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Lagrangian theory for a self-avoiding random chain
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The Lagrangian theory of random chains with excluded volume is used to study Z„(r), the number

of chains with N links, starting from the origin and arriving at a point r. Its asymptotic expression

(N oo) is Z„(r) N" ' "" F(r N "), where y and v are critical indices. The short- and long-range

behaviors of F(x) are calculated in terms of y and v. In particular, it is shown that for' x & 1, we

have F(x.)=Fx~ with F = const and 8 = (y —1)/v.

I. INTRODUCTION

Recently de Gennes' has remarked that the prob-
lem of random walks with excluded volume (poly-
mers) in a space of dimension d =4 —e is equiva-
lent to a Euclidean field theory defined by a La-
grangian of the form

be associated with this case but the process has a
meaning in perturbation theory.

The connection between the polymer problem and

this Lagrangian can be made as follows. First,
we remark that the coupling constants g, and m,
have dimensions. Thus, we may introduce a funda-
mental length l and set

go =Col (1.3)

where n is the number of components, which in
this case must be given the value n =0 by analytic
continuation. A weight W(q}=exp(-f Z(x) d~x) is
associated with this Lagrangian. Green's' func-
tions are defined as mean products of fields (with

weight W)

9, . . ., (m„r„.. . , r„)=(y, (r, ) y, (r„)) .

(1.2)

These quantities can be calculated by expanding

W(rp} with respect to g, and each term in the ex-
pansion of 9, (m; r„.. . , r~) can be repre-
sented by a diagram containing q open lines and a
certain number of closed loops (see Fig. 1). Each
solid line corresponds to a field index j. Now, we

may sum up the loop indices. Thus, we see that a
factor n corresponds to each loop in the contribu-
tion of the corresponding diagram. In the polymer
case, no loop is allowed in the diagrams and this
situation corresponds to the case n =0 (field with

zero component). Of course, no Lagrangian can

Here a is an arbitrary pure number. The factor
c is introduced for reasons of mathematical con-
venience, in order to obtain smooth limits when

e goes to zero. Similarly, we define the dimen-
sionless constant s by setting

s =m~l'. (1.4)

Now, consider chains with excluded volume. Let
Z„(r) be the number of chains made of N links
starting from the origin and arriving at r. The
length of a chain is L, and we represent this length

by L =Nl. For finite N, Z„(r) is given by a Boltz-
mann law, of the form

Z (r) =Q e ~vo'"r') ~

c(r )
(1.5)

we sum over all configurations of chains starting
from the origin and arriving at r after N steps.
The term U, expresses the fact that we are dealing
with a chain and UI describes the interaction, i.e.,
the fact that the chain is self-avoiding. The factor
P = 1/kT' does not play any role and we may set
P= 1 if we wish.

Passing to the continuous limit, we may define
Z„(r) by the classical functional integral

g )2
Z„(r) = de[r(X) j exp ——

i dX —r(A)
~c(r ) 4l g, ex 2

1

L
dr d X' 5ir(X) - r(~. )}

wo

(1.6)

where C(r) is the set of functions r(X), such that
r(0)=0, r(L)=r, and L=Nl. Note that this passage
to the continuous limit introduces a divergence
but it can be removed by a simple renormaliza-

tion in perturbation theory. The Fourier trans-
form of Z„(r) is by definition

Z (k)=f d y e'"''Z„(r),
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critical indices y and v can be defined in terms of
the number of walks ZN and of the mean-square
size {r2~}by the asymptotic expressions (N- ~)

Z„=ZN" 'lj,", (Z, p constants),

(t'„) = BN'", (8 a constant) .
(1.10)

FIG. 1. (a) Interaction vertex. The dashed line indi-
cates the interaction. Each solid line corresponds to a
definite component of the field. (b) Diagrams vanishing
for N = 0. (c) Diagrams contributing for N = 0.

II. LAGRANGIAN FORMALISM

In the critical region 0& (s —s, )« I, the re-
normalized Green's function' has the form

G„(m, b) =m 'f (b/«s) . (2.1}

G„(s,%) = l' Q e "'Z~{k),
N=O

(1.8)

where the unrenormalized Green's function Gc(s, k)
is the Fourier transform of 94&(m„0, r). The
equivalence can be established without difficulty
by expanding both sides of Eq. (1.8) with respect
to go and by comparing term by term.

In order to obtain finite results, a cutoff must be
introduced in principle, but in practice, for e&0,
a simple mass renormalization is sufficient (as
can be seen by power counting) to ensure the con-
vergence of all the integr als which appear in the
expansion. Thus, the Lagrangian theory can be
used to calculate interesting physical quantities,
and, in particular, our aim is to study the proba-
bility

for values of r, which are either small or large
with respect to the mean-square length of r.

Some years ago, asymptotic properties of P„(r}
were derived by Fisher, ' and other properties of
P„(r) or Z„{r)for large and small r have been de-
termined empirically by McKenzie and Moore. '
My results agree with those of Fisher and McKen-
zie and Moore. However, the usefulness of the
present approach must be emphasized. The reader
should realize that until now there did not exist
any realistic theory of a chain with excluded
volume. Thus, for the first time, the crucial re-
mark of de Gennes and the recent advances made
in Lagrangian field theory" provide the frame-
work of a complete theory of the excluded-volume
problem. Thus, all the previous results can be
derived by using this method. Some previously
assumed properties are now established more
rigorously. . Finally, a direct application of the
theory gives, for the excluded-volume problem,
a new relation between the critical indices. These

and Z„=—Z„(0) is the total number of chains starting
from the origin.

Following de Gennes' and Fisher', we introduce-
an equivalence relation by writing

Renormalization conditions must be chosen: 'they

amount to the condition

[f(yH
' = I +y'+ ".

~ (2.2)

The renormalization constants of the fields y and
cp' can be defined by

z, (s) =-y/yz, z, (s) =«s'/(m', -m'„), (2.3)

where m„ is the unrenormalized critical mass,
y (x) is the unrenormalized field, and rpz(x) the
renormalized field. Accordingly, we have

G, (s, b) =z', (e)G,(~, b). (2.4)

z,(s) =b(e)(e -e,}'" «'«',

z,(s) =c(s)(s —s,}'" ',
(2.5)

where b(s) and c(s) have finite limits b and c (de-
pending on e) when s- s, . The critical indices y
and v are defined as usual. Using the preceding
expressions and Eq. (2.3) we find

ml=c ' '{s—e )" (2.6)

and from Eqs. (2.4) and (2.1), we deduce

G (s, k) =b'l'(s —s, ) «f{c ' 'bl (s —s, ) "). (2.V)

In four dimensions, the behavior of the chain is
Brownian and therefore m -mo when e - 0. Ac-
cordingly, it is possible to show that for 0««1

c= (a/2n')'«' (2.8)

[see Etl. (1.3)]. We note that this limit exists be-
cause a factor c has been introduced for reasons
of convenience in the right-hand side of Eg. (1.3).
Thus logarithmic singularities are avoided.

For other values of e, we deduce from Eqs.
(1.6)-(1.8) the following expressions:

Z„=—Z„(0)=ZN" 'e"'4
(2.9)

P„(r)= l 4N ~P(rl 'N ").

The Lagrangian theory' says that the renormali-
zation constants become infinite at the critical
point (i.e., when e- s, ) as a power of s —s,. Thus,
we may write
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The normalization conditions are

2c 'd y-I !
)t

ddxE(z) =1, ddxx'F(x) =
(} +2v —1)! '

Z (0) (2 I d~(2 2 Ndd (3.7)

On the other hand, we may try to calculate ZN(0)

by writing

(2.1o) ZN(~) = ZNPN(~) (8.6)

where the indices have the usual meaning. The
first condition expresses the fact that PN(r) is a
probability. The second condition is also an exact
relation and is a direct consequence of the normal-
ization equation (2.2) (the coefficient of y' has
been chosen equal to 1). It is obtained by expand-
ing Eq. (1.6) to first order with respect to 02.

and by replacing Z„and PN(2) by their asymptotic
expressions (scaling laws) Eq. (2.9). The result is

Z„(~)=ZX~-"d-' e""F(~I '~-").
In general, y —1&0 and n =2 —vd; therefore in

order to avoid inconsistencies between Eqs. (3.3)
and (8.5), we have to assume that

E(0) =0. (3.10)
IH. BEHAVIOR OF P~(&) FOR p &pf" I

In Lagrangian theory, the derivatives of the en-
ergy with respect to )2C (i.e., with respect to the
temperature T in most applications) can be written

I 2/ -=dd/2 G (S 0) I "(s—S)'" /

(s ypP)' „(as)/

This interesting result is in agreement with the
computer calculations of Renardy' and McKenzie. '
It is a direct and rather subtle consequence of the
renormalization theory. "

Let us now study the behavior of I'(x) for small
values of x. For 0&@«1, we write

(3.1) P(z) =&~' (3.11)

and such a relation defines the index a. For j =0,
the equation is Ineaningless because the integral
diverges. Thus the relation

(q '(O)) = dd/ G, (s, /) (8.2)

(l" (())) =f &'1& (~, 1)

(2. ~d-2 ~ I d 2(s @ )2(d 2}

But, by definition

{((()'(0))= Z2(S)(9)„'(0)),

(3.3}

(8 4)

since Z,(s} is the renormalization constant of the
composite field (/)2(x). Thus, usirig Eq. (2.3), we

find the formal result

{y2(0))=-
( dd/2G(S, k)

(2. Id-2(s s )l)d-l (3.5)

By comparing Eqs. (8.1) and (3.5), we determine
n, which satisfies the usual scaling relationv

(8.6)

Equations (1.6) and (3.1) give the order of mag-
nitude of the number of chains returning to the or-
igin

is only formal but the composite field 1/)'(x)

acquires a meaning in more complicated conver-
gent Green's functions. However, the index o. can
be derived by dimensional analysis of formal ex-
pressions like (3.2). Thus using Eq. (2.2), we may
write

and we may express 8 in terms of a as was shown

by McKenzie and Moore. 2 Indeed, since Eq. (3.9)
is only valid for 1, «rl '«N', there is a cutoff
at r = E and we guess that

z (o)= z (I) =& z~}'-"'-"'-'

Comparing with Eq. (3.7), we find

8=(}+vd-++I)/v,

(8.12)

(3.13)

a relation previously obtained by McKenzie. Fi-
nally, using Eq. (3.6), we find

(3.14)8=(} -1)/v,
which is our main result. %e may also write

(3.15)

where d~ and d„are the anomalous dimensions of
the respective (})2 and (/)(d~=d- I/v, 2d„=d-}/v,
the canonical dimensions being d„=2d„=d-2).

The value of 0 in Eq. (3.14) has been derived in
a heuristic way, but it is possible to obtain it di-
rectly by more sophisticated methods. The be-
havior of E(x) for small x is related to the asymp-
totic behavior" of f (y) for large y,

[f(y)] 1 y}'/2[/I +By 1/2 +Codd 1/1)}] (3.16)

!(-e-1)!
(«)" ""(-Nd)!(-26- 2)(2e+2&-1)l

By inverting Eq. (1.7), we can express the dif-
ference E(x) -E(0) in terms of (8/es)G(s, Il) and
therefore in terms of f(y) Thus, using E.q. (8.16),
we can confirm the results given in Eqs. (3.11),
and (3.14) and find explicitly that
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Expansions of y, v, A, B, and C with respect to
d have been calculated by several authors" and
for 0& e«1 we have

3 1A=1, B=2, C= —2,

(y —1)/0 = —,'e++, e', F,= (16m') '6. (3.18)

9 (s, r) = l' g e "'Z„(x),
0

(4.2)

we obtain, by means of an inverse Laplace trans-
formation, in accordance with Fisher's predic-
tions, ' the expression

+(x)= +,x exp[-(Gx) ],
where

(4.3)

(4.4)

in agreement with the results which have been de-
rived by McKenzie and Moore' from slightly dif-

ferentt

assumptions.
For 0& a&1, we have

h = 1, E, = (4v) 'c' (4.~)

IV. BEHAVIOR OF P~(r) FOR r&N"I

If the Lagrangian theory is a genuine field the-
ory, the Green's function G„(m, k) has a pole at
k' = -M' = —h'm'(h = const) and a cut starting at
k'= —9M'. Thus, we may assume that the singu-
larities of f (y) nearest to the real axis are simple
poles at y= aih, where h can be calculated by
perturbation theory The. behavior of Z„(r) for
r» LN" is directly related to the existence of
these poles. Thus, by taking the Fourier trans-
form 9c(s, r) of Gc(s, R), we find for large r

9 (s, r) =G(s —s,) "'"""~'(rl ')' ' '

x exp[-hc' 'rl '(s —s,)"], (4.1)

where the right-hand side is the dominant contri-
bution of the poles. From the Fourier transform
of Eq. (1.7)

V. CONCLUSION

The present theory explains all the known char-
acteristics of the behavior of a single chain with
excluded volume. One of them is the fact, estab-
lished by computer calculations, that the asymp-
totic form of the probability P„(r) vanishes at the
origin. To our knowledge, the present theory is
the only one which predicts this subtle result.
Nevertheless, the predictions of the theory cannot
be compared in detail with all the results obtained
by computer calculations, ,for several reasons.
For instance, the values of y and v are known only
for small values of e. Apparently the expansions
obtained in c do not converge' and they may be
only asymptotic. In particular, the estimates are
better for e=1than for a=2.

On the other hand, the best results obtained by
computer experiments correspond to the two-di-
mensional case (e =2). For short chains, we have
exact results but different treatments of these
may lead to rather different estimates for y and
v. For long chains, the Monte Carlo method gives
more precise results but they do not strictly ap-
ply to the randorp-chain problem: the chains are
the same, but the Monte Carlo statistical weight
is different for each chain. ' However, we may
hope for some progress in testing the theory In
particular, the index 8 of Sec. III can be measured
directly and this gives a relation between y and v.
In experiments on real polymers, v can be mea-
sured but until now there was no way of measuring
y. Now, we see that in principle 8 can be mea-
sured and experimental values of y de'duced from
the relation y =1+v8.

On the other hand, the present approach is not
completely satisfactory because we need a theory
with a larger range of validity in e, and a good
starting point might be the group-renormalization
method of Wilson.
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