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The elastic scattering by positive ions of electrons with energies below 2 Ry was investigated
theoretically using the independent-particle-model (IPM) potentials of Green, Sellin, and Zachor to
represent the electron-ion interaction. Parameters were determined from minimization of the total energy
of the bound system consisting of the electron plus target ion, or in some cases from fits to the
single-electron eigenvalues of this same system. Potentials of the former type are generally the stronger
of the two. The IPM phase shifts versus energy are qualitatively similar to, but usually larger than,
those obtained using Hartree-Fock-Slater potentials. For energies below 1 Ry there is excellent
agreement between the differential cross sections for Na‘* obtained from the IPM and those computed
from semiempirical quantum-defect methods. For this same ion the IPM differential cross sections
likewise resemble those computed from Hartree-Fock potentials and lie between the Hartree-Fock results
obtained with and without local exchange contributions. Phase shifts are computed using the
independent-particle model for all positive ions of nitrogen and oxygen, species of atmospheric interest.

INTRODUCTION

Studies of the interaction of low-energy electrons
with positive ions are necessary for a thorough
understanding of processes occurring in the upper
atmosphere and in plasmas, and of processes pro-
ducing astrophysical phenomena. Studies of elastic
electron scattering are important in providing the
directional information necessary to describe the
transport of electrons through ionized gases.
While investigations of excitation and ionization of
positive ions by electron impact are rather exten-
sive, treatments of elastic scattering are much
less so and no experimental results are available.
Theoretical investigations are generally centered
on hydrogenlike ions'™ (especially He*) or on
singly charged positive ions.®”” There is sufficient
information in Seaton’s quantum-defect calcula-
tions’ to compute low-energy phase shifts for a
few of the more highly ionized species.

The intent of the present investigation is to as-
sess the applicability of the simple atomic inde-
pendent-particle models (IMP) of Green, Sellin,
and Zachor® (GSZ) to the study of the elastic scat-
tering of electrons from positive ions. In particu-
lar, the validity of methods for choosing the pa-
rameters of this IPM potential will be examined.
Special attention will be given to the ab initio pro-
cedure of Bass, Green, and Wood,® where the po-
tential parameters are those which minimize the
total energy of an atom. This method has been ex-
tended recently to ions by Szydlik and Green'® with
a large measure of success. Indeed, in both of
these works the total energies are in excellent
agreement with Hartree-Fock values. For pur-
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poses of comparison, potential parameters derived
from phenomenological fits to experimental bound-
state data will also be employed.'!

The current study will explore mainly the region
below 2 Ry (27 eV) where inelastic and reactive
processes are not expected to be significant. Com-
parison will be made between results computed
from the GSZ independent-particle model and those
obtained using semiempirical quantum-defect
methods, Hartree-Fock-Slater and Hartree-Fock
calculations. For purposes of comparison with
the last model, a few IPM computations will be
performed at energies higher than2 Ry. The meth-
od will be applied to the ions of nitrogen and oxy-
gen because of their interest to us as atmospheric
gases.

METHOD OF CALCULATION
Phase shifts and differential cross sections

Because we are concentrating on low energies,
the method of partial waves may be applied con-
veniently. The target ion is treated strictly as a
local spherically symmetric potential with a
residual Coulomb tail appropriate to the charge
on the ion. The form of this potential and the
methods for choosing the parameters of this po-
tential will be described in detail in the following
section. The target is thus assumed to be essen-
tially structureless and the theory considers the
effects of neither the total angular momentum of
the target nor the spin of the electron. The calcu-
lation cannot distinguish, for example, between
the triplet and singlet partial waves for scattering
from singly charged ions of the noble gases.
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Methods for computing phase shifts and differ-
ential cross sections for scattering from such
“modified” (by a short-range interaction) Coulomb
potentials are well known and will be described
only briefly here. The reader is referred to stan-
dard works'? for a more detailed treatment.

In the region where the target potential can be
regarded as entirely Coulombic the wave function
for an outgoing electron with orbital angular mo-
mentum / has the asymptotic form

U,~F,+A, (G, +iF)), (1)

where F,=F,(y,p) and G, =G,(y, p) are, respective-
ly, the regular and irregular Coulomb functions,
with p=Fkr and y = — 7/EY2, where 7 is the ionicity
of the target and E is the electron energy (Rydberg
atomic units will be used throughout). The partial-
wave amplitude A; is given by

A =(e?'%1-1)/2i , (2)

where 0, is the phase shift due to the short-range
interaction. To obtain the partial-wave amplitude
(and the phase shift) the Schrédinger equation is
integrated outward (the Cowell-Numerov method!?
was used here) to some matching radius 7, at
which the short-range interaction is negligible.
The logarithmic derivative at »,, of the numerical-
ly computed U, is equated to that calculated from
the asymptotic form. From the resulting equation
the partial-wave amplitude and the short-range
phase shift can be obtained.

The scattering amplitude f(6) is the sum of two
parts: f4(6), that due to the short-range interac-
tion, and f(6), that resulting from the Coulomb
potential. The equations for these are, respective-
ly,

f,(e):%f:(Zl +1)A,€**91P,(cosb), (3)
=0

fe(0)= -mexp{— iy In[sin®(6/2)]+2i0,} ,

4)

where

o, =arg(1 +4y) + zl:tan"(-y/s) (5)

s=1

is the Coulomb phase shift and other symbols have
their usual meanings. The differential cross sec-
tion is merely

2 (0)=17(0F =5 +2Ref 2(0)f () + £ (0",

(6)

where do,/dQ is the Rutherford cross section. The
analyses to follow focus on calculating phase shifts
and differential cross sections. Where emphasis
is to be on the short-range behavior of the poten-
tial, the ratio of the differential to the Rutherford
cross sections will be discussed. Infinities at

6=0 produced by the residual Coulomb interaction
cause both the total elastic and the momentum-
transfer cross sections to diverge.

Form of the potential and its parameters

The form of the potential representing the ion-
electron interaction is that of the GSZ independent-
particle model appropriately modified for ions,®
viz.,

V(r) == (2/7)[(Z - n)Q(r) +n], (N
where
1
Q(r) =H(7’——1):T . (8)

Here Z is the atomic number of the target ion, 7
is the degree of ionization or ionicity, r is the dis-
tance of the projected electron from the nucleus of
the target ion, and H and d are adjustable parame-
ters. This potential is seen to be divisible into
the appropriate “short-range” and Coulombic
parts. The parameter d determines the range of
the short-range interaction. With no significant
error this part of the potential is taken as effec-
tively zero beyond 20 Bohr radii.

Since the long-range behavior of the interaction
is dominated by the Coulomb potential, core polar-
ization effects were neglected. Such effects may
still be appreciable for the less highly ionized
species with “soft” outer-shell electrons. Because
of the low energies being investigated, imaginary
terms in the potential are also ignored. However,
these are found to have little effect on the elastic
scattering from neutral atoms even at energies
much higher than those considered here.

The energies of the incoming electrons treated
here are lower than, or of the order of the kinetic
energies of the electrons in the target. Thus, in
determining the parameters of our IPM potentials
it is assumed that the time spent by the incident
electron in the vicinity of the target is sufficient
to produce a rearrangement of the target electrons
to one characteristic of the bound composite sys-
tem of electron plus target ion. Sometimes the
charge distribution of the target is considered to
be “frozen” and the projected electron produces
no redistribution. Such an approach would be more
valid at energies higher than those investigated
here.

To treat accurately the low-energy elastic scat-
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tering of electrons it is important to include the
effects of exchange.!*"'® This is often represented
approximately through a local exchange potential,
such as that of Slater'” or Gaspar,® which is pro-
portional to the one-third power of the electronic
density. There the interaction of an electron with
a “hole” of constant charge density is computed
and averaged over the momentum of all the occu-
pied states. Mittleman and Watson'® maintain
there is little justification for such an averaging
procedure since the momentum of the incident
particle is unrelated to the momenta within the
Fermi sea, i.e., the momenta of the electrons in
the occupied states. They have obtained a local
density form for the exchange potential which is
momentum dependent. However, their exchange
potential is applicable only at momenta much
greater than the Fermi momentum.

The Hartree-Fock-Slater potential as used by
Herman and Skillman?° has the form

Vislr) =22+ 2 [ ottt
o /3
+2 f @5— 6<%p(r)> , )

where Z is the atomic number and p(r) = o(r)/4n7?
is the spherically averaged total electronic charge
density (both spins). The last term is the free-
electron exchange potential. The Gaspar-Kohn-
Sham®® form of the exchange potential is 3 that

of the last term in Eq. (9). It is here maintained
that the GSZ potential implicitly incorporates the
effects of exchange because of the methods em-
ployed in determining the potential parameters.
Quite evidently the effects of exchange are incor-
porated in the GSZ potential if its parameters are
derived from empirical fits to atomic energy
levels. The variational technique of determining
the potential*parameters (and the potential’s eigen-
functions) from minimization of the total energy
also results in the inclusion of exchange since the
total Hamiltonian, the expectation of which is min-
imized, includes exchange explicitly. However,
the admonition of Mittleman and Watson regarding
exchange obtains here as well. In addition the
“exchange” portion of the GSZ potential is assigned
the same spatial dependence as the direct part.
Perhaps the GSZ potential might be improved in
future work through the inclusion of a distinct
local exchange term proportional to p¥%. Taking
the usual GSZ potential as a starting point, the
electronic charge density can be computed from
Poisson’s equation and is given by the expression

_(Z-m)He™™ ( 2H
p() " 4wrd 2w (r) (w(r) -1 > ’ (10)

where

wr)=H+(1-He ™,

As previously mentioned, two techniques were
used to determine the IPM potential parameters.
In the first of these the parameters chosen are
those which minimize the total energy of the bound
target-ion—electron system. Such techniques were
found to give total binding energies in excellent
agreement with Hartree-Fock results. It should
again be remarked that our IPM does not distin-
guish among the terms of a multiplet. In the case
of oxygen, for example, the total energy obtained
is the “center of gravity” of the energies of the
3P, D, and 'S states, all of which have the same
electronic configuration. This is borne out in the
calculation, where the energy minimum found for
oxygen using the GSZ independent-particle model
is extremely close to that of the Hartree-Fock en-
ergy of these three states averaged over S and L
as described in Ref. 10.

When the GSZ potential is fit to the experimental
excited levels of an atom or ion (such as are given
in Ref. 21), it is assumed that the core is undis-
turbed and that the single-electron energies of the
IPM are to be identified with the energies of the
appropriate excited states. In addition, averaging
techniques are employed similar to those used in
assessing the results of the energy-minimization
procedure. For example, for oxygen, levels were
averaged over total angular momentum as well as
over the triplet and quintet spin states. For neon
and argon the doublet and quartet spin states were
averaged. Because of difficulties encountered in
computing accurately the energy of the valence
level, this was given ten times the weight of the
others in the fitting procedure. Where single-
particle levels of the core are included in the fit,
these were taken from the ESCA?? compilation.

For the species studied here many of the experi-
mental levels and higher-lying excited levels are
available and either technique for determining the
potential parameters could be employed. The en-
ergy-minimization technique was favored since
it is ab initio and may be used when no empirical
data are available. Moreover, as exemplified in
Table I, in computing the energies of the core
levels, this procedure is as accurate as other
methods. Only in computing the energy of the 2p
valence level of atomic oxygen is the fitting scheme
significantly more accurate than that of energy
minimization.

RESULTS AND DISCUSSION
Comparison of IPM results with those from
Hartree-Fock and quantum-defect methods

In terms of the number of target species studied,
one of the most wide-ranging investigations of the
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TABLE I. Experimental and theoretical single-electron bound spectrum (in Ry) for neutral

oxygen.
Hartree- Herman-

Level Experiment? PM, ° IPM,© Fock ¢ Skillman HFS-Xo ©
1s 39.4 38.3 39.4 41.4 39.5 38.1
2s 2.35 2.24 2.09 2.50 2.14 1.90
3s 0.315 0.311 0.300 0.289
4s 0.127 0.127 0.124 0.121
58 0.0690 0.0688 0.0678 0.0666
6s 0.0432 0.0431 0.0426 0.0420
7s 0.0296 0.0296 0.0293 0.0295
8s 0.0216 0.0215 0.0213 0.0211
2p 1.000 1.157 1.012 ° 1.233 1.041 0.841
3p 0.202 0.201 0.195" 0.190
4p 0.0952 0.0948 0.0930 0.0914
5p 0.0544 0.0553 0.0545 0.0537
6p 0.0358 0.0362 0.0358 0.0354
3d 0.1129 0.1126 0.1118 0.1112.
4d 0.0634 0.0633 0.0629 0.0626
5d 0.0405 0.0405 0.0402 0.0400
6d 0.0281 0.0281 0.0279 0.0278
7d 0.0206 0.0206 0.0205 0.0204

2Values from Ref. 21 averaged over total angular momentum and spins.

bIPM with potential parameters from energy minimization.

°IPM with potential parameters from fits to experimental spectrum.

dyalues from E. Clementi, IBM J. Res. Dev. Suppl. 9, 2 (1965), averaged over P, IS, and
1D levels of the ground-state configuration using (25 +1)(2L +1) weighting factors.

€J. C. Slater, Adv. Quantum Chem. 6, 1 (1972). The value of o was set at 0.75, which
slightly overbinds neutral oxygen. Values with @ =5 were somewhat poorer. The latter tech-
nique [ Phys. Rev. 99, 510 (1955)] was used to obtain the Coulomb potential at large distances.

elastic scattering of electrons from singly charged
ions is that of Manson.® His study is very much
in the spirit of the present analysis. There the
phase shifts for the elastic scattering of electrons
from positive ions are computed using unrelaxed
Hartree-Fock-Slater?® (HFS) potentials of the form
given in Eq. (9) and characteristic of an electron
in the neutral atom. Results obtained in the pres-
ent study for the s-, p-, and d-wave phase shifts
(the f-wave phase shifts at 2 Ry and below are
negligible except for argon) are compared with
Manson’s in Figs. 1-3, respectively. Table II
contains the parameters of the IPM potentials
used to obtain the results displayed in these fig-
ures. Manson’s results for the s waves and p
waves are very similar to those obtained here. In
most cases the phase shifts calculated from the
atomic IPM are slightly higher than those obtained
from Manson’s HFS potential, although for He"*
and Na* the two sets are virtually indistinguish-
able. Since Manson considers targets at most one
electron away from a closed shell, he presents no
results for N* or O*, and thus avoids the difficulty
of treating target species with several closely
spaced levels of the ground-state configuration.
The phase shifts computed using an IPM poten-

tial obtained from fits to the single-electron levels
(performed only for Z="17,8,10, and 18) are usual-
ly smaller than those from an IPM potential whose
parameters have been determined from the mini-
mization of the total energy. The single exception
is nitrogen. Evidently, the non-Coulombic portion
of the IPM determined from energy minimization
is of longer range than that of the fitted IPM.
These ranges can be compared through their d pa-
rameters given in Table II.

Differences among the three methods, energy-
minimization IPM, fitted IPM, and HFS, are par-
ticularly marked for the low-energy d-wave phase
shifts for Ar*. However, all three methods indicate
a low-energy d-wave resonance although for the
energy-minimization IPM, the 7/2 phase shifts
occurs at lower energy than for the other two mod-
els. Above approximately 1 Ry, the three models
are in substantially better agreement. This is
particularly true of the fitted-IPM and HFS results.

Peixoto® has utilized Hartree-Fock potentials to
compute differential cross sections for the scatter-
ing of electrons from Na*. Analytic Hartree-Fock
functions were used to obtain the charge distribu-
tion from which the interaction potential was com-
puted. To this was added the Gaspar-Kohn-Sham
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(GKS) form of the p‘/ 3 local exchange potential.
While from the context of the paper it is believed
that the wave functions (and hence the charge dis-
tribution and potential) are for Na* rather than
neutral Na, this fact is not stated explicitly in
Peixoto’s paper. For reasons already given we
favor using the potential for an electron in a neu-
tral atom to describe the scattering of low-energy
electrons by singly charged positive ions. The re-
sults obtained from calculations with IPM poten-
tials (parameters determined from energy mini-
mization) are compared to Peixoto’s Hartree-Fock
results in Fig. 4. The differential cross section
(in A?) for 40-eV electrons scattered from Na* is
plotted as a function of momentum transfer, S

=2k sin}6 (in A™'), where # is the wave number
and 6 the scattering angle. The cross section com-
puted from the GSZ-IPM potential characteristic
of an electron in neutral sodium generally lies be-
tween those of the Hartree-Fock (HF) computations
with and without exchange. It is interesting that
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FIG. 1. s-wave phase shifts as a function of energy
for electrons elastically scattered from singly charged
positive ions. The numbers next to the curves are the
target atomic numbers. Curve legend is as follows:
solid line, IPM results with potential parameters deter-
mined from minimizing the total energy of the neutral
atom; dashed line, IPM results with potential parameters
determined by fitting the single-electron energies of the
neutral atom; long-short dash line, HFS results from
Ref. 5.

the angular distribution obtained from the IPM

has the general features of the HF results with ex-
change. However, in view of the relative inert-
ness of the target ion (closed in the 2p shell) it is
disconcerting that the agreement is no better than
qualitative. The agreement between the IPM and
HF results is improved if the IPM potential is one
characteristic of an electron in Na* to which the
GKS exchange potential [charge density given by
Eq. (1)] has been added.

Excellent agreement with the HF differential
cross section is obtained if the GKS exchange term
is added to the IPM potential characteristic of neu-
tral Na (not shown in Fig. 4). However, such a
procedure is redundant since the GSZ potential in
this case already includes exchange effects. The
significant discrepancies between the IPM and HF
results for electron scattering from Na* remain
unresolved.

In contrast to this there is excellent agreement
among the IPM, HFS,® and semiempirical quantum-
defect methods” in computing the differential cross
sections for electron scattering from this same
ion, i.e., Na*. In the last-named procedure the
positions of the Rydberg states of the neutral atom’
are used to compute the quantum defects whose

~
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FIG. 2. p-wave phase shifts as a function of energy for
electrons elastically scattered from singly charged posi-
tive ions. See caption to Fig. 1 for explanation of curve
legend.
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FIG. 3. d-wave phase shifts as a function of energy
for electrons elastically scattered from singly charged
positive ions. See caption to Fig. 1 for explanation of
curve legend.

values at zero energy are simply related to the
zero-energy phase shift of the same angular mo-
mentum. Rational approximations in powers of

k? justified by analytic continuation properties are
then used to compute phase shifts at low positive
energies. In Fig. 5 the ratio of the differential

TABLE II. GSZ independent-particle-model potential
parameters used in computing phase shifts for elastic
scattering of electrons from singly charged positive

ions.

Type of Potential parameters

Ion parameters 2 d (a.u.) H

He* EM 0.3807 0.6746
N* EM 0.8480 1.9250
N* FS 0.8585 1.8324
o* EM 0.7348 1.7731
ot FS 0.5745 1.2608
Net EM 0.5575 1.5131
Net FS 0.4619 1.1216
Na* EM 0.5840 1.6644
Ar* EM 1.0450 3.6554
Ar* FS 0.8407 2.6967

2EM means the parameters are those which minimize

the total energy of the neutral atom. FS means the pa-
rameters are those which provide the best fits to the sin-
gle-electron levels of the neutral atom.

cross section to the Rutherford cross section is
plotted as a function of the scattering angle. Ex-
cept for one curve to be explained later these
cross sections were computed from only s- and
p-wave contributions. To within the accuracy
with which data could be obtained from the graphs
in Manson’s® and Seaton’s” papers, the agreement
among the three methods at #=0.25 (inverse Bohr
radii) is excellent. The agreement is equally good
(if not better) at £=0.50 and 2=0.75 (curves not
shown.) At %2=1.00 the quantum-defect results
above 90° depart significantly from those obtained
using IPM and HFS potentials. An energy of 1 Ry
may be above the region of validity of the expan-
sions used to compute the phase shifts in the quan-
tum-defect prescription, although the abrupt de-
terioration in the quality of the agreement between
k=0.75 and £=1.00 is surprising. The additional
curve at £=1.00 was computed using the IPM and

FIG. 4. Differential cross sections as a function of
momentum transfer (s =2% sin}6) for 40-eV electrons
scattered from Na*: solid line, IPM results with po-
tential parameters determined from minimization of the
energy of neutral Na; long-dash line, IPM results with
potential parameters determined from minimization of
the energy of Na* and including GKS (Ref. 18) exchange
contribution and charge distribution given by Eq. (11);
long—double-short dash line, Hartree-Fock computa-
tion without exchange from Ref. 6; long-short dash line,
Hartree-Fock computation with GKS exchange potential.
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10 partial waves, although only those waves with

1 <2 contribute significantly to the differential
cross section. The effects of the d-wave contribu-
tion at this energy are readily apparent, whereas
at £ =0.25 they were imperceptible.

Elastic electron scattering from positive ions
of nitrogen and oxygen

Having established the reliability of our IPM pro-
cedures for computing phase shifts and differential
cross sections, the computations are extended to
all positive ions of oxygen and nitrogen, species
of interest as atmospheric constituents for which
there are no scattering data, experimental or
theoretical. The phase shifts produced by the
short-range interaction for electrons of repre-
sentative energies, 2 Ry and below, scattering
from the ions of nitrogen and oxygen are presented
in Tables III and IV, respectively. Phase shifts
for the more highly ionized species are virtually
energy independent in the range up to about 2 Ry.
Because of the general slow variation of phase

FIG. 5. Ratio of differential to Rutherford cross sec-

tions as a function of scattering angle for electrons
elastically scattering from Na* at £=0.25 and 1.00
(inverse Bohr radii). Except where stated otherwise
cross sections are computed from only s- and p-wave
contributions: solid line, IPM results with potential
parameters from minimization of the energy of neutral
Na; long-short dash line, from HFS results of Ref. 5;
long-dash line, from quantum-defect method of Ref. 7;
long—double-short dash line, IPM results including
contributions from all partial waves with I = 9.

shifts with energy, sufficient information is con-
tained in these tables to reconstruct accurately
the differential cross sections at any energy up to
2 Ry. The required Coulomb phase shifts are
easily computable using readily available computer
programs. While it is not our purpose to make an
exhaustive comparison with results obtainable by
the quantum-defect method, an apparent discrep-
ancy in the zero-energy p-wave phase shift for O**
obtained here (about 0.68 rad) and that derivable
from Fig. 2 of Seaton’ (about 0.55 rad) was some-
what disturbing since O** has the electronic con-
figuration 1s22s? and is thus a reasonable example
of a closed-shell ion. However, the energies of
the 2p and 3p Rydberg levels as given in Ref. 21
would indicate that the p-state zero-energy quan-
tum defect rather than being the 0.17 implied by
Fig. 2 of Seaton is more nearly 0.225. This latter
value gives an O** zero-energy p-wave phase
shift of 0.71 rad, in good agreement with our IPM
result.

To emphasize the short-range properties of our
IPM potentials, the ratio of the cross section to
the Rutherford contribution is plotted in Figs. 6

T T I I T T T T

ENERGY = 0.2 RYy

O 20 40 60 80 100 120 140 160 180
6 (DEGREES)

FIG. 6. Results of IPM computation of the ratio of
differential to Rutherford cross sections as a function
of scattering angle for electrons of energy 0.2 Ry elasti-
cally scattered from positive ions of oxygen. IPM po-
tential parameters from minimization of the total energy
of bound system of electron plus target ion. Results are
as follows: solid line, O*; short-dash line, O**; long-
short dash line, O°*; long-dash line, O'*.
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TABLE III. Phase shifts (§; in radians) computed from the GSZ independent-particle model
for elastic scattering of electrons from positive ions of nitrogen.

Potential parameters ® Energy
Ion d (a.u.) H ®Ry) S, %, 5, 2 6y
0.1 3.45 2.10 0.184 0.015 0.001
N* 0.8480 1.9250 0.8 3.30 1.92 0.371 0.079 0.020
2.0 3.12 1.76 0.516 0.166 0.061
Q.l 2.23 1.35 0.250 0.028 0.003
N2+ 0.6300 1.6191 0.8 2.19 1.29 0.307 0.060 0.012
2.0 2.12 1.22 0.364 0.103 0.031
0.1 1.44 0.818 0.177 0.023 0.002
Na+ 0.4555 1.3478 0.8 1.42 0.798 0.196 0.035 0.006
2.0 1.39 0.771 0.219 0.053 0.013
0.1 0.856 0.422 0.078 0.008 0.001
Né+ 0.2957 1.0394 0.8 0.850 0.417 0.084 0.011 0.001
2.0 0.840 0.410 0.094 0.016 0.003
0.1 0.426 0.139 0.014 0.001 e
N5+ 0.1524 0.6716 0.8 0.423 0.139 0.015 0.001 e
2.0 0.421 0.139 0.017 0.001 s
0.1 0.149 0.030 0.002 o e
N&+ 0.0960 0.6864 0.8 0.149 0.030 0.002 e s
2.0 0.148 0.030 0.002 e oo

2 Potential parameters from minimization of the total energy of the bound system of electron
plus target ion.

TABLE IV. Phase shifts (5, in radians) computed from the GSZ independent-particle model
for elastic scattering from positive ions of oxygen.

Potential parameters ? Energy

Ion d @u.) H (Ry) 8, 6, 0, S, 8,
ot 0.7348 1.7731 0.1 3.69 2.28 0.140 0.009 oo
0.8 3.55 2.10 0.322 0.057 0.012
2.0 3.37 1.94 0.488 0.136 0.045
0.1 2.53 1.58 0.268 0.027 0.002
o 0.5958 1.6039 0.8 2.48 1.51 0.335 0.060 0.011
2.0 2.41 1.43 0.404 0.106 0.030
0.1 1.76 1.07 0.245 0.032 0.003
o+ 0.4760 1.4361 0.8 1.74 1.04 0.268 0.049 0.008
2.0 1.70 1.00 0.297 0.073 0.018
0.1 1.18 0.676 0.164 0.024 0.002
ot 0.3674 1.2675 0.8 1.17 0.666 0.174 0.030 0.005
2.0 1.15 0.650 0.186 0.041 0.009
0.1 0.718 0.357 0.071 0.008 cee
o+ 0.2454 0.9998 0.8 0.714 0.354 0.074 0.010 0.001
2.0 0.709 0.350 0.080 0.013 0.002
0.1 0.366  0.126 0.014 0.001 oo
o¥ 0.1350 0.6900 0.8 0.365 0.126 0.015 0.001 cee
2.0 0.363 0.126 ¢.016 0.001 e
0.1 0.128 0.025 0.002
o™ 0.0800 0.6480 0.8 0.128 0.025 0.002 vee oo
2.0 0.127 0.025 0.002 oo oo

2By energy minimization.
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FIG. 7. Results of IPM computation of the ratio of
differential to Rutherford cross sections as a function
of scattering angle for electrons of energy 2.0 Ry elasti-
cally scattered from positive ions of oxygen. See caption
to Fig. 6.

and 7 as a function of scattering angle for several
ions of oxygen at energies of 0.2 and 2 Ry, respec-
tively. As expected, the greatest departures from
pure Coulomb scattering occur for the singly
charged O" ion, and the least for O"*, where the
departure from Rutherford scattering is negligible.
For the other ions there is a significant (much
greater than 10%) departure from Coulomb scat-
tering only above 70° at 0.2 Ry and only at the back
angles for an energy of 2 Ry.

CONCLUSIONS

Without precise experimental information it is
not possible to assess objectively the accuracy of
the current IPM analysis of the elastic scattering
of electrons from positive ions. For the lower-
order partial waves the IPM results are very sim-
ilar to those obtained using HFS potentials. The
IPM potential has the distinct computational ad-
vantage of being characterized by only two num-
bers, namely the H and d parameters. The analyt-
ic IPM is potentially of broader applicability than
the quantum-defect approach because of the latter’s
empirical basis. For similar reasons the energy-
minimization procedure for selecting the parame-
ters of the IPM potentials has been favored over
that of fitting the energies of the single-electron
levels. However, the IPM results using these two
different approaches are not widely at variance.

At no increase in the number of parameters a more
realistic p" 3 exchange term may be included in

the IPM potentials and this warrants further in-
vestigation.

The present results are sufficiently encouraging
to establish the validity of the GSZ independent-
particle model for computing cross sections for
the scattering of electrons from ions. The intent
has been to obtain a convenient and reasonably
accurate atomic model for applications. In this
respect the investigation has been successful.
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