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Coupled integral equations linking the direct and exchange (rearrangement) K operators are proposed
in analogy to similar ones linking the direct and exchange T operators derived in this paper. It is
shown that these pairs of coupled equations lead to the damping equation which was used in previous
work on identical-particle scattering and which expresses the unitarity condition. Other formulations of
integral equations for the K operator are also discussed.

I. INTRODUCTION

In earlier articles" we have considered several
types of standing-wave solutions to the Schrodinge~
equation describing potential-well scattering and
to the inhomogeneous differential equation for iden-
tical-particle scattering. In Ref. 1 (hereafter re-
ferred to as A} it was shown that different stand-
ing-wave solutions were obtained depending on how
one introduced the reaction matrix. These solu-
tions were shown to be associated with different
principal-value Green's functions and the precise
formal relationship was derived. Then in Ref. 2
(referred to as 8), analogous standing-wave solu-
tions were considered for the situation of identical-
particle scattering. A generalized formal relation-
ship between Heitler reaction matrices was derived
by use of a pa, radigm based on unitarity of the 8
matrix. The basic equation (8.24) for the paradigm
was a symmetxized Heitler damping equation of the
form

f'=X-isXt}(E-H, ) 9',

where Y' is defined by

f'=T(d) a T(e)P~

and 3:is analogously

X =K(d)+K(e)P

with the (+) and (-) signs enabling treatment of bo-
sons and fermions, respectively.

These results hold for the simplest fermion or
boson systems capable of undergoing rearrange-
ment, viz. , two identical particles interacting with
each other and with a center of force; the electron-
hydrogen system is our prototype. ' In terms of the
particle labels 1 and 2, T(d) and K(d) correspond
to particle 2 incident on and emergent from a tar-
get containing particle 1 in a bound state, while

T(e) and K(s) refer to the exchange process in
which 2 is incident and 1 is emergent. I'~ is the
two-particle transposition operator and H, is the
unperturbed Hamiltonian for 2 incident on a bound
state of i.

In 8, no attempt was made to display the inte-
gral equations actually obeyed by K(e) and X. Our
purpose in the present paper is twofold. First,
assuming distinguishable particles and using cou-
pled equations obeyed by T(d) and T(e) herein de-
rived, we generalize the usual integral equation
for K(d) to a coupled set of integral equations for
K(d) and K(e). This new matrix equation is then
shown, in conjunction with the one for T(d) and
T(e), to obey a damping equation in matrix form.
Second, now assuming identical particles, these
latter results are shown to lead to Eq. (1}, thus
providing a direct derivation of (1) based on specif-
ic equations for X and K(e). This complements our
more general derivation of 8, based on unitarity
alone. Vfe also discuss, in Sec. IV of this paper,
other forms for the direct and exchange T and E
operators, using them to argue that the sets de-
rived below, Eqs. (25} and (26) are the only ones,
so far as we are aware, that lead to the damping
equation (1).

Let us elaborate these points further. Ne con-
sider a, system of nonidentical particles in which
only the elastic channel is open; i.e., the energy
is below the threshold E& for either inelastic scat-
tering or rearrangement collisions. Then the S
matrix is simply related to a real phase shift in
each partial wave and therefore the operator K(d)
must exist. Naturally, a direct scattering transi-
tion operator T(d) exists as welL For this domain
of energy, E&E„ the problem resembles that of
potential-well scattering in that only one channel
is open. However, this resemblance is superficial
because in the problem at hand inelastic and rear-

1616



10 CHANNEL T AND E OPERATORS AND THE HEITLER. . .

rangement channels can be reached virtually. Fur-
thermore, as soon F. & E„one or both of these oth-
er kinds of channels become open and K(d) alone
cannot be used to specify even the elastic portion
of S. Since S(E&E,) is related by analytic contin-
uation to S(E ~ E,), this implies that rearrange-
ment and inelastic channels will influence K(d) no
matter which domain of energy is being considered.
Put another way, this means that for any composite
system K(e) will be reflected in T(d) and vice
versa, and similarly for K(d} and T(e) It s.hould
be no surprise, therefore, that our results are ex-
pressed in terms of equations coupling the direct
and rearrangement (exchange) T and K operators.

An important reason for using coupled equations
is that this permits problems associated with the
continuum for particles initially in bound states to
be circumvented. This is particularly useful in
attempting calculations involving rearrangements. -

Consider elastic scattering of particle 2 from a
bound state of 1. Writing T(2) for T(d), we have'

T(2) = V~+ V~(E'-H) 'V~

or equivalently

T(2) = V, + V,(E'-H, ) 'T(2),

II. COUPLED CHANNEL OPERATOR EQUATIONS

Ti~ = Vi+Vi(E' H) 'V—~, (5)

where k+j.
We shall discuss the alternative definition later

in this paper. The full interacting Green's opera-
tor (E'-H) ' may be written in terms of the non-
interacting Green's operator (E' H;) ' -by the usu-
al equation (see B for references and notation)

(z'-H)-' =(E'-H, )-' (z'-H }-'v,(z'-H)-',

wherei is 1 or 2 andE'=8+is, c-0'. We now

introduce an arbitrary 2&& 2 channel coupling ma-
trix W whose elements obey

We now turn to a discussion of coupled integral
equations for the direct and exchange T matrices,
T(d) and T(e). As is well known, there are two
distinct definitions of this latter operator" and

they will, in general, not lead to the same equa-
tions for analogous channel K operators. In the
present section, we shall use the equations,

(4)

The rearrangement channels (2 in, 1 out) are evi-
dently in (E' H) ', whic-h is generally noncalcu-
lable, or in the continuum states of 1 present in
(E' H, ) ', and-this portionof (E'-H, ) 'is equally
difficult to calculate. However, by relating T(d)
and T(e) via coupled equations in which both
(E' H, ) ' and (E-' H, )

' appe-ar, bound states
of 2 (occurring in a rearrangement) can be auto-
matically taken into account in (E' H, ) ' in a si-m-

ple way, thus finessing the problem of expressing
them using the continuum portion of (E' H, ) '. -
Similar remarks obviously hold for K(d) and K(e).

The case of .identical particles (indistinguish-
ability of 1 and 2) is even more to the point, for
here, no matter what value of E is considered,
rearrangement channels are always open. Hence,
a coupled equation approach would seem beneficial
ab initio. Indeed, using coupled equations of the
kind we propose herein, and retaining only the
ground state of the H atom, reasonably accurate
results for e +H scattering, comparable to those
obtained from much more complicated calculations,
have been recently determined. ' This, coupled
with the direct derivation of Eq. (1), leads us to
believe that our coupled equation formulation of
the K operator problem is the most appropriate
one available. Further discussion of the general
case has been given elsewhere. '

combining Eqs. (6) and (7) leads to

(Z'-H)-'= g W, ,(z'-H, )-'[I+ V, (Z' H)-'].

(8)

Using Eq. (8) in (4) and (5) leads to

T„=v, + v, P w„(z'-H, )-'[v, + v, (z'-H)-' v, ]

(~)

T~~ = V~+ Vq Q W;, (E H, ) [V„+V-, (E+ H) ~V~]. -
(10)

By the definitions of T» and T», Eqs. (4) and (5),
the above expressions lead to

T» = Va+ VP'»(E'-Ha) 'T»

+ VI,W~~(E'-H, ) '(T~, —V~+ Vg, )

and

T~l, = V~+ V~W~~(E+ HI, ) ~T»

+ V Wqq(E' Hq) '(Tgg —V~ + Vj-,),
which are coupled equations for T» and Tz&.

Let us focus on the quantity (E' H~} '(V» —V&)-
appearing in the above two equations. By the iden-
tity
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V»- Vq =H —Vq —(H —V„)

we have

(E' H-q) '(Va —V~) =(E' Hq-) '(Hg -Ha).

(13)

(14)

(15) and

W~~ =1-W„~

Now for the present two-channel rearrangement
problem, we note that Eq. (7) leads to

We now assume that all matrix elements will be
taken between initial and final two-body bound

states; i.e., that no three-body final states occur.
With these restrictions, we may rewrite Eq. (15)

as

(E'-Hg) (Va —VJ) =(E+-H&) '(Pg —E +it —ie)

(16)

W)q =1-$'~),
so that Eqs. (19) and (20) become

T„a = VaWa„+ VaWaa(E'-Ha) Taa

+ VaWag (E'-H; )T~a

and

(22)

(23)

or

(E' H, ) '(-V» —V~) =-I+(E' H, ) -'(ie),

T~a = V~WJa+ V~W)a(E'-Ha) 'Taa

+ V,W~q (E' -H))T, a . (24)

when applied to initial states on the energy shell.
In the limit e - 0', we obtain' ' ' "

(E' Hg) '(-Va —V~) = —1. (18)

and

+ VaW„(E' Hq)T, a-

Tqa = Vq(1 —W))) + V)Wqa(E' Ha) Ta„-

+ V)Wqq(E'-Hq)Tqa .

(19)

(20)

Using this result, Eqs. (11) and (12) may be re-
written as

Taa = Va(1 —Wa)) + VaWaa(E'-Ha) 'Taa

These are the coupled equations for T» and T»,
which for particle 2 incident on particle 1 in a
bound state are the channel T operators T» and

Typ Note that there is no coupling to either T»
or T», though these latter two operators are them-
selves coupled by equations obtained by interchang-
ing h and j in Eqs. (23) and (24). Either pair can
be used to describe scattering of identical parti-
cles since the overall amplitude is independent of
which particle labels are used.

Treating the pairs (T», T»} and (T», T„)as ele-
ments of a column vector, we may combine these
two pairs of coupled equations into one matrix
equation:

(25}

(26}

(V,W„V,W~'} (V,W„V,W„) (G,' 0 '} (T„T»l
I+ I

Taa Taaf (VaWai VaW»3 (VaWax VaWaa) (0 Gal (Taa Taaj

with G,'=(E' H, ) '. Thi-s is our basic equation for the channel T operators. By analogy, we define the
equations for the channel K operators as

(K„K„) (V,W„V,W„) (V,W„V,W~'I ( ', 0) (K„K„'I
Ka, Kaa) (VaWa, VaWaaf (VaWaa VaWaak (0 G,) (Ka, Kaa j

where G~ = ReG'; is the standing-wave Green's function in channel i.
We now investigate whether the above definition of the 2 x 2 matrix K in Eq. (26) yields a Heitler damping

equation relation with T given by Eq. (25). To study this, we form the difference of Eqs. (25) and (26) to
find

((T„—K„) (T» —K,a)} (V,W„V,W») (G, 0 ) l(T„-K„) (T» -K ))
(Ta, -Ka, ) (Taa —K» 1 (VaWaa VaWaal k Gtl k(Ta, —Ka, ) (T~a -Kaa)j

(V,W» V,W„) (5(E-H, ) 0 '} (T„T„'}
aWs~ VaWaa) ( 0 5(E -Ha~I (Ta, Taa j (2f)

or in full matrix form

[1—'QG ](T —K) = iw'05T, - (28)

I

trices T, K, Ga, and 5. Now by Eq. (26}, we note
that

where comparison of the above two equations shows
the obvious definitions of the elements of the ma-

K =[1—'UG ] 'V

so we immediately find

(29)
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T =K- im'K5 T.
This is, of course, the Heitler damping equation
for the case of distinguishable particles. Because
K satisfies it, we take (26) as the definition of the
appropriate K operator matrix. We discuss it in
more detail in Sec. IV.

III. HEITLER DAMPING EQUATION FOR IDENTICAL

PARTICLES

22 21 12 &

we may rewrite Eq. (29) as

f'=X- iwK„6(E -H, ) f -iwK„6(E -H, )T

v i wK, ~6(E —H, )T,~P» .
In the notation of 8, K(d) =K» and K(e) =K».

The last two terms in (34) are equal to

iwK2, 6(E --H~)T~2P~2P» +i wK2~6(E -H~)T~~P»

(33)

= -i wK„P,26(E -H~)T„P» +iwK„P~6(E -H~)T~2,

by use of the properties P&& =1, T„=P&&T,&P&&, etc.
This can be rearranged to yield the result

iwK2, 5(E -H-, )T,RP»P, ~+iwK„5(E -H, )T„P»
=v[iwK2~P»6(E -Hm}(T22 + T~~P»)], (36)

so Eq. (34) yields

Ne now wish to specialize the results of Sec. II
to the problem of scattering of identical particles.
We take the point of view that we may take ampli-
tudes for distinguishable particles and symmetrize
them in order to obtain the amplitude for identical-
particle scattering. Thus, our physical amplitude
is V', which without loss of generality, we may
take as given by

&-T22 ~ &2iPu.

Matrix elements are to be taken between initial
and final states where 2 is free and 1 is bound,
a,s in 8, so that in the notation of 8, T(d) = T» and
T(e) =T„.

Using Eq. (30) derived in Sec. II, we may write
(31) explicitly in terms of the channel K and T
operators as

v -K„~K„P„-iw[K„6(E-H, )T„+K„6(E-H, )T„]
wiw[K„6(E -H, )T„P„+K„5(E-H, )T„P»].

(32)

Then using the definition of X from B,

or

r=X-iwX6(E -H, )f . (38)

It is this result which constituted the basis of the
analysis in B, and it is here shown to follow from
a coupled equation definition of the channel E oper-
ators for (he various rearrangements. It is im-
portant to note the restrictions applying in its der-
ivation. First, it is assumed that initial and final
physical states are restricted to those not involv-
ing three free particles. In addition, matrix ele-
ments are to be taken only with initial and final
states on Ne energy shell. Otherwise, the form
of the equations for the 7.'» elements need no longer
be given by Eqs. (23) and (24) and a more careful
analysis of Eq. (15) must be carried out, although
we can define (38) as well as (23) and (24) as one
of the infinitely many off-shell extensions of our
on-shell results. This has been done for the gen-
eral n-body N-channel case. '

IU. COMMENTS ON OTHER DEFINITIONS FOR E(e)

(E'-H) ' = Q [I+(E'-H) 'V, ](E'-H, ) 'W)i,

then we obtain the transpose of Eq. (25) [assuming
that the % array used is the transpose of that in
Eq. (25)]. This is reasonable since T,„and T» are
well known to be time-reversal partners. How-
ever, if we instead combine (8) with T», we then
obtain [in place of Eq. (25)] the expressions

7~a = ~~+ ~P'&HAGI'Tea+ ~a~'a) G~ Tya (40)

We have seen that coupled equations for K(e)
=K» and K(d) K», Eq. (26), lead to the proper
damping equation relating V' and X. For this rea-
son, we regard Eq. (26} as an appropriate equa-
tion to use in defining K(e). As mentioned in Sec. I,
there are other ways by which equations for K(e)
can be introduced, and we now consider some of
them.

We start with the alternate form for T» = T(e):

Ty~ = ~~+ ~)t"'~~
& (39)

where G' = (E'-H} ' is the full outgoing-wave
Green's function. This equation differs from (5}
in that the first interaction on the right-hand side
is V», not V, . We note that if one combines Eq. (39)
above with the full Green's function expressed in
terms of the (E'-H, ) ' via

f'=X-iwK»6(E H2)f' iw(+Km, P-»)-6(E -H, )f' Tga = ~~+ ~g~"gI Ga TIu+ ~)&,gag &pa

These results are immediately generalized to

(41)
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(T„T ) (V, V,) (V,W„V,W„)
1T21 221 (Vl V2) (V2W21 V2 221

(G,' 0)(T„T„'}
x (42)

The first altexnate form for K we consider in
this section is obtained by replacing G,' by G~:

(Z„Z ) (V, V,) (V,W„V,W„)
I+I

K» E22) (Vl V2 ) (V2W» V2W

Equation (43) defines an Hermitian set of K opera-
tors. However, the T's and K's of Eqs. (42) and
(43) are sot related via a damping equation. It is
convenient to use a more compact notation, simi-
lar to that of Eq. (28) in deriving our results. We
rewrite (42) and {43)as T.I42(2)& = V,

leak.

.&; (52)

ther K nor K has expl, icit solutions open to easy
interpretation, due to G~& not having a Lippmann-
Schwinger iteration, ' we cannot determine if they
agree, for example, on the energy shell. %'e are
thus forced to conclude that K is not an appropri-
ate K matrix operator to use with T of Eq. (41);
we have not as yet found any other K matrix oper-
atol to use with th1s particular form of T 1n ox'de1
to obtain an equation of the form (30) [however,
see our comments below Eq. (66}].

Another approach to formulating an appropriate
E(e) is as follows. I ippmann" has shown that the
rearrangement state vector I + „)obeys

2

I lI2 „)= I4-„(2)&+G,'(V, —V,)leT, (2))+G,'V, l~k „&,

(51)

where I 4k(2)& is a product of a bound state for par-
ticle 1 and a plane-wave state of momentum k for
particle 2. The notation is that of B. The rear-
rangement (exchange) T(e)-operator T» is defined
by

T =V+'UG'T,

K = V+QG'K

= V+QG'K+imQ5 K .
Subtracting (46) from (44) leads to

T-K=QG'(T-K)-ille5K

(44)

(45)

(46}

T» = V, + V,G', (V, —V,)+ V,G', T„.
A formal solution to T» is easily obtained as

T = V + VG'V,

(53)

(54}

multiplication of (51) by V, leads to the following
integral equation for T~:

(47)

OX'

T-K=-iv(G') '[(G') '-u] 'u5K. (48}

If the product (G') '[(G') '-'V] 'D were equal to
T, then Eq. (48) would be the damping equation re-
lating T and K. It is easily seen from (44) how-
eveI[, that the explicit solution for T is

T=(G') '[{G') '-~1'V. (49)

Hence, T- K4-imT5K, and we have our first ex-
ample of a Hermitian set of X operators which do
not lead to a damping equation. Hence, the set K
is not appropriate. In further detail, we can easily
see that

T-K=-ivT5K-ill(G') '[(G') '-u] '

/V, 0)
x %'5K; (50)

the second term on the right-hand side does not
vanish.

Now we know that T» and T~„are both valid
forms for the rearrangement transition operator,
and that they agree on the energy shell. Since nei-

which is identical to Eq. (5}, and thus justifies
usillg tile llota'tloll T 12 111 (52).

I et us now define a rearrangement standing-
wave solution I P „)to the Schrodinger equation
analogous to (51):

I 8 „)=
I 4-(2)&+ a', ( V. —V,) I eT(2)& + G', v, I 4-„„&.

{55)

Just as only the last term on the right-hand side
of (51) contributes when I i/r'„„& is projected onto a
bound state of 2, so does only the last term on the
right-hand side of (55) contribute when I P „) is
projected onto a bound state of 2. In this case, the
dependence on the spatial coordinates of 1 in the
1th partial wave is n, (r,), where 22, is the Ith spher-
ical Neumann function (we are here ignoring spin-
orbit and tensor forces), as expected for a stand-
ing wave.

if I lji} ) is an appropriate standing-wave solu-
tion, then the "natural" K(s) operator associated
with it, K~, defined by

K:I42(2)& = V, I C'-„„&, (56

should be an appropriate E operator. I et us ex-
amine this. Multiplication of both sides of (55) by
Vx leads to
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Ka = V, + V,G~(V, —V,}+ V,G,K~ .
Similarly, K~, and T» obey

Ksa = V* + VsGt(V, —Va) + VRG,Km& (58)

W=Tjj —Tj„P)~ and X=Kjj -KjgPgj, we again find
a result like (62}:

T„=V~+ V,G,'(V, —V, )+ V,G,'T„. (59)

Neither the pair T~ and K~ nor the pair T» and

K~, are related by damping equations.
%e prove this latter statement for the pair T»

and K~,. Subtraction leads to

[1—G,
'

V, ](T„-K,",) =-fs V, 6(Z -H, )[(V, —V,)+K,",].

In this instance, also, we fail to produce Eq. (1),
the sine qua non of our results. Furthermore, we
are unable to show that Eqs. (38) and (65) are
equivalent, so that (65) does not seem to be an
equation to be used in the identical-particle case.

One possible conclusion to be drawn from these
results is that (25} is the only equation from which
a simple damping relation can be derived. As we
have shown elsewhere, however, there is another
procedure which can be followed. ' This involves
T», W„, and the Ieft-hand version of Eq. (6), viz. ,

Using T» =[1—G,'V, ] 'V„ the uncoupled equation
for T», (60) can be solved to give

(E' H) '=-(E H, ) '-+(E' H} 'V-((E'-H;)

(67)

1 =X" -ivT, 6(E -H, )X", (62)

where X" =K» aK»P~ and V' is defined by Eq. (31).
That is, instead of (1), we have an equation in
which T» rather than V'=T»+T»P~ occurs on the
right-hand side. Thus, only Eq. (26) has so far
led to the damping equation (1) for the symme-
trized operators.

Yet a different approach is possible. %'e could
consider the case where W~, =0, W» = 1 in (7);
then T» obeys

Tjk —~k+ ~jcj TjA (63)

Analogously, K» is defined as

Kjp —Vp+ VfGjKjg e (64)

A calculation similar to those of the preceding now
give so

Tgg =Keg, —is(l —G~ V~) 'V~6(E-Hq)K)~

=K)~ —ssTq)5(E Hq)K)~, - (65)

a nondamping equation because of the Tjj. Using

T., =K'., -fsT..6(Z -H, )[(V.—V,) +K".,l. (61)

Equation (61) fails to be a damping equation for
two reasons, the more important being the appear-
ance of T», rather than T» on the right-hand side.
The other is the factor (V, —V,); this vanishes
when E is below the three-body breakup threshold
Es, but even in such a case, T» +T».

It is clear that T(e) and K(e) need not be related
via a damping equation since unitarity does not ap-
ply to the pure rearrangement part of the ampli-
tude. Nevertheless, T and K do obey a damping
equation, and they ultimately lead to Eq. (1), while
T and K do not. We can ask if (61}, combined with
the usual damping equation for T» and E» might
lead to Eq. (1). The answer is no, since even if
E&E„we get

By following through the analysis given in Sec. II,
we find equations involving the transpose of the
operators VjW», i.e., W»V&. Equations for K op-
erators are then easily found which yield a damp-
ing equation exactly like Eq. (30). The extension
to the identical-particle case follows in the same
manner as in Sec. III., These results have been
discussed elsewhere' for the general n-body case,
and we do not detail them here. It is important,
however, to stress one point, common to both the
equations for T~, referred to above and Eq. (25),
but not associated with any of the equations of this
section that failed to yield a damping equation.
This is the presence of the matrix g in both the
Born term and the kernel of Eq. (25). Apart from
the equation for T» noted just above, no formula-
tion of coupled equations for rearrangement T op-
erators other than (25} (or the extensions to the
N-channel case') with which we are familiar have
this property: that the kernel of the equation has
the Born term as a factor. It is this property that
ultimately gives rise to the damping equation, and
is, therefore, the main reason we have for propos-
ing our method as a satisfactory means for treat-
ing rearrangement scattering problems.

V. SUMMARY

The results of this work are new coupled integral
equations for channel T and K operators for colli-
sions in which rearrangements are possible. These
have been shown to lead to a Heitler damping equa-

,tion relating these operators and, for the special
case of identical particles, to the symmetrized
form of damping equation obtained earlier by gen-
eral arguments. Further, it is shown that many
other common definitions of K operators do not
lead to the expected damping equations. This has
implications regarding which form of definition of
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K operators should be used in approximate calcula-
tions. Other aspects and extensions of this ap-
proach are discussed elsewhere, ' where, in par-
ticular, we examine in some detail the role played
by the parameters W;, , whose choice is dictated by
the requirement that the resulting integral equa-
tions have a connected, iterated kernel. ' Such
a discussion is beyond the scope of the present
article, whose purpose is to establish that (1) fol-
lows from (new) equations for T and fC, and also
to show that some of the plausible equations for
fC(e) that one might think of using to derive (1) are
not, in fact, suitable.
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