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Alkali-metal negative ions. I. Photodetachment of Li, Na, and K
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Photodetachment cross sections of the negative ions of the three lightest alkali-metal atoms have been
calculated using configuration-interaction wave functions for the initial state and close-coupling
scattering wave functions for the final state. Pronounced structure obtained at the threshold for leaving
the neutral atom in the first excited state is due to a combination of real resonance behavior and the
threshold law for collisional excitation. The range of validity of this law is, however, found to be very
narrow. The shape of the cross sections in this region is in excellent agreement with experimental
measurements. Results are also presented for the angular distribution of the photoelectrons following
photodetachment with simultaneous neutral excitation, for the dipole polarizabilities of the negative ions,
and simple analytic formulas for the radiative attachment coefficie'nts.

I. INTRODUCTION

Reliable estimates of the electron affinities and
photodetachment cross sections of the alkali-metal
negative ions are required for interpretation of the
properties of low-temperature plasmas, and in the
fields of upper-atmosphere physics and astrophys-
ics. In addition, accurate electron affinities would
provide extremely useful benchmarks for obtaining
affinities of other elements in the Periodic Table
by interpolation or extrapolation techniques.

Until very recently, experimental data on the
electron affinities of the alkali metals has been
very limited both in quantity and quality. Theoret-
ical results are more plentiful, and have a greater
degree of mutual consistency than the experimental
data. Citations of almost all values obtained to
date can be found in Refs. 1-4.

Theoretical values for the electron affinities
have been obtained both from semiempirical ex-
trapolations of known spectral data, and from
atomic -structure calculations of varying degrees
of complexity. The essential feature in these lat-
ter calculations seems to be the inclusion of con-
figuration interaction, the work of Weiss' being
the most sophisticated (ab initio, variational Har-
tree-Fock) calculation of this type. Most calcula-
tions neglect, however, the effect of core polariza-
tion, which has been shown to be large for the
heavy alkali metals. ' In this calculation, the elec-
tron affinities of all of the alkali-metal atoms were
obtained in a novel application of the coupled equa-
tions of scattering theory, using semiempirical
effective potentials for the neutral alkali-metal
atoms.

The measurements have employed a number of
methods, e.g. , exploding wires, surface ioniza-
tion, and resonant charge exchange, all of which
are subject to large uncertainties. Practical prob-

lems such as the wavelength region of the expected
onset of photodetachment [(2-3)& 10' Aj and the
difficulty of getting a sufficiently high density of
negative ions have hindered application of stan-
dard photoabsorption techniques. The develop-
ment in recent years of photodetachment tech-
niques, which include the counting of reaction par-
ticles provides the opportunity for much more di-
rect and accurate measurements. The accuracy
of results obtained using a conventional arc light
source' is limited primarily by energy resolution,
which would be particularly troublesome in the
case of the alkali-metal negative ions since the
derivative of the cross section at threshold with
respect to photoelectron energy is zero. The de-
velopment of tunable dye lasers led to a technique
capable of yielding much greater precision in mea-
sured electron affinities, limited primarily by
counting statistics, provided that threshold is
accessible or that a sharp feature in the cross
section can be unambiguously identified as a known
spectroscopic state.

The results of several calculations' "for scat-
tering of electrons by neutral alkali metals suggest
that the electron affinities of the alkali-metal negative
ions might be accurately measured using the dye-
laser photodetachment method. The significant
feature of these results is very pronounced struc-
ture in the 'P partial-wave cross section for elas-
tic scattering near the first excitation threshold.
This structure is partly due to the opening of a new
channel with electron angular momentum l =0, the
so-called "Wigner cusp" (which occurs for both the
'P' and ~PO partial waves), combined with what ap-
pears to be real resonant behavior. This threshold
behavior will be studied in some detail in Sec. II C,
the essential result being that the derivative with
respect to electron energy of the 'P' partial cross
section for elastic scattering from the ground state
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is infinite at the first excitation threshold, leading
. to a cusp or 3. step in this cross section at thresh-

old, which is greatly enhanced by a resonance.
Nom considering the photodetaehment pxocess,

since the ground state of the alkali. '-metal negative
ions is assumed tobe a 'estate, the final continuum
state must be a 'I' state according to the dipole
selection rule. The final state may also be re-
garded as the electron-neutral scattering system
in the 'I" partial wave. Any structure in the par-
tial scattering cross section should therefore be
x'efle'eted in the photodetachment cross section at
photon energies corresponding to ejection of an
electron with energy equal to the first excitation
energy F-, of the neutral atom. It is shown in Sec.
IIIB that the photodetachment cross section mill,
in fact, also have an infinite derivative at this
threshold. Thus, if this is observed at some mave-

length X„ the electron affinity EA is then related to

E, and A, by

EA = (1/R((.,) E, , -
where EA and E, are in rydbeigs and 8 is the ryd-

berg constant for the particular species.
Assuming%cise's values for the electron affini-

ties, 0.0453 Ry for Li, 0.0396 Ry for Na, and

0.0347 Hy for K, and taking the values of 8 to be
109728.64 cm ', 109734.69 cm ' and 109735.77
cm ', respectively, the A, values are 5032, 4692,
and 5941 A, respectively. The electpon affinities
of the heavier alkali metals are assumed to be
comparable, and hence photodetachment to the
region near the first excitation threshold of all
the neutral alkali metals is mell within the capa-
bility of modern dye lasers operating in the visi-
ble. The suggestion" that this threshold behavior

might be exploited in order to determine the elec-
tron affinities of the alkali metal. s by this method

was very quickly confirmed" and affinities of Na,
K, Rb, and Cs have been measured" to much

greater accuracy than previously.
The present work has several purposes: to ob-

tain reliable photodetachment cross sections for
Li, Na and K using some of the most accurate
wave functions available, thereby also providing a
test of simpler approximations" "; and to study

in some detail the structure of these cross sections
near the first excitation threshold of the neutral
atoms. The configuration-interaction wave func-
tions of gneiss' are used for the initial state. For
the final states me use the solutions of close-cou-
pling equations for electron scattering by the neu-
tral atoms. The calculation of these latter wave

functions is discussed in Sec. Q, along with the
implications for photodetachment of the scattering
results near the first excitation threshold. The

may in which the photodetachment cross section is

obtained, and the threshold behavior, is discussed
in Sec. III. Photodetachment results are presented
and discussed in Sec. IV.

II. SCATTERING

A. Target model

The equation for the radial part of the valence
electron wave function is taken to be

+ ('(r( ~ a „,)P„,(r( = 0,
d' &(&+ 1)

where the model potential is composed of tmo

terms,

V(r) = V(X, r) + V(,(r),

(2.1)

(2 2)

the first of which is the scaled Thomas-Fermi-
Dirac statistical model potential" with limiting
forms

lim V(A, r) -—,lim V(A, , r) = —,2Z . 2
y ~0 t'-+co

where A, is an adjustable parameter and Z is the
nuclear charge. The polarization potential V~(r)
represents the effect of induced-core moments on
the valence electron and is taken to be

I

U~(r) = 44t W,(r„r)+ ae W„(r„r), (2.4)

where a~ a@el a,' are the dipole and effective quad-
rupole core polarizabilities, respectively, and

W„(r„r) is a function introduced to cut off V~(r)
near the origin. The parameters X and cutoff
radius x, are adjusted until calculated values of
e„, for the lowest fem terms are in good agree-
ment with spectroscopic values.

The model parameters for Li and Na mere taken
from earlier work ' in which the simple approxi-
mations n,'=0 and

W,(r„r)= (1+rl/r') ' (2.5)

The present work is based on a semiempirieal
calculation of the radial wave functions for the
neutral atoms in which an effective potential is
used to represent all interactions between the sin-
gle valence electron and the nucleus and elosed-
shell electron core. The scattering calculation is
then treated as a simple two-electron problexn,
and carried out using the coupled equations for-
malism in I.S coupling. Detailed calculations" for
Na using this technique yielded x'esults in good
agreement with a variety of experimental mea-
surements. These include differential"'" and
total2' scattering, excitation, ""and the polariza-
tion of the resonance radiation following collisional
excitation. ''
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were used. For K we used the form

W (r„r)=1 —e (2.8)

of electron i, p, , and p,, are the spin projection
quantum numbers, the C's are Clebsch-Gordan co-
efficients, and

The values of the various constants adopted are
given in Table I, along with calculated and spectro-
scopic term values. It is seen that the cutoff radii
are of order of the core radius, as expected, and

that the r ' term in (2.4) is relatively unimportant.

4 y(LSM~M~ ~37,X )=~—Q

~1 ~2 S y 1~1 m2~2

B. Scattering model x —F„'f„(~,),y Y
(2.8)

Consistent with the approximation of Sec. II A,
the equations describing the electron-neutral scat-
tering system are formally equivalent to those for
scattering by neutral hydrogen" with the nuclear
Coulomb potential replaced by V(r). It will prove
useful in what follows to present the wave function
for the scattering system in some detail. It is con-
venient to work in the representation I' = (@LSDMz)

in which the atomic and electronic angular momen-
ta are coupled to give total angular-momentum
quantum numbers LMLSMs, with y =al, represent-
ing the atomic state a =n, l„relative to which the
electron momentum is k„and the orbital angular
momentum l, of the scattered electron.

The total wave function can be written

4,~ ~ ~ (X, 2)= Q Q Q t' Ctm",~m~q
& g, mg L, &L S. +S

where A is the operator which exchanges the co-
ordinates 1 2. The function $ is a product of the
atomic wave function, the radial part of which is a
solution of (2.1), and the spin and angular parts of
the scattered electron wave function. The radial
functions Fz~&z(r, ) have asymptotic form

FLS (+ ) ~ p-1/2(e -$(kz~r~-1/212&) g
y 'yw 2f r2~~ o' y Y

e f(k~ ir2- 1/2f 2 & ~ MLS

(2 9)

where 8 is the scattering matrix, which is diago-
nal in L and S and independent of ML and Ms.

Application of the variational condition yields the
coupled integrodif ferential equations

+ V(r, )+g,' Fy y(r, )(
d' I,'(I,'+ 1)

dr'
2

TABLE I. Parameters of the semiempirical model
potential, and calculated (a) and spectroscopic (b) term
values. The energies e„& are in Ry and ap is the Bohr
radius.

Na

c sap

a& ap3

5a, ap

~nps a

&npp a

&nate a

6'
3g

0.6583

0.4678

0.1851

-0.39632

-0.396 31

-0.260 49

-0.20649

-0.148 55

-0.148 38

-0.11122

-0.11122

0.8050

0.6977

0.8840

-0.377 72

-0.377 72

-0.223 10

-0.223 10

-0.14341

-0.14316

-0.11198

-0.11188

1.0717

2.9236

5.4730

0.4296

M.31905

-0.31904

M.200 34

-0.200 36

-0.127 64

-0.127 43

-0.125 16

-0.122 79

(2.7)

where X, represents all space and spin coordinates

G„.),(r,)„, 00.

+ co(sk, ,r, —212v)R„.„],
(2.11}

V + 8' F r, 2 10
y'

for (2.9), where V(r, ) is given by (2.2), and V„„
and @z.y. are the direct and exchange potential
operators, respectively, resulting from the Cou-
lomb interaction of the atomic and scattered elec-
trons. Expressions for these operators can be
found elsewhere. " We note that polarization of the
core by the scattered electron and atomic electron
individually has been included by the use of V(r) in
(2.1) and (2.10), but we have neglected the effect of
the moments induced by one electron on the other,
the so-called dielectric correction. " This has
been shown to be a relatively small effect for the
lighter alkali metals, ' at least as applied to the
calculation of electron affinities, but is becoming
significant for K. The consequence of this will be
discussed in Sec. IV.

In practice we obtain solutions G& &(r, ) of (2.10)
which obey real reactance-matrix boundary condi-
tions
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These functions are linear combinations of the so-
lutions E&~z(r, ) such that

F =-2'G (1-iR) ' (2.12)

8 = (1+fR)(1-fR)-', (2.13)

and the scattering cross sections for initial state
a and final state a' are given by

Q(a-a') =va', Q 0 '(a-a'), (2.14)

The reactance and scattering matrices R and S are
related by

C. Threshold behavior

If it is assumed that the potentials V&.&- and
W&. z i of Eg. (2.10) are of finite range, then the
behavior of the cross sections in the neighborhood
of an excitation threshold may be studied by apply-
ing many-channel effective range theory. " In this
ease, a matrix M may be defined which is a mero-
morphic function of the energy, whose elements
vary sufficiently slowly as a function of energy
that they may be regarded as constant for the pur-
poses of obtaining threshold laws. M is related to
the reactance matrix R by the equation

kl+ 1/2 M
—lkl+1/2 (2.16)

where

q~s(, )
(2I, +1)(2S+1) g4k a vv

(2.15)

The sum over y' in (2.8), in principle, runs over
aQ bound and continuum states of the neutral atom,
implying that (2.10) is an infinite set of coupled
equations. In practice the sum must be truncated
after a small number of terms. In the present
work we include up to four target states in the
sum, the lowest two s states and the lowest. P and
d states.

The phase shifts obtained for the 'P' partial wave
are shown in Fig. 1. The effect of including vari-
ous numbers of states in the expansion (2.8) was
studied in some detail for Na. At k', =0.151 Ry,
for example, a three-state (Ss, SP, 3d) calculation
led to an increase in the phase shift by 10% over a
two-state (Ss, Sp) calculation, but adding theA&
state in a four-state calculation led to a further
increase of less than 1%. Comparable results
were obtained in two- and three-state calculations
in I i. Accordingly, we carried out all further
work for all three species in the three-state (n,s,
n, P, Sd) approximation, except that below the en-
ergy where the two-state and three-state phase
shifts agreed to 2% or better, the former were
used. These transition points were 0.0588, 0.0955,
and 0.0588 Ry in I i, Na, and K, respectively.

In all cases we note that the phase shift exhibits
strongly resonant behavior below the first excita-
tion threshold, but that only for K does the phase
shift achieve &m before the threshold is reached.
The resonance might be labeled the n, sn, P 'P'
autoionizing state of the negative ion, ' but too
much significance should not be attached to this
label. (There is also evidence that these states
exist, and are more strongly bound, in Rb and
Cs .") The existence of autoionising states of Li
and Na at even higher energies has aIso been
suggested. "
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FIG. 1. Phase shifts for electron-alkali-metal-atom
elastic scattering in the & partial wave, calculated in
the three-state (nos, mop, 3d) close-coupling approxima-
tion

where k"'" is a matrix with elements k&"" 5&&.

Substitution of (2.16) in (2.13) and (2.15) leads to
expressions for the partial cross sections near
thresholds, and the resulting behavior is a gener-
alization of the signer threshold law" to the many-
channel case. In practice, for electron-atom scat-
tering, the potentials are not short range, in gen-
eral behaving asymptotically as some inverse
power of r. For hydrogenic targets, the long-
range inverse square potential coupling channels
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belonging to degenerate target states leads to
modifications of the threshold law. ""

The case of interest in this paper is that of 'P'
electron-alkali-metal scattering in the vicinity of
the threshold for the first excited state, n, P. In
order to understand the threshold behavior of the
partial cross sections, it suffices to consider a
two-state (n,s, n, P) close-coupling formulation.
We then have three channels, y, = np&k, P, y,
=n, Pk, s, and y, =n, Pkg, with k', &k22. Below
threshold k, =i

I k, I. At energies of interest, the
effects of y, can be neglected. The potentials V»,
V» and W& &

fall off exponentially (except for an
initial Coulomb term), and V» is proportional to
r ' for large r. It has been shown" that in these
circumstances, no modification of (2.16) is re-
quired. We obtain, therefore, from (2.13), (2.15),
and (2.16), for small Ik, I and f = 1, S=O,

Q„=Q„(0)[1—(2B/C) I k, I ]

for 4,'&0, and

Q, g
= Q &g(0)(1 —2Bk2),

Q „=(3B/k', )k, ,

Q» = 3(A'+B'),

for k,'& 0, where

Q „(0)= 3C'/k', (1+C') .
The constants A, B, and C are given by

(2.17)

(2. 18)

(2.19)

(2.21)

Since B&0, Q„ is falling, and Q„rising, just
above threshold. The elastic cross section thus
has an infinite derivative with respect to k', at
threshold, resulting in either a cusp (C &0) or
step (C & 0).

Results obtained for the 'P' partial cross sec-
tions, using a new algorithm developed for near-
threshold electron-neutral scattering calcula-
tions, "yielded a cusp for Li and Na, but for
K the elastic cross section takes the form of a
step (Fig. 2). Values of the constants B and C at
threshold for K were obtained by interpolation,
and were used to give the straight lines in Fig. 2

representative of the threshold law. Simple inter-
polation was not possible for Li and Na, but it was
found that the three partial cross sections obtained
at k, =+ 10 Ry could not be adequately fitted by
(2.17)-(2.19), for any choices of the two constants
B and C. Since the threshold law must be satisfied
even by. a model calculation such as the present
one, its validity is obviously restricted to an ex-

C =k', P„, B =k,P,2/(1+C ), A =BC P», -
(2.20)

where

3.0

2 meY

~ 0.027 meY

c 20

Lsa
~a

Lh
hm

0 I I I I I I I I I

-0.05 -0.04 -0.03 -O.OR -O.OI 0 O.OI 0.02 0.03 0.04 0.05

Ry Isa k~, Ry

FIG. 2. Partial P cross sections for elastic (solid
line) and inelastic gong dashed line) electron-potassium
scattering in the vicinity of the 4p threshold. The short
dashed lines are the cross sections given by the Wigner
threshold lair.

tremely narrow energy range. The explanation is
clearly that P» and P» are constant only to first
order, and vary rapidly away from threshold,
presumably due to resonant behavior introduced

by the long-range potential V». We conclude that

it is primarily a resonance, not the Wigner thresh-
old law, which provides the structure in the 'P'
partial scattering cross sections. This conclusion
is supported by calculations for the 'P' partia, l
wave, ' ""in which resonant behavior is absent,
and for which the Wigner threshold law has almost
negligible effect on the partial scattering cross
sections.

E„=EA+k, +E, , (3.1)

where EA is the electron affinity, E, is the excita-
tion energy of state a, and k, is the ejected elec-
tron energy.

A. Photodetachment model

If we neglect all transitions of inner-shell elec-
trons, we are dealing with a two-electron system,
and the partial differential photodetachment cross
section can be expressed in dipole length form

2

cog (d]

(3 2)

III. PHOTODETACHMENT

We consider photodetachment of an alkali-metal
negative ion by photons with polarization n, the
electron being ejected with wave vector k„and
the neutral atom being left in the final state a. For
photon energy E„,
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and in dipole velocity form

dK(v) - 16~ra
(k, )= ' P 4Pn ~ (v, +V,)4, d~

dk, ' +E,

TABLE II. Configuration-interaction coefficients of
the first six configurations in the negative-ion wave
functions of Weiss. 5

(3.3) Ll Na

Here n is the fine-structure constant, ao is the
Bohr radius, u, is the statistical weight of the ini-
tial state, and the summation runs over all degen-
erate initial and final states. The initial-state
wave function is 4&, assumed unit normalized,
and 4& is the final-state atom-plus-electron wave
function, with normalization

+1* k~ Cy k~ d7' = P7Tkil5 ka ka (3.4)

212; (L 'S'MzMz
~ XLX)) = Q A C) (L 'S'Mz Mz ~ X,X)),

(3.5)

where the 4 are antisymmetric with respect to
interchange of space and spin coordinates, and the
A are the configuration-interaction coefficients.
To illustrate the importance of configuration in-

The length and velocity cross sections should be
equal in the limit of exact wave functions, but
since we will of necessity be using approximate
wave functions, comparison of length and velocity
results provides a check on the accuracy of the
model.

In the present work we take the results of gneiss'
for the initial states, which are a superposition of
configurations a = n]le,'l,' of the form

2s
2P2'
3d2
3s2
2s 3s
2s4s

0.931
0.330

-0.012
-0.111
-0.095

0.048

3s
3P2 8

3d2
4s2
3s4s
3s5s

0.941
0.305

-0.017
-0.118

0,074
0.038

s2
4p28
3d
5s2

4s 5s
4s 6s

0.935
0.334

-0.018
-0.109
-0.053
-0.007

The signs of the P configurations have been changed
to correspond to the phase convention used in the pres-
ent work.

teraction in these calculations, we give in Table II
the configuration-inte'raction coefficients of the
six most important configurations (of 14, 11, and
9 for Li, Na, and K, respectively). Consistent
with the scattering model, we take only the two
outer electrons of the negative ion into account.

The coupled scattering wave functions given by
(2.7) are used for the final state 4&. The form of
(2.7)-(2.9) was chosen so as to satisfy the normal-
ization condition (3.4). This function, however,
has the outgoing wave form, 4&', whereas it is
well known that the incoming wave form, 4&
should be used in calculations of this type. It is
easily shown that [)k&] ']* is simply the function
given by (2.'l)-(2.9) with the factor i') replaced by
(-i)", and hence we may write (3.2) as

dK (k(2) 4v(xao@v g g g g g ( i )])F)1 (k~)
dk(2 (2L + l)(2$ + 1) z1 z& 1222 ))2 ))& ]& 22& z z

2

xC"" C'""' (al+SMzMz ~n-(r, +r, ) ~L'S'M)Mz), (3 8)

4m a'E
K "](k,) = ' " P ~MI" ](al LL'S') ~' (3.7)

in terms of the reduced matrix elements

where the primed and unprimed quantities refer to
the initial and final states, respectively, and the
matrix element involves the wave functions given by

(2.8) and (3.5).
Integrating over all angles of the ejected electron

and averaging over all polarizations of the light we

obtain the partial cross section

M (al)LL'S') =(al)LS'I lzk+z) I
lL'S') ~ (3 8)

Two special cases of (3.6) are of interest. For
light polarized linearly along the z axis (n ~ z = 1)

dK k K ' [1+P' '(k )-'(3cos'8 —1)]

(3.9)

and for unpolarized light incident along the z axis
(n ~ z = 0) the form is as (3.9) with ]8 replaced by
——,'P. In (3.9) cosa = k, 2, and P is known as the
asymmetry parameter, given by"

2

2 (k,)=(2(—1)'" Q (l+LM'21k'l} Q I (k "[(21,~ l}(21," ~ 1)(2L ~ l}(2L"+1)]'"
l2L 12) 12 L, L"

xC')'& C" W(l l,"LL",2l, )W(11II.",2I, ')M "(al)LL'S')M *(al)'L"L'S'),
10

(3.10)
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ff(Z„)=g K(k.). (3.12)

In theory, the sum over a should be over all possible
states that can be excited at the energy E„, includ-
ing the continu~. n if E„ is sufficiently large (double
detachment); in practice it is limited, at all ener-
gies, to the number of states included in the close-
coupling expansion. Thus, contributions from
highly excited states, core electrons, and double
detachment are not allowed for in this work.

As a check on the calculations, in addition to
the comparison of length and velocity cross sec-
tions, the continuum oscillator strength sum"

N =
4m'aa'0 0

(3.13)

where the W's are Bacah coefficients.
For alkali-metal negative ions initially in the

ground state I.' = S' = 0, implying that L = L"= 1. If
the photodetachment process leaves the neutral
alkali-metal atom in the ground (n, s) state, I, =1,
we ob/ain the result P i(k„,) -=2. For linearly
polarized light, therefore, the differential cross
section vanishes in the plane normal to the direc-
tion of polarization, while for unpolarized light the
differential cross section vanishes in the direction
of light propagation, in accord with conclusions
based on conservation of angular momentum. This
is a relatively trivial result, but it should be noted
that measurement of P(k„&) would provide a useful
check on the assumption that photodetachment of
the alkali-metal negative ions can be adequately
represented in LS coupling, with neglect of the
spin-orbit interaction.

For photon energies sufficient to leave the neu-
tral atom in the first excited state (n,P) we obtain

lM'"'l'+W2(M'"4'"'*+ M'"'M'"'*)
lM& t &l'+ iM«&l'

(3.11)
where we use the shorthand notation M, . Starting'2'
from (3.3) instead of (3.2), equations analogous to
(3.6)-(3.11) can be derived for the dipole velocity
form of the cross sections.

It is perhaps worth noting that if the formally in-
correct outgoing wave form 0&' were used instead
of 0& in the previous development, the results
(3.6)-(3.11) would be identical in every respect,
except that M would be replaced by M~, and the
converse. Since the first Clebsch-Gordan coeffi-
cient in (3.10) implies that l, —12' is even, it follows
that identical results for K(k, ) and P will be ob-
tained with Cz and C&', even in the most general
case of configuration interaction in the initial state
and L'&0.

The total cross section, in the present notation,
is given by

3,0 being the threshold wavelength, may be comput-
ed. If there is only one bound state of the ion be-
low the photodetachment threshold, Np should 5e
very nearly equal to 2 if the wave functions are
sufficiently accurate. Since the close-coupling
expansion is limited to a finite number of terms,
the neglected effects discussed in the preceding
paragraph should tend to make the calculated Np

somewhat less than 2. We may also evaluate"
X.p

Ap =
2 2 Edk, (3.14)

the dipole polarizability (in atomic units, a,) of
the outer electrons.

To facilitate the application of the results we

will also obtain the radiative attachment coeffi-
cient for electrons with a Maxwellian velocity dis-
tribution at temperature T. This related to the
total photodetachment cross section (assuming a
Boltzmann distribution of atomic states) by

where

f(g Z ) e Ac/air/(1 s he/xar)

(3.15)

(3.16)

g, and g, are the statistical weights of the ion and
ground-state atom, respectively, and the constants
m, h, c, and A, have their usual meaning.

B. Threshold behavior

kl+um(1 f R) (3.19)

Suppose we have n channels, n, of which are
open. We form a nxnp rectangular matrix, Xp,
from the open-open and closed-open elements of
X; the physically meaningful solution of the scat-

In order to investigate the threshold benavior of
the photodetachment cross section we use a form
of the many-channel quantum defect theory appro-
priate for collisions with neutral atoms. " This
theory is essentially equivalent to the many-chan-
nel effective-range theory, "and applies for poten-
tials having a finite range. In summary, one con-
siders solutions F(P) r), zero at the origin, which,
outside the range of the potential, take the form

F (P Ir) -f (r)+g(r)P(E) (3.1'f)

for r ~ r, The func. tions f (r) and g(r) are analytic
in the energy, and the matriW P is given by (2.21).
Writing the functions (2.9) symbolically as F (S (r),
one finds that

(3.18)

where
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tering problem can then be written in the form of
an n &n, matrix l.4—

I I I

2P
ESHOLD

Fo(SI r) = —2i F (P I r)xo. (3.20)
l.2

K(n, s) =K(0)(1+C, lk, I),

for k~~0, and

(3.24)

The photodetachment cross section is proportional
to cr(S)o (S), where o(S) is the dipole matrix ele-
ment

(3.21)

which can be expressed as a row vector with ele-
ments o&(S), j = 1 to no. From (3.20) one obtains

o (S) = —2io (P)XO, (3.22)

where o(P) is a 1» row vector whose elements
are formed from the dipole matrix element of
4(P). The reason for expressing o'(S) in this form
is that o(P) is a.nalytic and slowly varying in ener-
gy; all the energy variation is contained in Xo. The
cross section is then proportional to

"0 n

o(S)ot(S) =Q Q o, (P)X„,X,*~of(P). (3.23)
f=l l, 4=1

This expression allows us to determine the en-
ergy variation of the cross section. In the general
case, this involves a good deal of complicated ma-
trix theory, and in the present paper we consider
a particular case, that one discussed in Sec. IIC.
Here we have two channels, with kg&0 ly 1,
l, =0, and we are concerned with the region Ik, ~=0.
Below threshold k, =i Ik, l. Using (2.21) and(3. 19)-
(3.23) we obtain after some algebra

I.Q
hl

E

Q.s
I

O

~ 06

Q.4

0.2

0
2.0 I.6

I i I

I.Z 0.8
WAVELENGTH, I04 A

Q.4

FIG: 3. Photodetachment cross section for Li, from
the dipole length (dashed line) and dipole velocity (solid
line) calculations.

cross section at the neutral excitation threshold
appears as a step. The length and velocity results
are in reasonable agreement for Li and Na, but
not so satisfactory for K, particularly in this
threshold region.

The calculation of Moskvin" employed Hartree-
Fock wave functions without configuration inter-
action for the negative-ion ground state, and plane
waves for the continuum states. These results for
Li, Na, and K are larger than the present re-

K(nos) =K(0)(1—Cm km),

K(nop) = C~ km,
(3.25)

I.6
for k', & 0. C„C„and C, are constant to first
order, but depend in a complicated manner on k„
o,(P), n, (P), and P, and K(0) is the threshold
value. It can be shown that the sign of C, is un-
determined a Priori while C, and C, are both posi-
tive at threshold. The sign of the derivative of the
total cross section, K(n, s)+K(n, p), with respect
to k', just above threshold is also undetermined
a priori, but it is clearly infinite [barring the very
unlikely eventuality that K(0)C, = C,].

l,4

l.2

0.6

3P
SHQLO

IV. RESULTS AND DISCUSSION Q.4

The photodetachment cross sections obtained
using the formulas given in Sec. IIIA are shown in
Figs. 3-5. Theoretical values' of EA were used in
(3.1), and the corresponding values of E„edus
throughout the calculations. A sharp upward cusp
is obtained for both Li and Na, while for K the

0.2

2.0 I.6 I.2 0.8
WAVEI ENGTHI IO4 A

FIG. 4. Same as Fig. 3 for Na .

Q.4
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FIG. 5. Same as Fig. 3 for K .

0.4 FIG. 6. Photodetachment cross section for Na in the
vicinity of the 3P threshold from the dipole length calcu-
lation and normalized experimental data (0) (Ref. 4&).
The theoretical results have been folded with the experi-
mental resolution, and the experimental energy scale
is used.

suits at the maxima by 50%%uo or more, but the loca-
tions of the maxima are in reasonable agreement.
The calculation of Ya'akobi" for Li employed a
simple semiempirical model potential approach
suggested by Geltman, "yielding a cross section
with a maximum about one-half as large as the
present results, and at about twice the ejected
electron energy. The calculation of John and
Williams" employed the so-called Bethe-Longmire
method, "which requires the specification of elec-
tron affinities (taken from Weiss') and elastic
electron-neutral phase shifts (taken from Karule'),
and enforcement of the value N, =2. The maxima
in these results occur at significantly lower eject-
ed electron energies than the present results for
Na and K, and are about one-half the present
results in magnitude for Li and K, but in rea-
sonable agreement for Na . The calculations of
McGinn" for Li used a pseudopotential modifica-
tion of the Hartree-Fock core potential to obtain
the wave functions for Li, and a frozen core
Hartree-Fock calculation for the continuum states.
The cross section obtained has a maximum about
60%%u& of the present result, located at a slightly
higher ejected electron energy.

In Fig. 6 are shown, on a larger scale, the ex-
perimental results" for Na, obtained using a
tunable dye laser. The shape of the measured
curve in the region of the cusp is in excellent
agreement with the present result, the peak being
observed at 4687(+7) A, compared with the Weiss
value of 4692 A. Also shown in Fig. 6 are the
present dipole length results folded with the ex-
perimental wavelength resolution, and normalized

in energy to make the peaks coincide. The exper-
imental data, which are not absolute, have been
normalized in turn to the theoretical results at
about 4725 A. This double normalization results
in a good fit between the two curves (the fit using
the dipole velocity results is even better) and
leads to the conclusion that the experimentally
observed feature is indeed the 3P threshold. The
electron affinity of Na is then deduced, using (1.1),
to be 0.543 (+0.010) eV."

In Fig. 7 we show the results obtained for K in
the vicinity of threshold, together with experimen-
tal results. " The shape of the experiment is in
good agreement with the dipole velocity results,
but not with the dipole length results. The same
normalization procedure (of the dipole velocity
calculation) was adopted as in Fig. 6. Additional
structure is observed in the experimental results
at the center of the step, which is presumably the
effect of the splitting of the 4P state into the j= &

and j= & components. The present calculations do
not include the spin-orbit interaction, and hence
no such structure is obtained. Assuming that the
first minimum represents the 4P„, threshold, an
affinity of 0.5012 (+.0015) eV" is obtained for K
compared with the value 0.472 eV of Weiss. '

The partial K photodetachment cross sections
are plotted against electron momentum relative
to the 4P state in Fig. 8, over the same range of
momentum as the partial scattering cross sec-
tions, Fig. 2. The partial cross section for the
4Pk2d channel, not shown, is more than two orders
of magnitude less than that for the 4Pk, s channel.
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FIG. 7. Photodetachment cross section for K in the
vicinity of the 4P threshold from the dipole length (dashed
line) and dipole velocity (solid line) calculations and nor-
malized experimental data (0) (Ref. 41). Dipole length
and velocity results obtained using a close-coupling
wave function for the negative ion are given by (0) and

(x), respectively. The experimental energy scale is
used

We see that, like the partial cross sections for
electron scattering, the partial cross sections for
photodetachment depart from the linea, r behavior
demanded by the threshold law (3.24) and (3.25),
for very small energies relative to the 4P thresh-
old.

The asymmetry parameters tI(i'I, ) for the slow
photoelectrons above the threshold are plotted in
Fig. 9. The xesults are clearly sensitive to the

eV~

I 0027 meV

PO

-I
0

FIG. 9. Angular distribution parameter P for photo-
electrons from the first excited state of Li, Na, and K
following photodetachment, from the dipole length
(dashed line) and dipole velocity (solid line) calculations,
and experimental result (0) (Ref. 42) for K . Results of
improved dipole length and velocity calculations for K
are given as (0) and (x), respectively.

cu 0.5—

e 0.4—
I

0.3—
hC

O.l—

I I I I I I I I I

-0.05 -0.04 -0.03 -0.02 -O.OI 0 O.ol 0.02 0.03 0 04 0 05
—lk2li RY I/2 Ry I/2

FIG. S. Partial photodetachment cross sections for
K in the vicinity of the 4P threshold from the dipole
velocity calculation, for the 4skmp (solid line) and

4Pkms Pong dashed line) channels. The short dashed
lines are the cross sections given by the Wigner threshold
lair.

choice of dipole operatox, but for Li and Na the
I

length and velocity results are still in reasonable
agreement. For K however, very large differ-
ences are obtained above 1.0 eV. The experimen-
tal value" at 0.425 eV is in better agreement with
the velocity calculation.

Values obtained for No are given in Table III. It
might be noted that use of measured" rather than
theoretical' values of EA in (3.1), and therefore
(3.6), would lead to a slightly larger value of NIO" I

and slightly smaller value of N, , and that the
results most affected would be those for K . The
results for Li and Na are little changed from
the earlier two-state results, "since the dominant
contribution to N, comes from the long-wavelength
region, where the addition of higher states in the
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TABLE III. Values of the oscillator density integral
&p dipole polarizability e& (in units of a sp), and Xp (in
units of ap2). The contribution to the total from the in-
elastic region is given in parentheses, in %.

Li Na K

N(r. )
p

N(v)

~(L)

~(V)

X(~)
Xp

„(v)

1.94(18)

1.90 fl.6)

S32(2.6)

798 (2.6)

53.0

2.04(10)

1.90 (6.2)

989(1.6)

105S(0.8)

61.8

61.8

2.22 (7.3)

1.99(6.2)

1805(0.9)

1757(0.7)

88.3

82.3

'The total negative-ion polarizability is the sum of
this quantity and the values 0.& of Table I.

f
X.o g

4'g(r, +r,)'4', dr=, , —dA. .
4m m&0

(4.1)

Evaluation of the right-hand-side of (4.1) yielded
the results labeled y, in Table III. Values for the
left-hand-side of (4.1) have been obtained from the
negative-ion wave functions used in the present
work, and from preliminary calculations using
the wave functions of Ref. 6 (row b, Table I of
that work). The results are 54.5, 62.0, and 89.5
from the former, and 53.0, 62.2, and 78.9 from
the latter, for Li, Na and K, respectively.

The radiative attachment coefficient (3.15) has
been evaluated for K, and fitted for T between
200 and 20000'K to the expression

@(~)= 4[bo(~) —ba(&)] (4.2)

where b,(T) and b, (T) are obtained recursively
from

expansion (2.8) has little effect on the cross sec-
tion. The dipole polarizabilities of the negative
ions, also given in Table III, were changed even
less for the same reason. In view of the magni-
tude of tPe contribution to N, from the inelastic
region, i.e. , that above the first excitation thresh-
old of the neutral atom, where we expect the cal-
culation to underestimate the total cross section,
the dipole velocity results appear to agree better
with the correct result of 2.00.

We note that in addition to (3.13) and (3.14) a
third sum rule follows from the appljcation of
closure, "viz. ,

tions used in the K calculations are less accurate
than those used in the other cases, the inaccuracy
being such that the length results are more affected
than the velocity results. This suggests that the
inaccuracy could lie in the long-range part of one
or both of the sets of wave functions used. In mod-
el potential calculations such as this& there is no
a Priori reason to favor either length or velocity
results, but given the manner in which the initial-
state wave functions were obtained, there are rea-
sons to believe that the velocity results might be
preferable in this particular case. ' Considering
the final state, errors could arise either in the
target atom functions, which are probably less
accurate in K (see Table I) or in the scattered
electron wave functions. The latter possibility
could arise if insufficient states were included in
the close-coupling expression. The discrepancies
are not confined, however, to energies for which
coupling to higher states is liable to be important.
The omission of the so-called dielectric term, '
mentioned in Sec. IIB, could be more significant
for the dipole length calculations, since it is a
long-range interaction.

We have done some preliminary calculations
using the wave functions from Ref. 6 for the
ground state. This has the advantage that the
same approximation is now used for both the ini-
tial and final state. It should be pointed out that
this does not mean that dipole and velocity matrix
elements should be identical. For inexact wave
functions, a necessary condition for identity of the
two matrix elements is that the dipole length oper-
ator commute with the Hamiltonian. This is not
the case in the present calculation owing to the
presence of the exchange operator in (2.10). Good
agreement between the length and velocity results
remains, therefore, a necessary but not sufficient
condition for the validity of the results.

The results of these calculations for K are in-
cluded in Figs. 7 and 9. The same number of
states were included in the expansion (2.8) as in
the earlier calculations, but the improvement is
quite marked. It is interesting to note that the
velocity results are changed less than the length

TABLE IV. Constants to be used in the Chebeyshev
expansion for the radiative attachment coefficient.

Li

b„(T)=a„+2b„„(T)log,o(~T) —b„+2(T), (4.3)

starting with b„„=b„„=0. The constants in (4.3)
are given in Table IV, yielding 6t(T) in units of
10 "cm' sec ' for T in 'K to an accuracy of bet-
ter than 2%.

All of the evidence indicates that the wave func-

ap
a&

a2
as
a4
a5

8.741 34
3.218 68

-0.507 815
-0.439 885
-0.076 930 9
-0.022 858 1

8.427 41
3.107 57

-0.584 271
-0.496 106
-0.052 137 0

9.895 61
2.106 11

-1.386 41
-0.319230

0.097 717 0
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results and that the two sets of results are now in
much better agreement with each other. The shape
of both sets of results is now in good agreement
with the experimental observation. The improve-
ment is even more striking in the case of the asym-
metry parameter P. The results of the length and
velocity calculations agree to within 2% near
0.5 eV and are both within the uncertainty of the
measured value, 0.64 +0.02,"at 4880 A. At higher
energies the large discrepancy between the length
and velocity results is removed, and the new re-
sults are in much better agreement with the old
dipole velocity results, as expected.

In future papers further results using this new
model will be presented. The calculations will be
extended to the heavier ions Rb and Cs, for
which experimental results have recently been

obtained. ""'"The fine-structure splitting of the
'P excited state of these neutral atoms is even
larger, and some fascinating structure has been
observed at these thresholds. " It is hoped that
we will be able to gain some increased under-
standing of this structure by including the spin-
orbit interaction in the photodetachment calcula-
tion.
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