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Using Fredholm techniques employing only square-integrable basis functions, elastic s- and p'-wave

singlet electron-hydrogen-atom cross sections are calculated for the energy range 10-27 eV, that is, at
energies where a continuum of open channels is present. The s and p amplitudes are combined with

higher partial-wave amplitudes taken from earlier close-coupling results, to give singlet e-H elastic
angular distributions at and. above the ionization threshold.

I. INTRODUCTION II, THEORETICAL BACKGROUND

At incident energies above 0.5 hartrees, elec-
trons colliding with ground-state hydrogen atoms
can ionize the target, implying the existence of
an infinite number of final-state channels which
must be taken into account even for the calculation
of the elastic cross section. In any practical cal-
culation, this infinite number of degrees of free-
dom must be reduced to a finite number; the
Fredholm-optical-potential technique introduced
here represents one approach to this reduction.
Qualitatively, earlier Fredholm calculations using
square-integrable (L') basis sets have implied
that a branch cut corresponding to a single open
channel may be conveniently represented by a
small number of discrete poles, which arise from
the discretization of the unperturbed-channel
Hamiltonian in the L' basis set. The present de-
velopment suggests a natural extension of this
idea; that is, a multiparticle ionization cut may
be represented by the poles (and residues) gener-
ated by the appropriate I.' configuration interac-
tion for the multiparticle system.

The plan of the paper is as follows: The calcu-
lation of substituted Fredholm determinants via
the method of complex basis functions, and the
construction of the elastic scattering amplitude
are reviewed in Sec. IIA. In Sec. II 8 the construc-
tion of an inelastic optical potential which takes
particle indistinguishability into account properly
is discussed. Section III contains the results of
application of these techniques to the problem of
elastic singlet e-H scattering; s- and p-wave cross
sections are presented and compared with results
obtained using close-coupling techniques' and
T-matrix extrapolation' methods. Composite Fred-
holm close-coupling angular distributions includ-
ing partial waves with /=0, 1, . .., 5 are presented.
A summary and discussion are contained in Sec.
IV.

A. I. Fredhohn calculations of scattering amplitude

Earlier' ' work has shown that approximations
to the single-channel partial-wave Fredholm de-
terminant D(z) =det[(z —Jf)j(z —a')] may be ob-
tained from the matrix representations B and Ho

of the scattering Hamiltonian and kinetic energy,
taken in an I' basis. The approximate determi-
nant

a'""*(z)=1st( —) =]l( ')

-where E, and E, are the eigenvalues of H' and
H, respectively-can approximate D(z) for com-
plex z, away from the elastic cut; scattering
phase shifts may be obtained by calculating the
appropriate z E+ ic limit. ' This limit may be
taken using rational-f raction analytic continua-
tion,"equivalent quadrature, "or Stieltjes imag-
ing" techniques, and yields an approximate phase
shift through the well-known relationship'"

Calculation of inelastic-scattering amplitudes
or even the elastic amplitude at energies where
more than one channel is open requiz es knowledge
of the substituted Fredholm determinants. ' The
elastic 8-matrix element is given by "'"

S„„(Z)=D„(Z+ f~)/D(Z+ fe),

where D„ is the "substituted" Fredholm determi-
nant. The substituted determinants may be re-
garded as arising from taking the z- E+ ie limit
of the multichannel Fredholm determinant starting
on appropriate nonphysical Reimann sheets. ' '"
For the calculation of elastic e-H amplitudes, the
appropriate limits are shown in Fig. 1: Continua-
tion path a may be used to take the E + ic above
all of the cuts and yields D(Z + ie); path b starts
"below" the elastic 1s cut and takes the 8+i e
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limit with respect to all other cuts. The method
of complex I.' basis functions" which allows the
"rotation" of the elastic cut —giving the determi-

egnants D (z) and De (z), respectively, as shown
in Fig. 1, and thus allowing calculation of the ap-
propriate substituted determinants-is fully dis-
cussed in Ref. 15, where a technique of calcula-
tion of inelastic scattering amplitudes using I.'
basis sets is developed.

8. Construction of an inelastic optical potential

For electron-hydrogen-atom scattering, a
natural decomposition of the Hamiltonian into H
and H' is'

H = ——,
' V', ——,

' V', —1/r, - 1/r, +1/r»,
H = —

~ V', —
p V2 —1/r „

V = —1/r, +1/r„,

(2.4a)

(2.4b)

(2.4c)

which, appropriately, leads to a Fredholm de-
terminant D(z) = det[(z H)/(z -Ho)], w-ith an elas-
tic branch cut beginning at -0.5 a.u. Since the

decomposition of Eg. (2.4) is not symmetric with
respect to particle interchange, problems that
are not present when considering only elastic e-H
scattering arise when an attempt is made to ex-
tract scattering information at energies above the
first inelastic threshold. For example, if the
configuration

~
1s2s

~
is included in the basis used

to diagonalize H, then are we to include 1s(1)2s(2)
or 1s(2)2s(1) in the f,' set used to diagonalize H'?
If we use both, H and Ho have different dimension-
alities, giving D'~~""(z) incorrect asymptotic be-
havior as a function of z; if we are to keep only
one, the definition of H' becomes arbitrary, and
a unique phase, or set of substituted determinants,
cannot be extracted. This problem of the diffexing
permutation symmetries of H and H' is more fully
discussed in Ref. 8, where it is shown that a sim-
ple solution to the above-mentioned ambiguity is
to use an optical potential.

Defining a projector" P to project onto the elas-
tic channel, and Q to be its orthogonal complement,
we have

(2 6)

The elastic S-matrix element is given by

D„(E+ ie) det [(E +i e —Hog)/(E +is —Hog)]det( [E ie —H—~~ —H~(E +i@ —Hoo) 'Hop]/(E —i e —Hpl )'f
D(E+ ~~ det[(E+ic -Hog)/(E+ie -Hoo)]det/[E+ie -H~~ H~e(E+ie-Hoo) 'HoJ-]/(E+it -HJ~) f

D'„"(E +i e)
D'~'(E+i~) ' (2.6)

where

D'~'(E +i@)=detgE +is -Hr~-HJo(E +is Hoo) 'Hop]/(E-+is —HJz)),

D;~ (E+i@) det([E i e HI r Hro(E +is Hoo) He p]/(E it H p—p) f,

(2,Va)

(2.7h)

the factor det[(z -Hue)/(z -Hollo)] canceling identi-
cally.

The projected operators H~~~ and H~„most ap-
propriate for use in the present I.'-Fredholm cal-
culations are explicitly defined by their matrix
representations:

(H~~)„.=
~~

d'r, d'r. ki.«.)X'«2)

complete discrete I,' basis ()(,(r)}. HJ,~ is defined
in terms of the norma)ized and antisymmetrized
versions of the functions Q„(r,)y, (r,); thus

(Pp~), = ' d'r, d'r, &„(r,)x;(r, )

xH(r, r,)0„(r,)X)(r2)

,

d'r, d'r, y„(r,))(,(r, )
xH'(r, r, )y „(r,)g, (r,), (2.8a)

where the X, (r, ) are members of an orthonormal xH(r, r, )x, (r,)4 „(r,), (2.8b)
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FIG. 1. Branch-cut structure of D (z), D *(z) Fredholm determinants for e-H scattering; the elastic cut has been
rotated (Ref. 15) off the real axis via use of complex basis functions. Part (a), showing the cut structure of D~(z), path
"a" shows a continuation, which takes the E+ie limit for all cuts, yielding D(E+ie). In part (b), which shows the cut
structure of D *(z), path "b", which starts "below" the elastic cut (i.e., on the second Reimann sheet), shows a contin-
uation which results in performing the E'- i~ limit with respect to the elastic cut, and the E+ie limit with respect to all
other channels, resulting in D&~ {E+i~), the substituted determinant needed for construction of the elastic amplitude.
The determinants D'&" '(z) and D &' *

(z) have similar branch structures, and paths "a" and "b"yieM D &'(E+i~) and

D&~~ (E +i~), respectively.

with the + for singlets and —for triplets. In
terms of H» and H», approximations to the
"static-exchange" elastic phase shift are con-
structed by calculating the phase (in the 8 +it lim-
it) of the approximate determinant'.

1) E(z) =det[(zl -zZ -H»)/(zI -Ho»)], (2.9)

where H» and Ho» are given by Eqs. (2.8a) and
(2.8b) and the overlap orthogonality term d is
given by

pletely defined in Hilbert space by their matrix
representations. The fact that the projector I',
when applied to H, excludes all configurations
where the "target" electron is excited (electron 1
in our notation) makes the definition of Hz~ unam-
biguous once the single-particle basis has been
specified. ' The ambiguous parts of JI' are now all
contained in HQQ, whose explicit construction is
avoided in this optical potential formulation.

III. CALCULATIONS AND RESULTS

4 arises from taking matrix elements of the unit
operator with respect to the antisymmetric (real)
wave functions:

(1/W2)tg„(r, )y, (r, ) + $„(r,)X;(r,)]; (2.11)

(1/R2)[Q, (r,)Q,.(r, )s Q, (r, )Q, (r, )] . .

The operators &p»H», and HQQ are now com-

(2.12)

6 corresponds to the usual orthogonality terms
arising in the close-coupling method.

HQQ is constructed as per the work of O' Malley
and Geltman. " That is, each member of a com-
plete discrete one-electron set (Q, (x)} [not neces-
sarily the same set as the f g, (r)} used to solve
the static-exchange part of the problem] is ortho-
gonalized to the target ground-state function P„(r),
yielding a new set g, (r)} which may be assumed,
without loss of generality, to have been reortho-
gonalized and normalized. HQQ is then constructed
by calculating matrix elements of H with respect
to the properly symmetrized two-electron func-
tions

Using the method of complex basis functions, "
in conjunction with the inelastic optical potential
discussed in Sec. IIB, the determinants D'~' and
D;~' were approximated. Specifically, HI,& was
constructed using configurations of the form
Q„(r,))t, (r,e" ), and H» was constructed from the
symmetrized configurations

Q„(r,)g;(r,e "~)+P„(r,))t, (r,e" ),
the + determining whether the elastic cut is ro-
tated "up" or "down" by 2$ in the complex z
plane. " HQQ was formed by computing the matrix
representation of HQQ using two-electron configu-
rations formed from (real) one-electron functions,
orthogonalized to P„.

The potential

1/" (*)=sr „)a„,Z —
QQ

has a "two-body" cut, corresponding to the spec-
trum of the operator HQQ, which remains on the
real axis. The cut structure of D'~' and D,, ' is
thus that of Figs. 1(a) and 1(b), respectively, D' '

being calculated with the transformation r, -r,e
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and D'„' With the transformation x,-r,e ' . In
actual calculations, the rotated elastic cut is re-
placed by a row of poles corresponding to the
(complex) eigenvalues of H~pJ, , and the two-body
cut replaced by a row of poles corresponding to
the (real) eigenvalues of Hoo. The eigenvalues of
H» are simply given by E, = —~+E", , where the
eigenvalues E~, which are the eigenvalues of the
matrix representation of kinetic energy, are either
known analytically' or easily found if a Laguerre-
type basis is used for the diagonalization. More
importantly, the pole distribution generated by
use of a Laguerre basis in the construction of HI I
forms a set of abscissas corresponding to a
Gaussian-equivalent quadrature with known

weights, "'"allowing the embedding of the discrete
representation of the elastic cut into an appropri-
ate approximation to the actual cut via the disper-
sion-correction technique of Refs. 10 and 20.
This embedding allows the use of small rotations
for the calculation of D;, '.""Rational-fraction
continuation is used to. take the E+i e limit on the
upper lip of the two-body cut defined by the optical
potential. V'~'(z) is, of course, complex in the
E +if limit, the imaginary part being due to flux
leaving the elastic channel into all channels open
at a given energy, including ionization channels.
We note that rational-fraction continuation is ne-
cessitated by the pole approximation to the inelas-
tic optical potential, not by the discrete approxi-
mation to (E H~~) ', w-hose analytic structure is
correctly handled by dispersion correction. ' '"

A. Singlet s-wave cross section

TABLE I. Static-exchange singlet s-wave electron-
hydrogen phase shifts (rad) computed using a basis of
Slater-type radial functions, 'with and without complex
basis functions. A small but systematic error is intro-
duced by the use of complex basis functions (see Refs.
15 and 21).

k (a.u. ) &0 (No rotation)' 6+0(@ = 0.1 rad) 60 {"e~act")

0.2
0.4
0.6
0.8

1.871
1.241
0.871
0.653

1.862
1.232
0.862
0.645

1.870
1.239
0.869
0.651

Calculations performed with the free electron described by
the 14 Slater functions r& e ~&"2, where n = 0, 2, . . . , 13 and $,
=1.0.

For these calculations, the Slater-function coordinates (see
Ref. a) were "rotated" by 0.1 rad, i.e., r2 r&e '

1. Purely elastic scattering

To test the complex coordinate technique and
the construction of the optical potential, purely
elastic singlet s-wave phase shifts were calculated

TABLE II. Correlated singlet s-wave electron-hydro-
gen elastic phase shifts (rad) computed in the formula-
tion of Sec. II; results are given with and without "rota-
tion" of the elastic cut.

(a.u. ) &0 (No rotation) 50 (= Q.1 rad) &p ("exact")"

0.2
Q 4
0.6
0.8

2.053
1.401
1.026
0.881

2.043
1.392
1.017
0.865

2.054
1.403
1.029
0.875

Eight s functions and fiveP functions were used for
construction of the optical potential; The s orbitals,
r"e ~~", had exponents of 1.0, 2.5, 2.5, 1.8, 1.2, 0.75,
0.40, and 0.15 (n values were 0 for the first two orbit-
als and 1 for the others). The p functions were of the
form re ~&", were exponents of 1.0, 0.75, 0.5, 0.3,
and 0.15.

Results of an s-P limit calculation by S. A. Adelman
and W. P. Reinhardt, Phys. Rev. A 6, 255 (1972).

for the electron-hydrogen-atom problem. For
solution of the e-H problem in the static-exchange
approximation, H pp was diagonalized in the basis
P„(r,)y, (r, ), where the g(r, ) were chosen to be
the 14 Slater functions r2e '"2, n = 0, . . . , 13, with

$ =1.0, with appropriate angular factors. The set
generated a Chebyschev-type equivalent quadra-
ture. "'" H» (the static-exchange Hamiltonian)
was diagonalized in the same basis, appropriately
symmetrized. ' Results for the singlet s-wave
static-exchange phase shift with and without the
transformation r,- r,e' are given in Table I; as
expected, "coordinate rotation introduced a small
error in the calculated phase shifts. " Correlated
singlet s-wave e-H results obtained by construction
of V'~'(z) formed by diagonalizing Hoo in the basis
of all configurations generated from eight s-type
orbitals and five P-type orbitals, using HJ I, and

H» from the static-exchange calculation, are
shown in Table II, where they are compared with an

earlier s-P limit calculation; again, coordinate ro-
tation introduces a small but systematic error.

2. s-zvave elastic scattering at intermediate
energies

The radial-limit singlet s-wave cross section
was calculated using the static-exchange basis of
Sec. IIIA1 to construct Hpr, and HpJ. ' the s-type
radial Slater functions r"e &", with n = 0, . . . , 7, and
orthogonalized to Q„(r), were used to construct
HQQ [by performing a full configuration interac-
tion (CI) in the basisj. Coordinate rotation and
rational-fraction analytic continuation were used
to construct the appropriate substituted Fredholm
determinants. Figure 2 compares the radial-limit
($, = 1.0) results obtained by this method with the
radial-limit results of Burke and Mitchell' ob-
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FIG. 2. Singlet s-wave e-H elastic cross section com-
puted in the radial limit (i.e., H++ is diagonalized using
configurations formed only from states of s-orbital
symmetry) as computed by the Fredholm technique of
Sec. III. These results are compared with radial-limit
pseudostate close-coupling calculations of Burke and
Mitchell ref. 2). It is evident that the close-coupling
and Fredholm results would be very similar if an ap-
propriate averaging technique were used to eliminate
the spurious 'Qseudothresholds" in the close-coupling
calculation. (Statistical factor of 4 is included in this
cross section. )

tained using a pseudostate close-coupling. tech-
nique. Table III gives more detailed radial-limit
results, and gives some indication of the stability
of the results with respect to changes in the non-
linear parameter $,. Good quantitative agreement
with the pseudostate close-coupling results of
Burke and Mitchell' and Heller and Yamani' is
obtained, except near the "pseudoresonances"
occurring when the close-coupling "pseudochan-
nels" in the ionization region become energetical-
ly open.

To obtain fully correlated singlet s-wave cross
sections and the s-wave total inelasticity in the
ionization region, full configuration interactions
were carried out for IT+& using all 'S configura-
tions constructed from eight s-type, eight P-type,
and eight d-type basis functions, properly ortho-
gonalized to P»(r, ) Th.e radial s-type functions
were taken to be of the form r"e 4" (n = 0, . . . , 7);
the radial p-type functions were r"e 4" (n= 1, . . .,
8); the radial d-type functions were r"e ~"" (n

=2, . . . , 8). Combining representations of I7oc in
the s, s-P, and s-P-d limits with the static-ex-
change representations of Hgp and H» of Sec.
IIIA 1, the results of Fig. 3 were obtained using
the same rational-fraction fitting points as in
the radial-limit calculation. Convergence was
found to be good in the s-P limit. The stability

3.0
C)

LIJ
V)

CO
M
O
~~ 2,0

LLJ

&910
CO

I I I I I I

0.85 0.9 0.$5 1D 1.05 1.1

k (a.u.)

I I I I I I

1.15 1+ 1&5 1.3 135 1.4

FIG. 3. Sin let s-wave elastic e-H cross section with the optical potential H++ calculated in the s, s+ and s-p-d
1 t with ei ht Slater functions of each symmetry and full CI s performed in each case. tyThe total inelasticity is
given for the s+ and s-P-d limits. Convergence is good over the whole energy region, indicating that for this ener
range, orbital basis functions of f and higher symmetries are probably not needed for calculation of the elastic ampli-
tude and/or total inelasticity. Cross sections are in units of 7I'a 0, statistical factor of ~ not included. The comp ete.s,
s-p s-p-d calculations took 33, 121, and 291 sec (from the start) respectively, on a CDC-6400 computer.
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Fredholm'
k (a.u. ) $, =0.8 $, =1.0

Burke and
Mitchell

$, = 1.2 4 s states

Heller and
Yamani

10 s states

0.875
0.90
1.0
1.1
1.2
1.3
1.4

2.012 2.027 2.023
1.833 1.835 1.849
1.301 1.288 1.325
0.974 0.961 0.995
0.763 0.761 0.773
0.622 0.627 0.625
0.523 0.533 0.520

1.312
0.916

0.616
0.529

1.383
0.980

0.644
0.542

~ The fitting points for the rational-fraction wave (Rek, Imk)
= (0.88, 0.06), (0.93, 0.07), (1.0, 0.083), (1.1,0.10), (1.2, 0.11),
and (1.5, 0,14), giving a [2, 3) rational continuation. A rotation
angle of P =+ 0.1 radians was used to calculate D "' (E+ie) and
D1P' (E+i~).

"Reference 2.
Reference 4.
k =1.304 a.u. (k = 1.7).
k = 1.414 a.u. (k = 2.0) .

TABLE III. Radial-limit singlet s-wave elastic cross
sections (map) . Seven s-type Slater functions in addition
to Q fg were used to form pseudostates. These functions
were of the form r"e ~~", n = 1, . . . , 7. Computations
are shown for three choices of $~. (Cross sections do
not include the statistical weight of 4.)

of the results to variation of the nonlinear param-
eter $~, used in defining the P-type Slater func-
tion, is shown in Fig. 4, and was found to be
good for a large range of $~ spanning the actual
target size. Similar studies showed that the
s-P-d limit results were insensitive to variations
of $~ over a wide range of values centered at
about 1.6. Final elastic-scattering results and
total inelasticities are presented in Fig. 5, where
they are compared with. the T-matrix extrapola-
tion results of McDonald and Nuttall, ' the close-
coupling plus correlation results of Burke and

Taylor, ' and the close-coupling pseudostate re-
sults of Callaway and Wooten. ' Based on the
stability of the numerical results with regard to
change in basis size and variations of nonlinear
parameters, we estimate that the results should
be good to -5% over the range k = 1.0-1.4. Con-
vergence, for complex z, of V' a(z) itself was
much better than 5/g, with interpolation for dis-
persion correction and the subsequent extrapola-
tion computation V'"'(E+is) accounting for most
of the error. Unfortunately, we know of no rigor-

3.8

-8

Z
O
I-
ILI
V)

V)
COo 2.0
C3

LLI)
I

t-
ILI 1.0—
C9
Z
V)

I I I I I I

0.85 0.9 0.95 1Q 1.05 1.1

k (a.u. )

I I I I I

1.15 12 1.25 1.3 1.35 1.4

FIG. 4. Singlet s-wave e-H elastic-scattering cross section (in units of ma p statistical factor of 4 not included) in
the s+ limit as a function of the nonlinear parameter I& (r; =H+~s +', s =0, . . . , 7) defining the scale of the Slater-
type P basis orbitals. The value of $, (the exponent of the s-type states X~ =H e ~&", n =0, . . . , 7) is 1.0, and the value
of $& is shown in parentheses. For $& =1.0, 1.3, and 1.6, convergence is excellent over the whole energy range from
k =0.825 to 1.4 a.u. For $& =0.7, the basis becomes diffuse and begins to describe the lowest iS resonance, which occurs
here at@ = 0.9, a little above its expected value. For values much smaller than $& =0.7, the diffuse basis does not couple
strongly with the 1s ground state of H, and thus correlation is not well described. For $& =2.0, the poles of H~~ have
begun to spread out to the point that rational continuation no longer yields reasonable results.
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ous way to bound the error inherent in either the
calculations of V' '(z) or in the extrapolation pro-
cedure.

IA)

0.77-

B. Singlet p-wave cross section

The correlated singlet P-wave e-H cross sec-
tion at intermediate energies was found to be very
small. This made the complex-basis-function
technique unsatisfactory for two reasons: First,
the rational-fraction technique generally does not
give results stable to more than two decimal
places; as this result is roughly independent of
the actual magnitude of the (complex) phase of the
determinants, small cross sections are difficult
to calculate. Second, the systematic error in-
herent in use of the complex-basis technique be-
comes a dominating factor for very small cross
sections. Both of these problems could be over-
come by use of larger static-exchange basis sets;
however, this would entail accurate calculations
of Laguerre-type matrix elements, which at pres-
ent are not readily available. " The result of
these problems is that well-converged continua-
tion results were not obtained, and an alternate
technique for calculating the substituted determi-
nants was used. "

Re D(z)
0.76-

0.75
0 02 0.4 0.6

Imz

0.74

Re Ds(z)0.70-

0.66-
I

0.2
I

0.4
Imz

I I

0.6

FIG. 6. Plots of D'&'(z) and D&g'(z) as a function of
Imz, for fixed values of Rez, for p-wave singlet e-H
scattering. These nearly linear plots were extrapolate
(using a linear least-squares procedure) to give
D &'(E+ ie) and D(g'(E+ ie).

3.0—

f) 2Q

+ 1.0
LU

C3
Z
V7

0.096
0
e

M

~ ~o 0.072
0 O
o~

0
0.048

C

CH

oc 0.024
Vl

---- Fredholrn Extrapolation Results

0 Results of Callaway and Wooten

Fredholm Rational 0

0.90 0,95 1]30 1@5 1.10 1,15 1+0 1.25 1,30 1,35 1.40
k (a u. )

0.00
0.8 09 I.O I.2

I

l.4

FIG. 5. Singlet s-wave cross section for f.-H elastic
scattering, the total inelasticity as computed in the
s-p-d limit with differing number of basis functions of
s, p, and d symmetry. Fredholm results are shown for
(6, 6, 6), (7, 7, 7), and (8, 8, 8) calculations, with pe=1.0,
g& = 1.3, and („=1.6 where a full CI was performed for
& in each case. Also shown are the close-coupling
plus correlation results of Burke and Taylor (Ref. 1),
close-coupling (s-p limit) results of Callaway and
Wooten (Ref. 3), and the T-matrix extrapolation results
of McDonald and Nuttall (Ref. 5). Within the estimated
convergence of the method, the results seem to be in
reasonable agreement. The (8, 8, 8) calculation took
291 sec (from the start on a CDC-6400 computer) for
computation of the entire curve shown. The cross sec-
tion is in units of wa02, and the statistical factor of 4
is not included.

k (Q. U )

FIG. 7. Singlet p-wave e-H cross section at inter-
mediate energies (in units of ~ao, but not including the
statistical factor ~) as calculated by the Fredholm extra-
polation method and by Fredholm rational-fraction con-
tinuation (using complex basis functions) . .The Fredholm
extrapolation results are the results of three different
s-p-d limit calculations, and have converged reason-
ably well. As indicated by the error bars, convergence
of the rational-fraction-complex-basis-function calcu.—
lations was much less satisfactory. As in the s-wave
case, the pseudostate (s-p limit) close-coupling results
of Callaway and Wooten (Ref. 3) are in general agree-
ment with the Fredholm results, except near k=1.2 a.u. ,
where the close-coupling results give a fairly broad
pseudoresonance.
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Plots of

D"'tz) =det z -zZ-H )7 e -— tie /(z- H' )Iz -Hqq
and

D' '(z)=det z —z K rrze —H e — He (z -H )Iz —Hgg

in the complex z plane revealed that they were
both smooth and nearly linear in Imz, for fixed

This is shown in Fig. 6. The z- 8+i~ »m-
it of D' '(z) and 3;,t(z) was then taken by direct
extrapolation in Imz, thus avoiding use of complex
basis functions and of rational continuations. Re-
sults of three such extrapolations are shown in
Fig. 7, where the singlet P-wave cross section
is given, and are compared with Fredholm con-
tinuation results" and with the pseudostate close-
coupling results of Callaway and Wooten. '

C. Singlet angular distributions

The singlet e-H angular distribution for E =13.6
and 16.5 eV calculated using s and P waves only
is given in Fig. 8, where the present results are
compared with the s-p angular distribution ob-
tained from the 1s-2s-2P calculation of Burke,
Schey, and Smith. " Comparison of the 1s-2s-2P
close-coupling results for the partial waves for
l =2, 3, 4, and 5 with pseudostate close-coupling
results" suggests that the l =2, . . . , 5 partial-
wave singlet amplitudes are not strongly affected
by further correlation, implying that the flux into
higher excited states from these partial waves

2.0

Oj~ (e) (ls 2s 2p)

( Fredho lm }——

I.5

is small, and perhaps may be neglected. Under
this assumption, we have calculated the singlet
elastic angular distribution (Fig. 9) at E =13.6
and 16.5 eV using the s-wave and P-wave ampli-
tudes from the present calculation (i.e., the am-
plitudes corresponding to the s and P cross sec-
tions of Figs. 6 and 8) combined with the l =2, 3,
4, and 5 partial-wave amplitudes from the 1s-
2s-2P close-coupling calculations of Burke,
Schey, and Smith. " This angular distribution is
compared with that predicted by the 1s-2s-2p
close-coupling results for all the singlet partial
waves. It is evident that inclusion of highly ex-
cited channels and ionization channels has an
important effect on the elastic cross section.

0.6 ee

k= I.O

o.s =

k= l.0
0.3-

k= I.I
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0.5

0.2-

O, l-
k= I. I

d d I ~ d d ~ d d d I ~ I d H d
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FIG. 8. Elastic singlet angular distributions for e-H
scattering (cross section 1n units of KQp omitting the
statistical factor of 4) computed using the s and p am-
plitudes corresponding to the results of Figs. 5 and 7
(broken lines) ~ The results are compared with the
angular distribution predicted using the s and p am-
plitudes (solid lines) from the 1s-2s-2p close-coupling
amplitudes of Burke, Schey, and Smith (Ref. 27).

- FIG. 9. Angular distribution for singlet e-H scatter-
ing. The solid lines are the results predicted from the
1s-2s-2p calculation (using partial waves l =0, 1, ..., 5)
of Burke, Schey, and Smith (Ref. 27) at @=1.0 and 1.1
a.u. The broken lines are the result of taking the s-
and p-wave amplitudes from the Fredholm work, and
coupling them with the l=2, 3, 4, and 5 amplitudes of
Burke, Schey, and Smith. As discussed in the text, the
l =2, 3,4, and 5 amplitudes are not expected to be strong-
ly influenced by correlation, or contribute strongly to the
total inelasticity. The cross section is in units of rap
and does not include the statistical weight of 4.
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IV. SUMMARY AND DISCUSSION

Singlet elastic e-H cross sections and angular
distributions have been calculated in the inter-
mediate energy region (10-27 eV) using a Fred-
holm technique in conjunction with an inelastic
optical potential. Based on this work, we draw
several conclusions.

(i) The elastic angular distribution is sensitive
to flux into highly excited channels and ionization
channels.

(ii) The agreement of the pseudostate close-
coupling work of Burke and Mitchell, ' Callaway
and Wooten, ' and Heller and Yamani with the
present Fredholm results suggests that pseudo-
state techniques may be used to compute average
cross sections at energies where large numbers
of channels are open, thus allowing their use in
a much wider variety of situations than had been
earlier anticipated.

(iii) Many-body inelastic optical potentials, de-

scribing the average flux into a continuum of open
channels, may be calculated by performance of
a standard bound-state configuration interaction.
(This latter result is, of course, implied in the
T-matrix work of Schlessinger, "Nuttall, '"and
their co-workers; the advantage of the Fredholm
determinant lies in its better behavior as a func-
tion of complex energy. ")
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