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The charge-transfer processes occurring in collisions of Li + Na+ and Na+ Li+ have been studied

theoretically using the molecular-wave-function approach. The wave functions and Born-Oppenheimer
breakdown terms were evaluated using rigorous methods. The six lowest molecular states (dissociating
to the 2s and 2p atomic states on Li and to the 3s and 3p atomic states of Na) were included in

the coupled equations. The transition probabilities were calculated using linear trajectories for a variety
of impact parameters and ion velocities. We find that the over-all transition processes are well

represented as a succession of simple two-state transition processes (X-X, X-II, and II-II). The X-X
two-state process can be described in terms of three steps involving (i) a coupling region as the atoms
come together [(10-20)u,], (ii) an uncoupled phase changing region for shorter separatons ((10a,),
and (iii) a decoupling region as the atoms depart [(10-20)a,]. On the other hand, in the molecular —wave-

function formulation, the X-II two-state transition process involves continuous coupling (for R ( 7a„).
As a result the transition probabilities for X-II coupling differs from that of X-X coupling, leading to
rather different forms for the cross sections.

I. INTRODUCTION

Collisionally induced transitions between elec-
tronic states during slow atom-atom collisions
are described in the near-adiabatic formalism in
which the electronic wave function does not depend
on the velocities of the nuclei. Early investiga-
tions of the charge-transfer process were carried
out by Landau, ' Zener, ' and Stueckelberg. ' They
obtained an estimate of the two-state transition
probability for two potential-energy curves having
a crossing or a near crossing (giving rise to the
Landau-Zener-Stueckelberg approximation). ' Esti-
mates of the charge-transfer probability between
two near-resonant electronic states have been
considered by Gurnee and Magee, ' Rapp and Fran-
cis, ' and others. ' "

These approaches usually take the electronic
states to be atomic eigenstates. On the other hand,
one can take the electronic states to be molecular
wave functions obtained from the Born-Oppenhei-
mer (BO) approximation. " Within the BO approxi-
mation the electron readjusts adiabatically to the
instantaneous positions of the nuclei. Thus, in
order to describe collisionally induced processes
such as electronic excitation, electron transfer,
or electronic excitation transfer, it is necessary to
include terms negl. ected in the BO approximation
(called the BO breakdown or BO coupling terms).
This molecular -wave-function approach has been
applied to several charge-transfer systems. ""
In particular the rotational coupling to II states
has recently been considered. "" However, dif-
ficulties exist in this procedure, both in the eval-
uation of the molecular wave functions and energy

curves and in the evaluation of the coupling terms
between the molecular states. "

Herein, we report the use of the multistate
molecular -wave-function approach to obtain elec-
tronic transition cross sections for the collisions

Li+Na' -Li'+Na

Na+ Li' —Na'+ Li.

Both the molecular wave functions and coupling
terms are evaluated rigorously, including II states
as well as Z states. The results of the full (six-
state) calculations are analyzed in terms of ele-
mentary transition processes. We find that the
results can be interpreted in terms of a simple
picture involving a succession of several two-
state transitions, each of which involves charac-
teristic internuclear separations depending upon
the nature of the states.

II. DETAILS OF THE METHOD

A. Coupled equations

The total wave function 4 for the scattering sys-
tem can be expressed in the time-independent rep-
resentation as a function of the internuclear coor-
dinate (R}and the electronic coordinates (taken
collectively as r). Since the nuclear masses are
much greater than the electronic mass, it is con-
venient to expand the total wave function as

4'=g F(R}$,(r, R),
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where le}, describes a given electronic state of the
system (which may depend on the„internuclear
separation but not on the orientation of the mole-
cule in space) and F, describes the nuclear motion
for the given electronic state g, .

Substituting Eq. (3) into the time-independent
Schrodinger equation, multiplying on the left by

g, , and integrating over the electronic coordi-
nates, leads to the set af coupled equations for
the nuclear motion":

g s„.(,' v„z)

+ V, q(R) + ' — " ~ V„F,(R) =0, (4)

where

s (;= & kg I kg& ~

v„=s„(z„z,/R) + & g, 136,, I q, &,

~(g =
& 4g I -~2&sl 4g& ~

(5a)

(5b)

(5c)

(5d}

and X„.~ is the electronic Hamiltonian.
While Eq. (4) is exact, it involves an infinite

number of states (including the continuum). To be
computationally feasible, it is necessary to choose
a' representation for g, so that Eq. (3) can be ap-
proximated in terms of a small number of states.
One approach is to take g, to be the atomic eigen-
functions of the separated atoms. This is a good
approximation for sufficiently large nuclear veloc-
ities such that the nuclei move as fast as the
valence electrons (e.g. , for Li, the velocity of the
valence electron is -10' cm/sec, which corre-
sponds for LiNa' to a Na' ion energy of -120 keV).
For slow nuclear velocities (i.e., v &10' cm/sec),
the electron is best described in terms of molec-
ular wave functions g, defined as the eigenfun'c-

tions of the electronic Hamiltonian,

3C,.~g&( r, R) =E&(R)g&(r, R). (6)

In this case the electronic wave functions are or-
thogonal,

s„=a„,
and the potential matrix is diagonal,

V ~
——6 (~V, (R).

The V, (R) are called the potential-energy curves
(surfaces). Each V, (R) represents the BO potential
curve (surface) on which the nuclei move, given
that the electrons are in the eigenstate g, . In
general, the nuclear motion E,(R) for the various
electronic states P, are coupled through the terms
l, ~ and J,~ [Eq. (4)]. However, as we will show

da, (z) z 8 && Qg (8)

where

rg

~„(z}= — (V, —V, )dz'
V

(8)

I' ( )=&0 I „10,&. (10)

Given the initial conditions, [a, (-~)], the coupled
equations (8) are solved to obtain the (a,(z}j."
Substituting these into (I) and in turn into (3) then
determines the total wave function of the system.

The I;&'s represent the nonadiabatic coupling
terms between molecular states due to the break-
down of the Born-Oppenheimer approximation. It
is convenient to divide I;J into its radial and angu-

B

~~R

FIG. 1. Collision geometry. The projectile (B) moves
with a constant velocity along the z axis from z=- ~ to
z=+ , passing the target (A) at an impact parameter b.
Thus, the internuclear distance R is related to b and z
y Z2 z2+b2 ~

below, for slow nuclear velocities, the coupling
between E, 's will be small except where the poten-
tial-energy differences are small. Thus,

'

for
small velocities the use of (6) should be appro-
priate.

In this paper we will be primarily concerned
with ion energies that are large compared to the
change in electronic energy with R,

E» V (R) —V (~).

that is, E&100 eV. For such energies, we can
assume that the trajectory of the ion is essentially
a straight line." With this approximation (called
the impact-parameter approach), "the nuclear wave
function can be written as

Ej(R)=a, (z)exy i k, (z')dz')
oo

where z'+b' =R', b is the impact parameter, R is
the internuclear distance (z, 5, and R are defined
in Fig. 1}, k, =[2M(E —V,}]'~' is the momentum of
the moving atom (the other atom is taken as sta-
tionary}, and V, is the potential energy of the ith
molecular state. Substituting Eq. (7) into Eq. (4),
taking k, =k~ = k =Mv, and ignoring terms of order
1/M compared to I/m„we obtain
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lar parts,

where

8
M(g = (4(l aR ling&, (12a)

(12b)

The radial term M, ~ couples states of the same
symmetry (e.g. , Z-Z, II-II, etc. ), while the angu-
lar term N, &

couples states with angular momen-
tum differing by one (e.g. , E-II).

B. Molecular eigenstates

In order to obtain the molecular wave functions

g, , we must solve (6}. This is a thirteen-electron
problem for LiNa'; however, twelve of these elec-
trons are in orbitals (the core orbitals of Li' and
Na') that remain essentially unchanged over the
range of R of interest here. Thus, the LiNa'
quasimolecule involves only one electron whose
state changes with R and can be treated as a one-
electron system, if we can find some effective
potential to represent the Li' and Na' cores.

There have been many efforts toward developing
such pseudopotentials using empirical potentials
that are adjusted to reproduce some of the atomic
energies. " However, we wish to calculate not only
the electronic energies, but also the coupling
terms I,&

and N, ~
which could depend sensitively

upon the shapes of the wave functions. We have
therefore used an effective potential method which
is based on reproducing both the energies and wave
functions. This method is described in detail else-
where" and it should suffice to indicate some of
its features and limitations:

(i) The effective potential is based on ab initio
Hartree-Fock (HF) orbitals for the ground and ex-
cited states of the atoms and is constructed so that
its eigenfunctions are smooth in the core region
(i.e., HF orbitals without core character). The
resulting effective potentials (called coreless HF
effective potentials or CHF EP) contain repulsive
terms that simulate the effect of the Pauli principle
(which is usually incorporated by using valence
orbitals orthogonal to the core).

(ii) The resulting CHF EP's are simple functions
of r (no operators) but must be allowed to be differ-
ent for s states, P states, etc. That is, the CHF
EP's are angular-momentum dependent. General
programs were developed to evaluate (analytically)
the multicenter molecular integrals resulting from
the use of such angular-momentum dependent po-
tentials. (These programs are sufficiently fast
that the computation time to solve for the various

electronic states at a given R is governed by the
time to diagonalize the resulting one-electron
Hamiltonian matrix. )

(iii) For the Z states, the basis set used to ex-
pand the valence orbitals consisted of three sets
of s functions, three sets of p functions, and one
set of d functions, appropriate for describing the
lowest 'S and 'P states of each atom. For the II
states, the basis set was modified by deleting the
s functions and adding a second set of d functions
to each center.

(iv) In evaluating the potential energy curves,
we have not included the repulsive effects due to
the interaction between the Li' and the Na' ion
cores. This repulsive term is not important for
our calculations since the coupled equations (6}
depend only on the differences between the potential
energy curves.

(v) The effective potential method breaks down
for small R (&3.5ao), since it assumes that the core
orbitals do not change with R. (This is not valid
when the cores begin to overlap. ) However, the
dominant charge-transfer processes occur at long
range (see Sec. IV), so that a detailed knowledge
of the potential-energy curves and coupling terms
at small R (&3.5a,}is not necessary. We found
that modification of the potential energy curves
and coupling terms for R & 3.5ao did not change the
total charge-transfer cross sections significantly.
[For differential scattering cross sections at large
angle, on the other hand, serious errors could
result. This also holds for (iv)] .

(vi) The HF description of the alkali-metal atoms
leads to a small error in the ionization energies
for the various atomic states. Although not large
even small errors in the relative energies of elec-
tronic states on different atoms can lead to signif-
icant effects upon the charge-transfer cross sec-
tions. For example, the difference between the
ionization energies (i.e., the energy defect) of
Li(2s) and Na(3s) should be 0.0093 Hartree =0.25
eV rather than 0.0141 Hartree =0.038 eV. To
alleviate this difficulty (which arises from many-
body effects involving the core electrons}, the
resulting potential energy curves of LiNa' have
been shifted slightly to reproduce the experimental
ionization energies of the atoms.

C. Evaluation of the coupling matrix elements

The coupling terms M, ~ and N„are evaluated
by substituting the molecular wave functions from
(6) into Eqs. (12). As a simplifying approximation,
we take the masses of the nuclei to be infinitely
heavy. This is consistent with the impact param-
eter approximation, which ignores terms of order
m/M. However, the resulting values for M, ~ and
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Nq~ are not unique in that they depend upon the
particular reference frame chosen for the coordi-
nate system. " This is illustrated in Fig. 2, which

shows the coupling term M» between the 1'Z' and
2'Z' states of LiNa' as obtained using different
reference frames.

While the coupling terms I;, differ for various
reference frames, the solution of Eq. (8) will yield
an equivalent result for any given set of I;& pro-
viding (i) the proper boundary conditions are de-
fined, and (ii) the complete electronic space (in-
cluding the continuum states of g, ) is used in the

coupled equations of (8). Serious errors may re-
sult, however, if the coupled equations are re-
stricted to a small number of states. (The errors
result from attempting to describe an orbital
moving through space in terms of a finite number

of functions located in a fixed reference frame. )
In order to obtain meaningful solutions to Eq. (8}

using a finite number of coupled equations, one

must account for the translational motion of the

electron. The usual method has been to introduce
traveling phase factors into the molecular orbi-
tals." ' However, this method involves evalua-
tion of complex integrals which cannot in the low-

velocity region be simplified through expansion
in a power series in velocity. Vfe will present an

alternative method for determining I;~ in the low-
velocity region. First, however, it is appropriate
to discuss the limitations of the traveling phase
factor method.

r"=(I"I(—— " IP&
x

since the Po's are not longer eigenfunctions of
X,&.) For the Bates and McCarroll" definition of
the traveling orbital (denoted P~e"), we have (s = R}

M" —((1'&."0"I(—— ." I(2'&."»"x
Bz zv

(14)

while

I'" = I(2'&."&'"I(—„-,„")II&
'&'»'"

= —(12Z'( —, (2'Z'}„., (18)

which are shown in Fig. 2 (depicted by long dashed

lines). One could define a generalized traveling
orbital by attaching a separate phase factor to
each of the atomic centered basis functions used
to express g, . Using the generalized traveling
orbital definition, one would obtain the pair of
coupling terms M„~ and M„, which are also
shown in Fig. 2 (depicted by short dashed lines).

As one can see from Fig. 2, the different defini-
tions of the traveling orbitals lead to quite different
coupling ter'ms. Furthermore, choosing other
functional forms for p, in Eq. (13}would lead to
still different values for the coupling terms. Even
the values of M„and M„~ would not be unique

since they depend upon the basis set used to express

1. Traveligg phase factors

Introduction of traveling phase factors leads to
a molecular wave function of the form

g V2

g =/~exp(-ipjv ~ r) exp i — -e~+p~ —dz,

0.16

I

O

O.OB—
X
IX
hl

Na BM~~ Mia ™
satisfying the incoming and outgoing boundary con-
ditions for Eq. (8). However, while introduction of

phase factors is straightforward for the atomic
eigenfunction representation" (where each atomic
basis function follows the position of a specific
atomic nucleus), the use of phase factors in molec-
ular wave functions is somewhat arbitrary, de-
pending upon the choice of p&(r, R) in (13). While

the various definitions of g would be equivalent
at R =, the resulting coupling terms between
states can be quite different for finite A.

As an example, consider the 1'Z'-2'Z' coupling
terms of LiNa' as evaluated using various defini-
tions of pc in the limit that v -0. (For the travel-
ing orbital wave functjon, the coupling operator I'
must include the electronic HamQtonian, i.e.,

c9 0.0

0
O
C3 -0.06

0.0

1
I

I
'I

l Li MBM

8.0 12.0
R (bohr)

I

18.0 BL.O

FIG. 2. The coupling term M„= &ittle/SRli&gl between
the 1 2 Z+ and 2 & Z+ states of LiNa+. M&&', M&&', and M&2

correspond to the origin being located at the Li atom, the
Na atom, andz, respectively. BM and GTO indicate the
Bates-Mc Carrol and the generalized-traveling-orbital
definitions. M&& and M&& [defined by Eq. (14) and (15))
correspond to M&~' and —M&&', respectively. Note that

M&& & -M&& and M&& & -Mz&, owing to the essential
singularity in the phase factors.
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Sr2o(R}v 0. (18)

Thus the coupling operator is not anti-Hermitian
even when the velocity is zero, leading to M, ~
o -M,.io (see Fig. 2). Attempts to simplify the
coupled equations by taking the low-velocity limit
as S,~ =6,~ can, therefore, destroy probability
conservation and detailed balancing. " (The diffi-
culty in the zero-velocity approximation of the
traveling orbital method occurs because the Po's
contain an essential singularity in v at v =0. Thus,
the coupled equations cannot be expanded in a
power series in velocity for small velocity. )

Z. "Center of electron" coordinate system

Since we are interested in collisions occurring
in the low-energy regime" for which the transla-
tional momentum of the electron is not overly im-
portant, we have formulated an alternative, simple
approximation for the evaluation of r, ~

without the
need of phase factors. ~

We define the reference frame for evaluating the
coupling term to be that of the electron. Since the
electron's position is described by a wave func-
tion, the coupling matrix element is defined as an
average of the resultant coupling terms evaluated
for various origins but weighted by a term related
to the probability of the electron being at that point
in space both before and after the transition, i.e.,

T',
~

= d'r p, (r)l",(r d'r p„.(r), (19)

where I;.,(r) is the coupling term evaluated using

The phase factors are necessary for high veloci-
ties in order to properly represent the transla-
tional momentum of the electron. However, in the
low-energy regime (for which the molecular-
wave-function approach is appropriate), the trans-
lational momentum of the electron is small com-
pared to its instantaneous momentum. Thus, one
would hope to simplify the computational effort
introduced by the traveling phase factors by, for
example, expanding in a power series in velocity
and keeping only the lowest order terms. Unfor-
tunately, this is not possible for the phase factors
in Eq. (13).

In the limit that v-0, each of the various defini-
tions of g differ from ili, only by a multiplicative
phase constant. However, this phase constant is
undefined when v =0. This leads to an inconsis-
tency in the traveling orbital method when v =0,
since we then have

8 (R) =(i{i (r, R)liP (r, R)) =0,

while

r as the origin and p, &(r) is the weighting function
for that point r. In (19) we chose p, &(r) to be"

pi&(r) = I%i(r)4&(r)l. (20)

For diatomic molecule's, I;~(r) is a linear func-
tion of the distance z along the internuclear axis
(not to be confused with z of the impact parameter
method), and hence one can find a point r =z
(x =0, y = 0), such that

td'r p, ~(r)(z -z) =0. (21)

$, (r, R) =g &t„(r,R) C„,(R),

which defines C„,(R) for a grid of points in R.
Since C„, does not depend upon 8, N, &

may be
evaluated directly using the known analytic form
of ay„/a 8. On the other hand, M, ~ requires both
ac„,/aR as well as ay„/aR, but C„,(R) is only
known at a discrete number of points. We have
therefore evaluated M, ~ as

(23)

= »m —kti(R)l 4y(R+ ~)& —&4i(R)l 4g(R)&]
1

= lim —(g, (R)l I{i&(R+ h.)& —ai&
1

[since ($, (R)l )J(R)&= a, ~]. We found that a value
of X = 0.001a, provides reliable results (negligible
second-order terms).

(24)

IH. RESULTS

The methods described in the previous section
were applied to the collisions'

Li+ Na+ (25)

Na+ Li', (26)

using the six lowest molecular states of LiNa'.
These states (four Z states and two II states) rep-
resent all the states dissociating either to the

The I;, of Eq. (19) can therefore be replaced by

r„=r;„ (22)

where z specifies the origin of the coordinate sys-
tem in which I;~ is evaluated. The resulting cou-
pling term M f, =(1la/aRl2&-, is shown for LiNa'
in Fig. 2.

In actually evaluating 1;~, the R and 8 dependence
of g, (r, R}as a function of R must be known. Each
electronic state g, is calculated in terms of a
basis-set expansion
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The re resulting total charge transfer cross sections
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compared with the experimental results of Dal
d merel. We see that the theoretical and ex-

so ey

perimental results are in very good agreement,
not only for the magnitudes of the absolute cross

the oscillatory structure. Furthermore, the theo-
retical results lead correctly to a slightly smaller
charge transfer cross section for Li+Na' than
for Na+ Li'.+ i'. ',The estimated uncertainty in the
absolute magnitude for either experimental cross
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sections is 10%.") Inclusion of the six molecular
states should adequately represent the total charge-
transfer process for these cases (with the electron
starting in the lowest state of one of the atoms).
Hence the main error in the theoretical cross sec-
tions is probably due to the neglect of translational
momentum of the electrons. Inclusion of electron
translational momentum will lead to a decrease in
the charge-transfer transition probabilities (since
the electron must change direction), and the error
in the theoretical cross sections should increase
with ion velocity. "

IV. DISCUSSION

In the previous section, we found that the molec-
ular-wave-function approach can provide an ac-
curate description of charge-transfer cross sec-
tions (including the detailed structure) and can
distinguish properly between such similar colli-
sions as Li+Na' and Na+Li'. However, the moti-
vation in carrying out such theoretical calculations
is not just to obtain accurate numbers. Rather,
we also want to understand the detailed mecha-
nisms involved in the processes so that we can
learn how the final cross sections are determined
by various aspects of the molecular wave func-
tions and potential energy curves. In this way we
would hope to build sufficient understanding of the
processes that qualitative predictions could be
made for other systems without carrying out de-
tailed coupled-state calculations. With this motiva-
tion, we will now analyze the charge-transfer re-
sults.

A. Cross sections for transitions to individual states

For LiNa', the energy defect i~Ei between the
ground states for the two atoms [Li(2s) and'Na(3s)]
is 0.0093 Hartree (0.25 eV), while the next higher

state [Li(2P)] is 0.0586 Hartree(1. 59 eV) above the
Na(3s) state. Thus, we have a near-resonance be-
tween the Li(2s) and Na(3s) states. As a result,
the two-state approximation (involving coupling
only between the 12Z' and 22K' states) should
yield a reasonable estimate of the charge-transfer
cross section.

In order to determine the relative importance
of the 1 'Z' - 2 'Z' transition as compared to the
other transitions that could occur, we carried out
three sets of calculations:

(i) two states (I'Z', 2'Z'),

(ii) three states (I'Z', 2'Z', 1'll),
(iii) six states (I'Z', 2'Z", 3'Z',

4'Z', 1'll, 2'll}

for both (1}and (2). The resulting cross sections
are given in Fig. 6, where we see that as expected,
the cross sections are dominated by transitions
between the two lowest 'Z' states. The transition
to the Li 2pm state is also somewhat important,
particularly for the process Na+Li', where the
Na(3s)- Li(2pv) transition dominates the Na(3s)

Li(2s) transition for low energies (i.e., v & ''
x10' cm/sec or Li+ ion energies ~170 eV). Cross
sections to other states are considerably smaller.

We see that the oscillations in the total cross
section are found in the two-state, three-state,
and six-state calculations, and hence are due to
the 1 'Z' —2 'Z' transition. However, although
the oscillations have approximately the same fre-
quency and amplitude in the various calculations,
the Phase of the oscillations in the two-state calcu-
lations is different from that obtained in the three-
and six-state calculations (both of which include
the 1'll state}. Thus the differences in the total
cross sections for processes (1) and (2) (Fig. 5)
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B. Two-state Z-Z coupling process

The simplest two-state process involves sym-
metric, resonant charge transfer' ' as in

Na(3s) +Na' -Na' +Na(3s). (2'I)

For the symmetric case, the two relevant molec-
ular states are of different symmetries (Z, and

Z„). Therefore, there is no coupling between the

result essentially from added contributions in-
volving the 1 'll state (not included in the two-state
approximation).

From Fig. 6 we see that the three- and six-state
calculations lead to essentially identical cross
sections for the 1'Z'-2'Z' transition, both in

amplitude and oscillatory structure. On the other
hand, the cross section for the transition to the
1'll state in the three-state approximation corre-
sponds to the sum of the cross sections for transi-
tions into the 1'II, 2'll, O'Z', and 4'Z' states
in the six-state approximation. Thus, the three-
state approximation leads to a fair description of
the collision processes in (1) and (2). [For high
velocities (v &0.2 a.u. =4x10' cm/sec), the three-
state approximation breaks down as transitions
to the higher lying states become important. ]

We will now analyze the various coupling pro-
cesses in order to learn the origins of the various
results presented above. First, we will examine
the two different types of two-state coupling pro-
cesses that occur in the molecular-wave-function
approach: (i} radially induced transitions between
states of the same symmetry (e.g. , Z-& and II-II}
and (ii) rotationally induced transitions between
states of different symmetries (e.g. , Z-II}.

two states (M,„=O). However, the initial-state
wave function at z = - is a linear combination
of the two molecular states, i.e.,

y(z ~) 2 1l2(y + sile(E= )-eqo)

where P is the relative phase between the two

states. Since each molecular state corresponds
to motion on a different potential energy curve,
the evolution of the phase factor for each state
[see Eq. (7)] is different. Thus, even though

M „=0, P does not remain constant.
The resulting transition probability is given by

P(v, 5) =sin'(2b, g), (28)

where aP is the change in the relative phase be-
tween the states, i.e.,

~ oo

(V~ —V„)dz
V

2 ""R[V,(R) —V„(R)]
v (R2 h~)~ ~2

(29a)

(29b)

We see from (28) that the charge transfer proba-
bility P is maximum when the relative phase
changes differ by v (6Q = v, 3v, . . .), while the
charge transfer probability is zero if the two states
are in phase (i.e., b, P =0, 2w, . . .). Furthermore,
we see from (29) that for a given 5 and v the charge
transfer probability depends only upon a path inte-
gral of the energy difference (V, —V„).

As an example, in Fig. V, we show the energy
difference between the 1'Z, ' and 1'Z„' states for
Na, '. The resulting P(v, b} for process (2V} is
shown in Fig. 8(a) as a function of 5 for variouS
v. As the impact parameter decreases, the energy
difference at R =5 increases and P oscillates rather

O.is

~E(Nap )

0.12

(p I

+- 0 0.06

CU

-0.00

\~=BE (two-state atomic model )
\

Mi2 (two-state atomic model )

FIG. 7. The potential en-
ergy difference curves [AE
= V2(B) —V&(A)] for Na2+

(dotted line), LiNa+ (solid
line), and the two-state
atomic model (dashed line)
for LiNa+. Also plotted
are the coupling terms M&2
for LiNa+ (solid line) and
the two-state atomic model
(dashed line) for LiNa+.
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TRANSITION
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ION PATH B

ATOMI C
REGION

FIG. 10. Diagram illustrating the transition region
and the intermediate region of the charge-transfer pro-
cess.

in Fig. '7.

For finite velocities one might expect transitions
between these adiabatic states throughout the entire
coupling region (R =6ao to R =20ao). However, the
energy difference between states (shown in Fig. 7)
grows exponentially as the atomic orbitals begin to
overlap. As a result, the exponential terms in

Eq. (8) begin to oscillate rapidly, leading to a zero
net transfer between states for smaller R. Thus,
transitions between states occur only at large R
(between -12a, and 20a, for LiNa', the actual width
depending on the velocity) where M„ is large while
b,E is still small. We denote this region as the
transition region. For smaller R, the nuclei enter
an intermediate region in which no net transitions
occur between the states. However, since each
state represents motion on a different potential
energy curve, the phase factors of Eq. (7) will
differ, resulting in a phase difference of

"0 1—s.E dz, (32)
0

where Ro is a representative internuclear distance
of the transition region. As the nuclei separate,
they again pass through the transition region,
leading to a decoupling of the molecular states back
into atomic states. The different regions are de-
picted in Fig. 10. If there were no change in phase
(LP =0}, then since I'(-z) =-I'(z), the transition
process on the outgoing leg would exactly reverse
the transition process on the incoming leg, yielding
the original starting state and hence no charge
transfer Howev. er, in general, aP is not zero,
leading to a charge transfer probability that de-
pends on the relative phase change (32) between the
two intermediate states.

We thus find that in the molecular-wave-function
framework the description of the near-resonant
charge-transfer process is comparable to that of
the symmetric resonant charge-transfer process
(where R, =~)." Initially the electron starts out

localized on one atom. As the nuclei approach,
they pass through a transition region in which the
atomic states are coupled into molecular states.
Inside the transition region, the electron has a
fixed probability ~a, (Rz)~ of being in either of the
two molecular states ((a,('+ (a,(' = I). [For the
symmetric case, [a, (Rz))'=)a, (Rz))'=-,'.] The
magnitudes )a, [ and [a, [ remain constant in the
intermediate region but the phase factors change,
leading to a relative phase change of Ap given by
Eq. (32). The nuclei upon separating re-enter the
transition region where the molecular states are
decoupled back into atomic states. Phase inter-
ference yields a transition probability of the form

P(v, b) =4~a,a, ~'sin'[-,'b. y], (33)

where aP is defined in (32).
In the resonant case (a, (

= (a, ~
so that Eq. (33)

reduces to Eq. (28). Since )a, )'+)a,)'=1 we will
denote ~a, ~' as p (which depends upon v and b) and
rewrite (33) as

P(v, b) =4p(1 -p) sin'[-,'Ap]. (33')

C. Two-state atomic model for Z-Z coupling

In order to better understand the nature of the
two-state coupling process, we will consider a
simple model in which the molecular wave func-
tions are expressed in terms of an atomic state
on each atom. With this model, we will obtain an
approximate functional dependence of both p and
bP upon the velocity and impact parameter.

We will assume here that the molecular wave

While P represents the transition probability for
the entire process, p represents the transition
probability upon crossing the transition region only
once. As in the symmetric case, P is maximum
when the phases of the states interfere (6P = v),
and is zero when there is no phase interference
(ay =0).

The actual transition probabilities for LiNa'
[as obtained from Eq. (8) in the two-state approxi-
mation] are shown in Fig. 8(b). In particular, in
Fig. 11(a) we have superimposed the transition
probabilities P, ' for v '=6, 12, and 18 a.u. , show-
ing that P(v, b} does indeed have the form sin'[-,'hP]
with ap proportional to v '. The values of p(v, b)
for v ' =6, 12, and 18 a.u. are shown in Fig. 11(b).
[The p's were obtained by integrating Eq. (8) from
z =-~ to z--0.] Note that no oscillations occur in

p since the transition region has only been crossed
once.

The processes involved in II-II coupling are equiv-
alent to those of the Z-Z coupling process [with
Eq. (33) representing the transition probability]
and will not be discussed here.
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g, (z) = Q„cos[8(z)]+Pz sin[8(z)],

g, (z) = -p„sin[8(z)]+ Pz cos[8(z)],
(34}

where g„and ps are the atomic orbitals. Letting
~„and zs be the energies of Q„and Qs, respec-
tively, and letting H„~ be the interaction Hamil-
tonian, we have

functions can be expressed as a linear combination
of the two atomic orbitals (at least in the transi-
tion region}. (These orbitals need not be the actual
atomic orbitals but could in fact include hybridiza-
tion and contraction effects. ) Ignoring the overlap
between the atomic orbitals in this region (this
approximation can be removed, at the cost of an
increase in complexity), the molecular wave func-
tions are given by

where

o.'=n. V„/2H„s and AV„=lzz —z„l.

Using Eq. (34} the coupling term for b =0 is just

M» = &4|l 8R I42& =
sR . (39)

That is, the Born-Oppenheimer coupling term for
the molecular wave function represents the rate
of rotation of the two atomic wave functions between
themselves to form the molecular wave functions.
The final molecular wave function (R =0}corre-
sponds to a rotation of 4 g.

To obtain an estimate of M» we will take H» to
be decreasing exponentially in the transition re-
gion,

nZ =2H (o.'+1)'~'

tan8=o ~(o'+1)»~

1.00

~ 0.75

D
CL

(s5)

(s6)

-Bg
H~ = p(e (39}

(This is reasonable, since the terms responsible
for bonding change exponentially with R for large
R.) The resulting two-state atomic model using

H„z given by (39) has been described in earlier
papers —for instance, by Rapp and Francis6 and

by Demkov. ' We define R„as the midway point
in the rotation [i.e., 8(R„)—8(~) = —', w], which oc-
curs when 2H„z =nV or n =1. Using Eq. (38) and

(39) leads to
Z'.

o.so
I-
(A

0.25

0.0
0.0

1.00

0.75

O
Ct

CL

0 o.so

(A
Z'.

K 0.25

3.0 6.0 S.o 12.0 15.0
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p{v, b)

Li Na+
two state

18.0

M» = —,
'

P sech[P(R R„)). - (4o)

p(v, 0) =-,' sech(y}e ',
where

(41)

For LiNa', we find from Fig. '7 that M» does in-
deed have the general form of Eq. (40} in the tran-
sition region [fitting (40) to the M„of Fig. 7 leads
to R„=12.8ao and p=0.42"; this corresponds to
z =1.01 in Eq. (39)] . [Note that in (40) the value of

M» at the maximum (—,'P) is related to the exponen-
tial decay rate P, since the total area under curve
for M» must equal the total b, 8 = 8(0) —8(~) =—,

' z."]
Substituting Eq. (40} and Eq. (35) into Eq. (8) and

integrating from z = -~ to z = 0, leads to the p(v, b)
shown in Fig. 12 (solid lines). These approximate
results can be compared with the actual P's in Fig.
11(b).

Analytic forms for p(v, b) can be obtained in two
limiting cases. For zero impact parameter (b =0),
I'»=~», since z =+R. The solution of Eq. (8)
then yields

0.0
0.0 3.0 6.0 9.0 12.0 15.0

IMPACT PARAMETER B ( bohr)
18.0

FIG. 11. (a) Transition probabilities P(v, b) for the
two-state Li+ Na+ Li'+ Na charge-transfer process
for inverse velocities v =6, 12, and 18 a.u. (b) Transi-
tion probabilities P at z=0 for the two-state Li+ Na'

Li++Na charge-transfer process for ~ ~=6, 12, and
18 a.u.

y = vn, V„/2Pv. (42)

At high velocities (b,V„/v«1) p(v, 0) =-,' (which is
equivalent to the symmetric case, for which 4V„/
v -=0). As the velocity goes to zero, p(v, 0) goes
to zero exponentially as v '.

The other case that is easy to solve analytically
is the high-energy limit. In this case the exponen-
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p(v, b)=2p(v, o)p(, b}, (44)

where p(v, 0) is defined in Eq. (41) and p(~, b} is
defined in Eq. (43). This approximate p is shown

in Fig. 12 (dashed line) and compared with the p
obtained from substituting the two-state atomic
model into Eq. (8). To complete the atomic eigen-
function model of Eq. (33'), we will obtain an esti-
mate of the phase difference hP. Ignoring the
b V„compared to H» and letting Ao go to infinity,
yields

hP = (4kb/v) K, (bP), (45)

where K, is a Bessel function of the second kind.
Since K, rapidly approaches infinity as b-0,
sin'(2hp) oscillates very rapidly at small b and

can be approximated by its average value of —,'.
However, since K, does not possess a maximum,
no oscillations are present in the total cross sec-
tion.

The exponential decrease of the cross-section
'results from the velocity dependence of p in Eq.
(41). The high-energy limit is proportional to v '

1.00
I—

0.75—
CC
CD
C)
CL 0.5—

i

V '= I2

0 25 ~V '= l8

CD

CA

CK
CC

p (v, b)
two state

Atomic model
———Approximate

(Eqn. 44)

O.O
0.0

1 I

5.0 10.0 15.0
INPACT PARAMETER ( bohr)

20.0

FIG. 12. Transition probabilities P at ~=0 for the two-
state Li+ Na+ Li++ Na charge-transfer process using
the two-state atomic model (solid) and an approximation
I,Eq. (44)l (dashed) for v '=6, 12, and 18 (p=0.42, 4V„
=0.0093Hartree, and A„=12.8a()).

tial terms in Eq. (8) can be ignored, and we obtain

p(~, b) = sin'{—,
' arctan[sinh(p(R„— b))]+ 8 a).

(43)

Thus p(~, b) has a value of z at b = 0 and eventually
dies exponentially to zero at large b. This de-
crease in P with increasing impact parameter re-
sults from the z/R dependence of I;, [i.e., I'»
= (z/R}M»]. Thus, for large b, z =(R' —b')'~'«R
in the transition region (see Fig. 10).

To obtain an approximate analytical form for
p(v, b), we will take p to be a product of p(v, 0}
and p (~, b), i.e.,

due to the v ' dependence of hp. '~ From Eq. (8)
we would expect the maximum in the cross sec-
tion to occur when both the cosine and sine parts
of the exponential term can maintain the same
sign throughout the transition region, i.e., when

hV„hz/v =gv, (46)

where 4z is a measure of the width of the transi-
tion region. [Note that the translational energy of
the ion needed to cause an appreciable transition
probability is far greater than the energy differ-
ence between electronic states (10' eV compared
to 1 eV).] For LiNa', hV„=0.0093 a.u. and v

=0.14 a.u. , and hence (46) leads to hz =12a,. Eq.
(46} is related to the "near-adiabatic" theory pro-
posed by Massey. " From Eq. (40), we see that
b,z is. inversely proportional to P. This property
is reflected in the transition probability P [Eq.
(41}]which is a, function of hV„/Pv.

I'z „--(b/Rm)L, (48)

where L is a constant. Thus, I'~ ~ does not go to
zero for small 8, but rather, increases. This
growth in l as 8 becomes smaller compensates
for the corresponding increase in the energy dif-
ference, leading to a continuous coupling between
the states. Therefore, the phase interference be-
tween states is an integral part of the Z-II coupling
process and oscillations occur throughout the
transition (see Ref. 15). While I'z z is zero at the
half-way point in the collision (i.e., z =0), I'z „
reaches its maximum value at this point. Further-
more, I'~ „maintains the same sign throughout
the collision. Thus, unlike Z-~ coupling, large
transition probabilities occur for collision tra-
jectories tangential to and even outside the curve

D. Two-state Z-II coupling process

The coupling between Z and II states results
from the rotation of the nuclear axis with respect
to the space-fixed axis. The Z-II coupling process
has been studied in detail in a recent paper by
Russek. " Russek's model assumes a constant
coupling term and intersecting straight line poten-
tial energy curves. From Fig. 3 and Fig. 4(b), we

see that these approximations are quite good for
the LiNa' 2'Z' 1'll transition [for LiNa',
(2'&'~a/Be~I 'II}=0.95, R, =5.1a,]. The actual
two-state transition probabilities between the 2'Z'
and 1'll states of LiNa' are shown in Fig. 8(c) for
various velocities.

While I'z z has the general form

I'z z= (z/R)-,'Psech[P(R -R„)], (41)

[see Eq. (40)], lz „has the form (in the coupling
region}
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crossing [see Fig. 8(c)]. Due to the curve cross-
ing, Pz z can be large even for small velocities,
unlike Pz z, which decreases exponentially as
v ' (see Fig. 10}.

Although the curve crossing is at 5.1ao we see in

Fig. &(c}that a significant transition probability
Pz z exists for collision trajectories outside the
curve crossing point (i.e., b &R,). The maximum
in Pz z occurs at an impact parameter just inside
the curve crossing. For smaller b, Pz „de-
cx eases, eventually becoming zero at 5 =0. ' Os-
cillations appear in Pz „for small 5 as the velocity
decreases. However, the maximum in Pz z re-
mains close to unity, decreasing very slowly at
smaller velocities. Therefore, the total cross
section or „for Z-II coupling (see Fig. 9}de-
creases very slowly as v goes to zero (resulting
essentially from the narrowing of Pz „about its
maximum}. (The cross section for very low veloc-
ities ean also be estimated from Fig. 'l of Russek's
paper. ) Since small impact parameters 5 do not
contribute significantly to the total cross section
(because Pr „is small and is weighted by 5}, no

significant oscillations oeeur in the total cross
section due to the oscillation in Pz u [see Fig.
8(c)].

The resulting Z -II transition probability differs
from the Z-Z transition probability due to the
different nature of the Z-Z and the Z-0 coupling
processes. The Z-Z coupling process could be
divided into three parts involving two transition
regions and an intermediate region. On the other
hand, the Z-II coupling process in the molecular-
wave-function approach is more appropriately
treated as one continuous yxocess. The difference
results from the different nature of the coupling
terms.

The Z-II total cross section also differs fxom
the Z-~ total cross section in the high-energy
limit. While az z approaches zero as v ', gz „
continues to increase with increasing velocity.
However, the cross section should actually de-
crease to zero as v -~. This calculated increase
in oz „with increasing velocity for very large V

is not physical, but rather is a defect of the molec-
ular-wave-function approach, resulting from the
neglect of the translational momentum of the elec-
tron. While this neglect of the electron's momen-
tum causes an incorrect velocity dependence for
o'z z as well as o'z &, the error is more serious
for Z-II coupling than for Z-Z coupling owi, ng to
the different nature of the coupling processes.
For Z-E transitions, the coupling term I'z z is
antisymmetric with respect to z [I'E z(-z)=-Iz z(z)].
Hence, at high velocities where the phase change
Af is small, the transition process for z &0 is
canceled by the transition process fox z &0. This

leads to a zero net charge transfer. On the other
hand, for Z-II transitions, the coupling term I'z „
is symmetric with respect to z [Iq „(-z}=+1~ u(z)].
Hence, at high velocities, the transition process
for z &0 and for z &0 are additive rather than can-
celling. Thus, Z-II total cross sections remain
large as v-~.4' (The neglect of the rotational
momentum of the electron appears to cause the
Z-II transition probability to be overestimated at
lower energies as wel). }

E. Multistate coupling process

Having considered the various types of two-state
processes, we now consider the entire coupling
process involved in the scattering processes (1)
and (2}. We find that the multistate coupling pro-
cess can be interpreted as a series of two-state
coupling processes. '

In subsection 8, we showed that transitions be-
tween two Z states occur only at long range where
the potential energy curves axe close together;
for smaller 8, the two Z states are uncoupled.
On the other hand, Z-II transitions occur in the
region of the curve crossing between the Z and II
states. From the potential energy curves for the
LiNa' guasimolecuie (Fig. 3), we see that the
1'~' and 2'Z' potential energy curves are nearly
degenerate at large R(Ra 12a,}, permitting a
stxong Z-Z coupling between these states. The
other 'Z' states are much higher in energy, so
that no direct transitions will occur to these higher-
lying & states [except at high energies (v & 0.2 a.u.
=4x10' cm/sec)]. On the other hand, the 1'll
crosses the 2'Z' state at 5.1ao, permitting transi-
tions to occux between the 2'Z' and 1 ~LI states at
small R. There is a curve crossing of the 1'II
curve and 3'Z' curve at 10.7ao, allowing a two-
state coupling between these two states. Finally,
the 3'Z' and 4 'Z+ states and the 1 'II and 2 II
states have a near resonance at large 8, permit-
ting Z-Z and II-II coupling to occux, respectively,
between these two pairs of states. Coupling will
not occur between other pairs of states because
the enexgy difference is too large. Since Z-Z
transitions (or II-II transitions) occur at large R,
while Z-II transitions occur at small R for which
the Z states are uncoupled, we can decompose the
multistate pxocess into separate two-state pro-
cesses.

First, as the nuclei approach each, the electron
entering on the 1'Z' or the 2'Z' state passes
through the transition region coupling the 12E'
and 2'Z' states. The probability for a transition
is given approximately by Eq. (44). For smaller
R an electron in the 1'E' state is not coupled with
any other state until the nuclei separate and re-



C. F. MELIUS AND %'. A. GODDARD III

enter the 1'Z'-2'E' transition region. On the
other hand, an electron in the 2'Z' state is coupled
to the 1'II state at smaller R. This transition
between the 2'Z' and 111states can be consid-
ered in terms of the two-state process considered
in Sec. IVD. Thus, as the nuclei begin to sepa-
rate, there is a no..zero probability for being in
the 1'Z', 2'Z', and 1'll states. As the nuclei
separate further, a transition can occur between
the I 'Q state and the 3'Z' state (at -10.lao). Fi-
nally, for R &12a„ the separating nuclei enter the
transition regions for the 1'Z+-2'Z' coupling,
1'11-2'll coupling, and O'5'-4'2' coupling. Por
the 1'Z'-2'Z' coupling, the resulting transition
probability is no longer given by Eq. (33), but the
same basic principles still hold. The probability
amplitude on the 2'Z' state in the intermediate
region has been reduced because of transitions
to the 1'll state. Thus, when the atoms depart
there is a smaller component of the 2'Z' state
to interfere with the 1'Z' state, giving rise to a
smaller average P than would be expected from
(33}. Also, 4|P has been changed due to the new
possible trajectories allowed by the presence of
the 1'll state. If P' represents the probability to
remain on the 2'Z' state after the intermediate
step, then Eq. (33') becomes

P =4P(1 P)[P'sin (-,'-&(f)')+-,'(I P')]. -(49)
This can be best shown for the symmetric Na, '

charge transfer, whose transition probabilities
for the three-state process (1'Z', 1'Z„', I'll„)
are shown in Fig. 8(d) [in this case, P =-,' in Eq.
(49)]. Since the LP changes for the three-state
case, the oscillations in- the total cross section
for Na ' change (see Fig. 9). The corresponding
transition probabilities for Na+ Li' in the three-
state approximation are shown in Fig. 8(e}. Again,
the change in LP leads to a shift in the oscillations
in,the 1'Z' —2'Z' cross sections (see Figs. 8
and 9). Note that the 2'Z'-1'll transition proba-
bilities are similar for the two- and three-state
approximations except for a scaling factor (1 -P),
where P is defined in Eq. (33'). [For Na ', (1 -P)
—= —,', so that the two-state Z-II transition probability
(not shown) is equivalent to the Z-II transition
probability in the three-state approximation, but
scaled by a factor of 2] .

In the three-sI, ~e approximation, the 1'0 state
is not allowed to interact with the other higher
lying states. From the potential energy curves,
though, we would expect transitions to occur from
the 1'II state to the O'Z' and 2'0 states and then
from the O'Z' state to the 4'Z' state. Since small
impact parameters are required to populate the
1'Ll state, however, we would expect the 1'0
—O'Z+ transition probability will be small. Also,

since the Li(2P}-Na(3P} energy splitting (0.0187
Hartree =0.51 eV) is larger than the Li(2s)-Na(3s)
energy splitting, we would expect the O'Z'-4'Z'
and 1'll 2'Il transition probabilities to be small.
From the cross sections shown in Fig. 6, we see
that this is indeed the case. The resulting transi-
tions to excited states do not involve interference
effects (as in 1Z-2Z coupling) since the transition
region is only crossed once.

F. Comparison of the molecular-wave-function and

the atomic-eigenfunction formulations

Ne have used the molecular-wave-function
formulation (MWF) to obtain charge-transfer
cross sections. In this approach, the 8 and V
matrices of Eq. (4) are diagonal so that the cou-
pling between (molecular) states results purely
from the I' matrix [Eq. (11)]. On the other hand,
one could have used the diabatic representation
involving (frozen} atomic orbitals in Eq. (4) and
wouM have obtained an equivalent solution (as-
suming an infinite number of states). In this
atomic-eigenfunction formulation (AEF), P is
assumed to be zero (neglecting the overlap be-
tween atomic states), with the coupling between
(atomic} states resulting from the nonzero matrix
V. Using the impact-parameter method, the re-
sulting two-state coupled equations in the diabatic
representation aree

r i ~ +ca ~+as -t n&s)
&a~s —

&, e a,

(5o)

r a ~ +» ~+» +& ~(~)

where

S =&e~les&

Usually, one further assumes that S =0 and that
H» H»=as —e„(for-systems like A+B'-A'+B).

The resulting equations look very similar to Eq.
(8), but differ in two important respects First, .
since E~ -e„ is a constant, the exponential terms
in Eq. (50) oscillate uniformly (assuming S =0)
along the entire trajectory. Second, the coupling
term H» jv increases rapidly as the internuclear
distance decreases and depends inversely upon the
velocity. Thus, in the AEF, we have transitions
throughout the entire interaction region, with the
strongest coupling at sma11. R. This gives rise to
strong oscillations in the transition probability
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FIG. 13. Comparison of the coupling terms M and M'
and the energy difference dE and AE' for the complete
basis-set calculation and for the frozen orbital (FO) cal-
culation of LiNa+.

during the entire collision.
If one were to make the approximations present-

ed in Sec. IVC (i.e., taking the two-molecular
states to be linear combinations of the two atomic
orbitals with zero overlap and straight line tra-
jectories), then the resulting transition proba-
bilities for the MWF would be identical for either
formulation. For example, substituting Eq. (41)
into Eq. (33'), we obtain the same transition proba-
bility for zero impact as Demkov' [Eq. (11) of his
paper] obtained using the AEF."

However, as the nuclei are brought together,
the molecular wave function g, exhibits a contrac-
tion about each nucleus and a polarization toward
the other nucleus. These changes are an essential
part of the bond formation process. To describe
such changes with the AEF requires many atomic
eigenfunctions, including the continuum. To see
what effect the two-state atomic eigenfunction
formulation has on the cross section, we carried
out a calculation using the Li(2s) and Na(3s) frozen
orbital orbitals as the basis set. The resulting
48 and M12 are compar ed with the actual 68 and

M» in Fig. 13. We see that for larger R, hE' is
smaller than 6E, and that EE' does not properly
describe the maximum responsible for the oscil-
lations in the total cross sections. In addition,
M,', is shifted inward with respect to M» and is
smaller than M». This error results primarily
from a lack of polarization of the orbitals, which
would have allowed interaction of the states at
larger R. As a result, the AEF leads to cross
sections that are too small.

We saw in Sec. IVC that the actual 4E and

M» could be described by a simple two-state atom-
ic model, with P =0.42a, ' and R„=12.8a, in Eq.
(40}. Since this model was based upon the AEF,

one would expect that AE and M12 would also be
described well by the model. However, such is
not the case. We see from Fig. 13 that M,', is not
described well by Eq. (40). The atomic model
assumes that the area under the curve M» equals
—,'m. Thus, as M» becomes more localized about

R„, the value of M» at R„should become larger.
The opposite, however, is true of M,', . While

M,', is more localized than M» the maximum value
of M12 is le ss than that of M„. The decay rate of

M» about R„'=11.8ao corresponds to P' =0.46a, ',
while the maximum of M,', at R„' would imply that
P' =0.38ao

One can make an additional approximation in the
atomic eigenfunction approach by using an empiri-
cal formula to obtain P.""One usually takes
P = (2I)'I' (defined in Hartree atomic units) where
I is the smaller of the ionization energies for
atoms A and B (although Olson" modifies his P

by an empirical factor)." For LiNa', this empiri-
cally determined value of P [= (2I}'~'] is 0.62a, '

compared with the value of 0.42a, ' obtained by
fitting the calculated M». Such an overestimation
of P (with a corresponding R„ that is too small)
leads to a cross section that is too small (see,
for example, Ref. 11).

One must be careful to note that the poor re-
sults obtained using the P and R„obtained from
the atomic wave functions does not imply that
the atomic model presented in Sec. IVC is poor.
For P =0.42 and R„=12.8a, (obtained by fitting
to the MWF results}, we in fact obtain a very good
approximation of the cross section using this sim-
ple atomic model. Thus, the main drawback to the
AEF approach is that the P and R„cannot be esti-
mated by considering atomic quantities. With the
appropriate P and R„, obtained perhaps from a
simple MO calculation, one might expect good re-
sults. [With good values for P and R„ the reduced
cross section presented in Olson's paper" should
be quite useful for estimating the charge transfer
cross sections. ]

In addition to the above mentioned drawbacks
of the usual two-state AEF for describing the
charge transfer process at low energies, the sim-
ple picture of multistate charge transfer process
presented in Sec. IVE is lost. We found in the
MWF that the total transition process could be
expressed in terms of a succession of two-state
processes. To obtain an estimate of the transition
probability to other states in the MWF, we need
only know p, the probability for being in an inter-
mediate molecular state [Eq. (44)]. On the other
hand, for the AEF the transition region extends
throughout the entire interaction region, so that
no such noninteracting intermediates exist.

While the AEF provides only the total transition
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probability P, one can partition this P into the
form given by Eq. (33'), and estimates of this form
of P have been made by Rapp and Francis' and by
Demkov. ' Using Eq. (51) of Ref. 6, we obtain

p„„=-,sech(y„„)e "Rp,

y„„=(.r V„/2 p~)(2 ph/v)'~',

while from Eq. (11) of Ref. 8, we obtain

pc =-,' sech(yn)e ~~,

with

y, = (v~V„/2Pv)(I —5 '/ft2)-",

(51)

(52)
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FIG. 14. Comparison of the transition probabilities p
using Eq. (44) (pMG &), Eq. (51) (pRF), and Eq. (52) (pp)
and the actual numerical integration of the two-state
atomic model (p&G g for v =12 a.u. (see Fig. 12).

where R„and P have the same meaning as in Eq.
(40). These estimates of P can be compared with
our estimate of p (denoted p« „}obtained in the
atomic model with approximation [Eq. (44}] as well
as with the p obtained from the numerical evalua-
tion of the two-state atomic model (P« „} In.
Fig. 14 we show the p's obtained for v =12, P
=0.42, A„=12.8ao, and b, V =0.0093 Hartree. We
see that PMG g Pp and pMG „agree for small b.
However, Pp goes to zero at R„. On the other
hand, P„„ is an asymptotic approximation for large
b, and is not expected to be good at small b. How-

ever, even for large 5, p„~ decreases too slowly.
Another difference between the MWF and the AEF

approaches occurs when the rectilinear trajectory
restriction is lifted. So far we have considered
large incident ion energies (E&100 eV) for which
the nuclear trajectory is nearly a straight line,
independent of the various potential energy curves
upon which the nuclei can move. However, as the
incident energy is decreased, the nuclear motion
will no longer be linear. -It is therefore useful to
know the potential energy curve "seen" by the

nuclei in order to understand the trajectory of the
nuclei during and after the collision.

The MWF approach presents a simple picture.
In the region where the transitions occur, we
found that the translational energy must be much
greater than the potential energy difference. In
this transition region, therefore, we can treat
the trajectories for either state as being essen-
tially identical, since the change in potential ener-
gy is negligible compared to the nuclear kinetic
energy (this is also pointed out in a paper by
Delos, Thorson, and Knudson"). When the energy
difference is large, however, there is no net
coupling between states and the nuclei move on one
or the other of the adiabatic curves. One can in-
terpret each molecular state as having an electron
jumping back and forth between the two atoms.
Thus the oscillations in the transition probability
[Eq. (33)] can be interpreted as the difference in
the electron jumping rates for the two different
molecular states. This is much like the mechanism
in an interferometer.

On the other hand, no such simple picture is ob-
tained in the diabatic AEF representation. Transi-
tions occur constantly between the diabatic states
inside the interaction region. Indeed, these "tran-
sitions between atomic states" indicate that the
electron does not want to be in a diabatic atomic
state at small internuclear distances, but rather
it wants to be in an adiabatic molecular state.

We therefore, disagree with the conclusions
reached by Penner and Wallace" and by Corrigall,
Kuppers, and Wallace. " While we interpret the
transfer process as involving two different tra-
jectories with a given probability for being on
each state [~a,~' and ~a, ~' of Eq. (33}],Wallace
et al. , attempt to define a single trajectory for the
entire process. Their conclusion results from a
misinterpretation of the meaning of a molecular
wave function as well as from a misinterpretation
of the transition probability as a function of the
trajectory. Our conclusion from the results pre-
sented in this paper indicate that semiclassical
trajectories defined by adiabatic potential energy
curves from molecular wave functions can correct-
ly describe most collisional processes. '~

The reason that the molecular-wave-function
approach is so appropriate is that for collisional
energies for which the electron is moving much
faster than the nuclei, the electron has time to
adjust its motion in order to define a particular
energy state (within energy limits resulting from
the uncertainty principle). Generally, the energy
splitting between the states will be larger than the
energy uncertainty. Therefore, the states will be
essentially uncoupled. Only for pseudo-curve-
crossing regions and for near degeneracies will
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the energy uncertainty be of the same size as the
energy splitting to allow transitions.

V. CONCLUSION

The multistate molecular-wave-function ap-
proach has been used to obtain accurate total
charge transfer cross sections. While this in it-
self is sufficient to establish the usefulness of the
approach, we have also shown that the molecular-

wave-function approach provides a conceptually
simple picture of the charge transfer process,
involving a succession of elementary two-state
coupling processes. From an understanding of the
potential energy curves and molecular wave func-
tions, one can therefore obtain qualitative esti-
mates of the transitions that will occur in other,
more complicated collisions. The molecular—
wave-function approach should be valid in general
for electronic excitation and de-excitation pro-
cesses, as well as for charge transfer.
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