r' ~ r ~8 r'
&

r' r,

g (r, t) ={exp[ioqH&(r, t)]) sq)s(r, t), (2)

where ((()s(r, t) is the new field variable, c( and P
are spin indices, and o q (A. = 0, 1, 2, 3) are the
Pauli matrices; Hq(r, t) are the parameters de-
scribing the spin rotation and phase change of the
order parameter. We will assume that the depar-
ture from equilibrium is small and work in the
linear approximation. Accordingly, H), (r, t) will be
small compared to unity, and we may expand the
exponential in E[l. (2) to first order in Hq(r, t). As
long as the BCS interaction is a density-density
(or spin-density-spin-density) interaction, it is
invariant under the transformation. If one consid-
ers an interaction which is not a density-density
one, the variation of Hq over the range of the in-
teraction, namely the coherence length, enters
the problem, but this leads to a correction which
is only of order of q$, times the BCS interaction
(q is the perturbation wave-vector) and may safely
be neglected. The transformed Hamiltonian is

where m is the (bare} 'He mass and the second
term is the short-range BCS interaction where on-
ly the P-wave anomalous part is retained. We per-
form the following canonical transformation:

qq= d'r[vqr(r)][vv ( )]+-,' fd'rd'r'd( -F)vr(r)vi(r')q ~(r')q, (r)+if d r[vq (r) A r'vr(r)
2m

—V tr) A, rVVr( )]+fd'rr ( )V rrr( ), (3)

where

1 88q
A s=—VH. (~~).s &.s= st (~.),s (4)

The last term in the Hamiltonian comes from the
time dependence of our canonical transformation.
This transformation looks, in fact, like a general-
ized gauge transformation, and A and V are (ex-
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cept foI' tl18 sigil) nsturRI generRlizstlons of the
usual vector and scalar potential.

%e now consider a perturbation that is frequency
~ and wave-vector q dependent; A and V depend
on space and time only through the factor t.'~q'
After a Fourier transform, the Hamiltonian be-
comes

+-~ ~&a, aa, a+ ~ &a+q/2, 0.~a018&a-~/2, 6

+ a ~ Vaai Ca+a C aaC -ai -IIC»e+a n ~ (5)
a,a', &0

where

~&as =k A+8+ Vms (5)

and A and V must now be understood to be without
space or time dependence, that is, the exponential
factor has been removed. The zero of energy is
now taken at the Fermi Ievel, '

(~a, sn 5~a, 8 )
( 5&a, na -M-a, s f

and 54 is self-consistently related to 5@ by

5&a,nS=+ I'aa 5II-», n8
as

54~ ~8 =~ V»s 5n+qs ~8.
ks

Since we are interested in the large wavelength
bmit, the kinetic equation (11)msy be expanded to
f rst ader�.n q,

n1t5g =a[5B», ta]+ [sa, 58» ]

k
+ Angry p 5Egy p ~

To find the propagation of the spin waves, we
write the equations of motion for the distribution
function. The 4x4 distiibution matrix n» is de-
fined as

n»
& Canc»is& & CanC

( I
(&c-a.ca a& &c-a.c a s&

At equilibrium, n». =n~05~ „.. %'e make the usual
assumption that the order parameter is a unitary
matrix. In this case,

Ila = a +8&Pa/Ea ~

~a ~a+ ( a ~a)p Pa a +~(APE»)

( &»5.s &a'. s )
(9)

( &an8 -&»5ns/
In the presence of the perturbation, g»» also con-
tains terms with k'=k+q; we write these terms as

f 5n, 5n, )
(Io)

Higher harmonics may be neglected as long as we
are working in first-order perturbation theory.

Now we can write the equation of motion for 5n~.
%'e will treat this equation in the usual Hartree-
Fock self-consistent scheme. We note that this
approximation is completely equivRlent, tl'i princi-
ple, to the RPA used by Maki and Ebisawa. Doing
so, we get the following kinetic equation":

0—&&ana+q/Gy

/E 5„a
II»8&~a =!(

tt'(a+pa)
U~„U„=U 0

o
!-Ea5ns f
'

~ea

(a-ea)5.sf
'

Defining

(5v, 5v, }
g5v 5v, /

(5E. 5E.~

(5E 5E» j
as, respectively, the transforms of 5n~ and 5&~,
we note that the kinetic equation breaks into four
independent equations, if we retain only the lowest
order terms in ao and q in each equation. The re-

In calculating 88»n/Sg» Rnd sna'/8(„ the derivative
8&a/54» msy be neglected since it leads to terms .

of order q/kr smaller than other terms This.
equation may be greatly simplified by going to a
representation which diagonalizes the BCS Ham-
iltonian, that is, performing the Bogoliubov-
Valatin transformation. The unitary transforma-
tion matrix may be chosen as

@a ~a

—~a "a

where u~ and e„are the following 2x2 matrices:

(u,),= u, 5„,= [(E+&)/2E]'~*5, ,

(va) a = [sa/(E+()] 5»t

Kith this transformation, a~0 and n~~ are diagonal-
lzed,
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suiting kinetic equations ax e

(&u —q V» E» )5v, = —q ' V» E» y» 5E„
(&+q V»Z»)evt=+q V»S»y»~&„

5v, = (p»/E»)6E,

(17a)

(17b)

(11c)

~&,'=&, &)+(h/E)v'+n I & I'/&,

5E.=&;A + &/&) &-(I -&/&}(&/I &I')

x[B*(k,A, —V)j, (21)

where y» = sy»/8E».
In order to use these equations, we must express

5E, in terms of 5v, and of the eolleetive modes
parameters. We need to know explicitly 5E» in
terms of 5»». Omitting the k index for simplicity,
we find

5E, =Q5c, Q+e5&,v~+Q5r, v+u5& Q,

5Eg=5 56,5+Q56gQ-5 56,Q-Q56 v,

~E, =-Q~C, v+856gQ+Q~&, Q —556 v,

5E =-v~5&,Q+QOE', v~ -5~5& 8~+Q5&„Q.

Similar relations hold between 5v, and 5g, ' the in-
verse transformation is simply obtained by chang-
ing v to -v.

We point out some useful relations. From the
definition of 5e», it may be verified that

tr tr
~~e, -» = —&&g, »y

where 5e, is, for example, the transpose of 5e,
in the spin space. Similar relations hold for 5n».
From the transformation relations (18), it may be
seen that the above relations hold also for 5E» and

5v». In the same way, 5e, and 5e, are Hermitian
by definition, and 5e, and 5c are Hermitian con-
jugates. From the transformation relations (18)
and the kinetic equation (17), it may also be seen
that these properties hold for 5E», 5v», and 5n».

We recall that our initial canonical transforma-
tion is such that B(k) is stationary in the spin
space. So the only remaining possibility for 4» is
that its amplitude may vary, but not its structure.
Accordingly,

5e» = 56» =q 6», (19)

where q is some small real parameter of first or-
der in the perturbation. Once g is known, 5E, is
given explicitly by the first of Eqs. (18).

We define

(2o)

and similarly for 5E, », 5v, », and 5n, ,» Using
this relation with b» expressed in terms of I» and

making use of the unitary assumption which im-
plies BxB =0 and of the relation, 5», »=- 5e.
we finally obtain (omitting the k index for simplic-
ity)

where, for example, for the matrix V 8 and for
each component of the spatial vector A z, we have
written

Using the gap equation,

(24)~»= Z ~»» E &»»s»'
and the explicitP-wave dependence of 4», and

V»», on k and k', and then taking the trace in the

spin space, we obtain

(25)& Q —l I &» I'= Q &v.', »

which is the desired result. Calculating 5v, by
Eq. (1'I) and Eq. (21}and using electron-hole and

angular symmetries, we can reduce Eq. (25) to

pa 4 I I +
I (q'v»E»}

n Q ~l I~.I'+g el ~, . t-.'-'~ p)=0
»

—q'V E»

The expression in parentheses may be shown to be
not equal to zero, first by verifying that it is al-
ways negative for ~ =0 and then by verifying that
it is a decreasing function of ~. We will not go
into the details of demonstrating this, but merely
take the conclusion that g =0. This means that
there is no order-parameter amplitude fluctuation
associated with zero sound or spin waves in the
eollisionless regime. This also shows that there
is no mode associated with order-parameter am-
plitude fluctuations in this regime.

Returning to Eqs. (1 Ia) and (21), we see that
there is no equation to determine A and V; we have
more unknowns than equations. In principle, the
self-consistency relation (13) should play the role
of the missing equation, but, as we have seen, it
provides only information about g. What has hap-
pened is that we have lost some information by

V= V a'0+V'o'.

In Eq, (21), the index i refers to components in the
real space.

As one will see, g does not appear in the final
equations, owing to the electron-hole symmetry.
However, we ean still indicate the way to derive
an equation for q. This is done by putting Eq. (19)
into the self-consistent relation, Eq. (13). On the
right-hand side of Eq. (13); through Eqs. (18),
5n, is expressed in terms of 5v, , and 5v, . With

Eq. (17c), 5v, is expressed in terms of 5E„which
is converted back in terms of 5e, , and 5e, through

Eqs. (18}. Because of the electron-hole symmetry,
5c, , disappears and we are left with

65v, —5v, L
'g6» —Q V»» i + cp~ fjA . (23)

»' »'
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-( '
»r, (r)j».(r), (28}

and p and l; are the spin density and spin-current
density,

p(&) = 0'(r}o 8)i»»(r),
I

);( )=r,. »r(t)r r(r„(rt ))

»r.(r)) r r»r(r) .
Xg

(29)

The arrows above the symbols p and j, indicate
spin vectors. Space vectors are indicated by the
index i. The spin conservation law means that the
spin density p(r) commutes with the BCS interac-
tion. This commutation is exact if this interaction
is a density-density or a spin-density-spin-densi-
ty interaction. If this is not the case, the mass

performing our lowest-order expansion of the ki-
netic equation. A careful treatment of the higher-
order terms together with the use of the gap equa-
tion (allowing cancellation of lowest-order terms)
would show that it is possible to get an equation
of the same order in &o and q as Eqs. (1V). This
circumstance must be related to the singularity
which appears in the vertex part at low ~ and q.'0

This singularity is related to the Bogoliubov mode,
which is of the same kind of mode that we are
dealing with. As in our case, this singularity ap-
pears only through higher-order terms, the low-
est-order term being cancelled by the use of the
gap equation. This mode is known to be necessary
to restore the Ward's identity, that is, to satisfy
charge conservation. In a similar manner, we

may expect that the missing higher-order terms
in the kinetic equation expansion make some con-
servation law not satisfied. And indeed, the mass
and spin conservation laws, which are included in
the original kinetic equation, are no longer implied
by Eqs. (1V). So we must add these conservation
laws to our set of equations, and in this way we
get a closed set of equations. These new equations
restore the information which has been lost in our
expansion of the kinetic equation.

The mass and spin conservation laws are

Bp 8

et ax, j'
(2V)

8p 8
j]=0

8 t xg

where p and j& are the usual density and current
density,

p'(r) =Pt(r)g (r),

))(r)=2 . »r(r)(r' »„(r))

and spin conservation laws are only approximate;
but compared to the other terms the additional
term is of order of the BCS energy over the kinet-
ic energy and may be safely neglected.

Performing the canonical transformation and
taking the Fourier transform and the statistical
average, we obtain the following for the q com-
ponent of the current and of the equilibrium de-
parture of the densities,

5p =Q 5no, 5p=+5n,

~O ~~( 0 O~y+p+- ].= —5n ~+pA.

The summations over k include a factor 2, which
means that the corresponding density of states is
for up and down spins. p is the density of 'He. %e
now express these quantities in terms of 5v, ~.
Using Eq. (18), we obtain 5n, in terms of 5v, » and
5v, . Through the relation 5v, ~

= —"5v, „we
eliminate 5v„and expressing 5v, in terms of 5E,
by Eq. (1Vc) and»5E, in terms of 5e, »

and 5e, by
Eq. (18), we obtain

2

A = Q»~ "e «+p+» r

+g ~~' I:I~,I'v-&, (&; v)], (»)

+ Q 3 B«(B«A») +pA»

where the 5e, terms have disappeared by electron-
hole symmetry. Together with the conservation
laws which can be rewritten

%5p =g]j), (dip =Qg] ~
y (32)

and with the relations between A and V w'hich re-
sult from the definition (4}, we have

met&q+q~ V =0, m(a)A)+q)7 =0. (28)

Equations (1Va), (21), and (31) are s, closed set of
equations describing the coupled motion of the col-
lective modes and the quasiparticle distribution.

%e observe that the equations for the density
part and the spin part of the quasiparticle distri-
bution are decoupled. The density part is coupled
to the phase fluctuation of the order parameter
which gives. rise to the zero-sound mode. The spin
part is coupled to the rotations of the order pa-
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5E, = ($/E)k, A, + V, 5p = g 5~„„

y',. =Q ——5p, ,+Q —,~a~ A, +pA, , .
A')kg y

k

(tlap, =g')g], mK+] +gg +=0 ~

(34)

Summing the kinetic equation over k and comparing
it to the formulas for 5p and j, , we find

(2 [~[2»P —hA=-l?g P &
9' +

& W)

A,.+pA)
kqkg

m
(35)

But, integrating by parts, one finds that the right-
hand side of the above is zero so that the conser-
vation law is identically satisfied. This means that
A., is indeterminate. However, this is quite natu-
ral, since in this polarization, our canonical
transformation corresponds to a spin rotation
around the direction of B which has no physical ef-
fect on B. In this polarization, spin-density fluc-
tuations are not coupled to order-parameter fluc-
tuations.

In concluding Sec. 0, we examine the equations
for spin waves. This is done by introducing the
kinetic equation into the formulas for 5p and ~, ,
writing the spin conservation law, and eliminating

rameter in spin space, giving rise to spin waves.
The equations obtained for the first case are iden-
tical to the ones obtained in the s-wave case, ex-
cept that the gap may now be anisotropic. This
confirms that %'olfle's approach, '9 treating zero
sound in 'He as zero sound in an anisotropic
s-wave superfluid is correct, as could be ex-
pected. Our A'; must be identified with the usual
superfluid velocity, and Vo with the superfluid
chemical potential change (with a change in the
sign}. In the same way, A, could be called a "spin
superfluid velocity" and V a "spin superfluid
chemical potential. "

In fact the similarity between the density equa-
tions and the spin equations is more striking if
we specialize to states where the direction of it, -

in spin space ls independent of k. This ls the case
for the axial state, which is presently believed to
be the A. phase, and for the polar state. In these
cases, we get three sets of decoupled equations.
Two of them, corresponding to spin directions
perpendicular to B, are completely identical to sets
describing the coupling between density fluctua-
tions and zero sound. In this way, the above des-
ignations for A, and V become quite natural. The
third set of equations may be written (taking the
spin component parallel to B),

(~ —q ' &pEa)5&a, a
= -q'+aVf 5Ee a ~

A, by Eq. (33). After some algebraic manipula-
tions and integration by parts, we obtain

=O. (36}

If the direction of B, is independent of k, as for the
axial or the polar state, we see immediately that
only modes with spin polarization perpendicular to
8 exists and that these modes are degenerate. An-
other interesting case is the isotropic state where

IT, is found by applying some rotation R to k,

8T, = R(k) .
This state is a. possible candidate for the B phase

in 'He. We see that there are three spin-waves
modes; one has a spin polarization parallel to
R(q), the other two have polarization perpendicular
to this direction and are degenerate. This result
for the spin polarization is in fact straightforward
for symmetry reasons. We remark that looking
experimentally at the polarization of the spin
waves in a possible isotropic state would allow one
to know exactly what is the rotation 8, which is
not a physical quantity very easy to measure
otherwise.

We will not study further the velocity of these
modes since Fermi-liquid effects are known to be
very important in 'He and must be included in our
calculations.

III. INCLUSION OF FERMI-LIQUID EFFECTS

The inclusion of Fermi-liquid effects will follow
the work of Betbeder and Nozibres. '8 The essence
of their method is to build renormalized operators
in the presence of the Fermi-liquid interaction.
Then the weak BCS interaction is taken into ac-
count; owing to its weakness, it will not perturb
the Fermi-liquid renormalization. One is led to a
simple superposition of Fermi-liquid effects and
pairing effects. Consequently, Sec. 0 must be re-
formulated in terms of renormalized quantities.
In addition, we have to include in the 5m~ matrix a
Landau term corresponding to the modification of
the energy matrix because of the change in the
quasiparticle distribution. We have

(Ma, s +«a, z

where

56g y = g f; ~. 5tP, ~i+ g f~ ~e "g 5n, I g, (38)
as

and f, and f, are, respectively, the symmetric
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and antisymmetric Landau kernel. However, the
mass in Eq. (33) must be modified. This is most
easily seen from the kinetic equation (11) in the
normal state, in the presence of Fermi-liquid ef-
fects, but without performing our canonical trans-
formation. This is the Landau kinetic equation
(see Nozieres" for example),

+&n4f p=q'vp &n4f p+& ~a yp &n4t p ~

where

V+k] A)+ ~~, 5n~ ~,
a'

(41)

V=-i(u8„o„, A,'=iq, 8, (1/m*)(1+ —,'Ff),
A& = iq, 8(1/m*}(1+»F;),

and

Fx =&d'f

with ff and f; the P-wave coefficients in the
Legendre expansion off,' », and f», , respectively.

We see that the kinetic equation (11) retains its
form. 5e» is still defined by Eq. (6) and Eq. (37),
but Eq. (33) must be replaced by

m(vA&+q, V =0, m, cd;+@&V=0, (43)

We now perform the canonical transformation.
First we see that 5n, , becomes

.tf I 0 05n, , +~ o„8y(n»-q/2 nk+ /»)

=5n, ,+i o~8~q v»5(k»), (4o)

and the kinetic equation becomes

&u5n, » q=v»5n», +q v»5((» )

In other words, in the effective Hamiltonian cor-
responding to Eq. (39), the interaction is not a
density-density one, if we retain nonzero momen-
tum coefficients in the Legendre expansion of the
Landau kernel. The canonical transformation then
produces additional terms coming from this inter-
action, which can never be neglected. The result
is the F,' and F; terms in Eq. (44).

We must also modify the expression (30) for the
currents. This again may be found from the kinet-
ic equation (41). Summing over k, we find

+Op =q& ~On,' +pA&
k

(45)

+5p=q, +~5n, »+pA, ,
S

where we have made use of Eq. (44). Accordingly,
Eq. (30') for the density current does not need to be
modified. This is a well known result, which is
related to the fact that the density current com-
mutes with the bare interaction. On the other
hand, the spin current does not commute with the
bare interaction and, in the spin current in the Eq.
(30) we must replace the bare mass m by the "spin
mass" m, .

Now all the results in the Sec. II, obtained with-
out using the explicit form of 5m~, are conserved
[since "5e, »

= -5e, » is also conserved by Eq.
(37)]. We have only to modify Eqs. (21) and (31).
For simplicity, we will only keep the s-wave and
the P-wave part of the Landau kernel, the higher-
order angular momentum likely being negligible in
'He. With this simplification, Eq. (38) reads

where

1/m, = (1/m*)(1+»F;), (44a)
5e» r =f05p'+f ', (m/k'z)k, (j,'- p&,')

+"g[f;5p+f', (m, /k'z)k;(]; -pA, )], (46)

1/m = (1/m*)(1+»F f). (44b)

where we have used the Landau relation between
the bare and the renormalized mass,

where f,' and f; are the s-wave parts of the Landau
kernel. Using Eq. (18), we get a new formula for
5E~,

5E:= (&IE)(V'+f:5p')+ (mlp~*)k, (p&l+ ~,'f'),

5E» =($/E}(V+f05p)+(mp»/m")k&( Ap& + ~~ j&) +[1—($/E)](B /( A ) )(8((V+f05p) —(m»/pm*)k&(pA&

where we have used

+ Nlj()]), (47)

ff(m/k»s}p =(m/m*)3F f, f;(m, /k»r)p =(m, /m')»F;.

In order to find the new expressions for the currents and the density fluctuations, we follow the derivation
of Eq. (31), but we have to use now the corrected value for 5e„given by Eq. (37) and Eq. (46). Using, as
we have done before, symmetries with respect to k and $, we obtain (we omit the k index for clarity),
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5p'=g —5.;.g~ . I'"f:g ~. I~I'dp',

jg = +~ 5vg+pA~ ~

Z(Z* 5v, )

+ Q —
~

B*X [ (p +f~05p ) X8 ],

+ Q ',' ~+ Z[B'(PX, + ~', 3,)]+PX, .

The first of these'equations is easily solved giving

IIP = Q —ilv, —l il'll) (1+8 X)'
with

x=-N Q ~ I& I*. (49)

The equations obtained for the density part are
identical to the results of Betbeder and Nozieres"
for s-wave pairing, except for a possible anisotropy
of the gap. These are the equations used by
W'olfle" to derive the zero-sound velocity in an
anisotropic (s-wave) superfluid. We will not go
further into the study of the density part. We re-
fer the reader to Wolfle's payer for the derivation
of the zero-sound velocity.

Equations (48) for the spin-density part need an
explicit knowledge of Z~ to be solved explicitly in

5p and j,. Therefore, me mill specialize to the two

cases of most physical importance: the axial state
(the polar state could be treated exactly along the
same line) and the isotropic state.

In the axial state, B~ has a fixed direction, inde-
pendent of k. For spin polarization perpendicular
to 8, we find again that our equations reduce to a
form which is formally identical to the one obtained
for the density part, except that the symmetric
Landau coefficients must be replaced by the anti-
symmetric ones and the bare mass replaced by

m, in the expressions for 5E, and j,.
For spin polarization parallel to 8, we can write

corresponding equations and verify, following ex-
actly the same steps as going from Eq. (34) to Eq.
(35), that the spin conservation law is identically
satisfied; the physical meaning of this is exactly
the same as before so that me can choose V =0 and

A, =0 to study this polarization. The resulting
equations are very simple,

&usv, —(q, k, /m*)(g/E)(5v, —y'«, ) =0,

«.=f:5p+(5/&)(~./p~*) kF;i;3 &,

Expressing the current into components parallel
and perpendicular to the gap axis (the direction
along which the gap is zero in the axial state), we

can easily solve Eq. (50) for j, and hence, we
could mrite an equation for the velocity of this spin
wave. However, this equation is not simple.
Moreover, the Landau coefficient E', is likely to be
very small (F; itself is only of order of unity).
Therefore, we will neglect E', in what follows.

We nom can write

5p g 5„g(
)«(eg&g/~*)((/&)' [~ —(ei&i/m')(h/&)]

5p ~ (-0 )(el~i/~*)(h/&)~ [~ (v&3—i/~*)(tl&)] '

(5l)
and me are left with the following equation for 8,
which is the ratio of the spin-wave velocity divided

by the Fermi velocity,

dn, , [& i(k/&)]'' "-[~ «/ )]

We have strong arguments indicating that this
equation has no solution. Indeed, in 'He, E', is
known to be negative with an absolute value less
than one. For s =0, the right-hand side is

(52)

(I +FOX)5p = g —5v, -VNp,

3( =pA( + Q' ~ 5ve ~m* (53)

since m, =m* if E', =0. We also have, from Eqs.
(4 I) and (IV),

which is negative and has an absolute value that
may be shown to be less than one for all tempera-
tures (for T= T„ this absolute value is exactly
one). For T=O, the right-hand side is zero. For
T= T„Eq. (52) is known to have no solution. Fi-
nally, for s&1, the right-hand side is positive.
Therefore, in the S-T plane only solutions inside
the rectangle s &1, T& T, can exist, but there is
no solution on the perimeter of this rectangle. So
we are fairly confident that Eq. (52) has no solution
for any direction of q with respect to the gap axis.
This result has been checked numerically for q
parallel to the gap axis.

We now examine the spin polarization perpendic-
ular to Z. We still neglect E,'. Equations (48)
become

k

g n, F,' )~]2
5V~+ 3 ill Q Q ~ kgkg Jg .

5v, =(-v') ~' " [a,A, +((/z)(V+f;5p)].
(d —gg vga $ E

(54)
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Together with Eq. (48) and Eq. (82), Eq. (5$) be-

(1+E()X)6p=P(') I,6p+ I)IOV(I, —I~/s —)t),

s6p =E',I,6p+N, V(I, —I,/s ——,s},
mith the definitions

)'I (I((/E)'"'= ~ {-""-~&(~/E)
, (& (I)'(5/&)'""=~{"-Sqe/E)

(& 4 }'(4/&)"=~{"".S.-(~/E).

From Eq. (55) we get the following equation for
the velocity of the spin waves,

(56)

s'(I, —y}—2I2s+ (Is+ g) F'0[(13+—3)(I2 —x) —(In) ]

=0. (5V)

[ln this equation and in similar ones, we will
neglect the imaginary part of I» I» and I» and

take 8 to be real. This ls 3ustifl8d near 7= 0 be-
cause, owing to the {—y') factor, these imaginary

parts faB off very rapidly with the temperature.
However this does not mean that our approxima-
tion is only correct for T-O, because it may be
seen that the correction to Eq. (5V) coming from
the imaginary p rts of I„ I„ I, are of second order
in these quantities, while the imaginary part of s
(that is the spin-wave attenuation) is of first order.
Therefore, Eq. (5V) remains correct even with

noticeable spin-wave attenuation. Since, as seen
from Fig. I, the T=O regime extends rather far,
Eq. {5V) should be valid in most of the temperature
range (say T, —Ta 0.1T,) but it clearly fails near
T, . In any case, when the imaginary parts are
taken into account, Eq. (5V) can be used to study

spin-wave attenuation. Note, also, that our pr'oof

that Eq. (5V) has a root can be extended when im-
aginal'y parts al'e takell lllto full accollllt. ] Tllis
equation is identical to that obtained for zero-sound
velocity (assuming El = 0), except that we have now

Eo instead of Fo. The zero-sound equation is easy
to study since E', is large, which makes possible
an expansion in 1/s. Here, we know that Fo is of
order of unity.

For T=O, me have J, =E~=I3=0 and &=1 and me

obtain,

((+E;)(l+f d(), 4( — '))())q) )
'=0.

The first factor on the left-hand side is positive
and the second one may easily be shown to be
strictly positive, except at T = T„where it is
zero S.o that s =0 is the solubon of Eq. (O'V) only

at T = &, . Now we can show that Eq. (5V) always
has a solution for T ~ T, . %8 first note that the
left-hand side of Eq. (5V) is positive for s=0, as
me have just seen. On the other hand, as s-~,
I„ I„ I, -0 so that the left-hand side of Eq. (5V) is
or order of -Xs' which is negative. Since I„ I„
and I3 have no singularities and are clearly con-
tinuous functions of s, there is necessarily a solu-
tion. %8 have studied this solution numerically for

q parallel to the gap axis, mith E0= -0.8. The re-
sult is shemn on Fig. 1.

%e now investigate the isotropic state. Again me

miO neglect E; for physical reasons and for sim-
plicity, although there is no problem taking E', into
account. As in Sec. I, me mill find three spin-wave
modes: one with a spin polarization parallel to

B(q), the other two having a spin polarization per-
pendicular to R(q). For symmetry reasons, j, and

&, are either parallel or perpendicular to q. %e
first look at the case where they are paralle1 to q.

We put Eq. (4V) into Eq. (48) and we use Eqs.
(48) and (82). We know the directions of the vari-
ous vectors in spin space as mell as in real space.
Using the fact that the gap is isotropic in perform-
ing some of the angular averages, me obtain, for
the spin polarization paraDel io It(q),

6p[1 +F;{-',X+I,'- I, - I,)]
= (II V/s}[(I, -I,' ——,'X+I )s I], (60)-

6p(s -FOI, ) =(X,V/s)(sI2+-.'X -I; +I, -I, --.'),

s*= —.'(1+F0), (58}

mhich agrees mith Maki and Ebisama's results. '~

[This result becomes s' = 3(1+F0)(1+~', ) if E', is
nonzero. ]

For s=O, me have I, =0 and X-I,=1, so that Eq.
(5'l) reads,

Tc

FIG. 1. Spin-wave velocity divided by the Fermi ve-
locity vs the reduced temperature in the axial state for
a direction of propagation parallel to the gap axis.
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s' = 3(1 + 3&;)

For s = 0, we have

J=0, J, =g- i, f,'= —,'I„
e jP'=3I I =-3$ I3

(62)

(63)

where N~p = -Q» ( - q1' ), and the determinant is
simply

—i~~(1 —4 )[1+~~&:(4 + 2)] .
Since clearly P & I except at T= T„where P = 1,
the determinant is negative for s = 0 except at
T= T„where s = 0 is a solution. Now, for s - oo,

the determinant is of order of 3xs, which is posi-
tive. - As in

Sec�.

III, we conclude that spin waves,
with the present polarization, exist in the isotrop-
ic state; the shape of s as a function of T is very
like ly similar to the one found in Sec. III.

In a similar manner, we obtain for the spin po-
larization perpendicular to It(q),

5P[1+E', (3X+ Ji —I, —J3)]
= (N, v/s}[(I, —J,'- ~x +J',)s —I,],

6p(s F;I ) = (X,V-/s)[sI +~X „'+J,' J,"-- I,], -
(64)

I»,»k, ($ /E)3

s - k,g/E

h 3
I», (g /E)

NQJ3 Q ( q1 )
g/@

k3 k 3($ /E)
( q1I ) 3 3

(66)

and q has been chosen along the s axis.
As before, we obtain at T= 0,

For s = 0, we have, in addition to Eq. (66),
3@ J3 13$ Ji 3I1 d Ji 15I1 The de-

where I„ l„and I, have been defined previously
and

(&' q )' (t /& )'(-q')
s —l» q (( /E )

(& q)'(h/&)'
3 - )3q(t'/z)

(&'q)'(h /&)
s —5 q(&/Z)

The equation for s is obtained by requiring that the
determinant of the system (60) is zero.

For T= 0, each I is zero and g = i, so that

term in ant,

—i'3 (1 - |t')[I +&3(~a+ ~s 4 )]

is negative, except that for T = T„s= 0 is the
solution. Since, for s - oo, the determinant is of
order of —3&s' and positive, w e have also spin
waves with spin polarization perpendicular to B(q)
in the isotropic state at any temperature.

Finally, we look at the space polarization per-
pendicular to q. Since, from Eq. (48), A, is par-
allel to q, , we must have 4, = 0, which implies
V= O. So the possible modes are decoupled from
the fluctuations in the order parameter . More-
over, Eq. (32) gives 5p = 0, and as a result I, is
zero from Eqs. (47) and (48). Thus, we find that
there is no mode w ith transverse space po 1ar iza-
tion. In fact this result is e lear ly related to our
approximation E', = 0. Taking a nonzero E', into
account may give rise to new modes . However,

ecause E', ~s smal 1, they are unlikely to actually
appear . We also note that a nonzero E', would

couple the space polarizations parallel and per-
pendicular to q, together with a mixing of the spin
polarizations parallel and perpendicular to R(q}.

IV. CONCLUSION

We have developed a formalism to study spin
waves in superfluid 'He, in the collisionless re-
gime. In this formalism, superf luid parameters
are introduced explicitly, and w e obtain a set of
equations describing the coupled motion of the

superf luid and the quasipartic les distribution. Us-
ing these equations, we have studied spin waves in
the axial and the isotropic state. In the axial state,
only two degenerate modes with spin polarization
perpendicular to 8» can exist. In the isotropic
state, with respect to spin polarization paral 1e1 to
R(q), we obtain one longitudinal mode and two
degenerate transverse modes. We have written
the equations for the velocity of these modes . In

general, they must be studied numerically. Our
formalism may easily be generalized to include
magnetic field effects and the dipole -dipole inter-
action and to study the hydrodynamic regime.
These generalizations are being developed and

wil 1 be presented elsewhere .
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