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We have investigated the method of effective potentials for replacing the core electrons in molecular
calculations. The effective potential has been formulated in a way which simplifies computations while

producing wave functions of ab initio quality. The effective potential is expressed in an analytic form
which (i) represents the actual ab initio nonlocal potential (as defined by the matrix elements for a
given basis set) and (ii) permits efficient computations of the effective-potential integrals (by
incorporating the properties of Gaussian basis functions). To minimize the number of basis functions
required in the molecular calculations, we define a new ab initio effective potential derived from
modified Hartree-Fock valence orbitals whose core character has been removed. The effective-potential
method as formulated becomes a very strong and reliable tool in attempting calculations on very large
molecules. Applications to Li, Na, and K are presented.

I. INTRODUCTION

For many years chemists and physicists have
realized that many of the chemical and physical
properties of atoms are determined by only the
outer few (valence) electrons. Indeed, the con-
cept of the periodic table is derived from this
idea. Thus, in describing the nature of the chem-
ical bond, one need only focus his attention upon
a few electrons for each atom so that, in a chem-
ical sense, molecules involving Ra are no more
complicated than those involving Mg. Unfortunate-
ly, in quantum-mechanical considerations, the
electrons are indistinguishable and all must be
considered. Treating Ra is therefore consider-
ably more complicated than treating Mg. How-
ever, it was clear to early workers that Ra and
Mg could both-be described as simple two-elec-
tron problems by merely replacing the Rn and Ne
cores, respectively, with an appropriate effective
potential (EP}."

As was realized by these workers, the EP could
not be just some simple electrostatic potential
due to the core electrons. Rather, it must also
incorporate the effects of the Pauli exclusion
principle, leading to additional repulsive terms
in the EP's. However, no unique solution exists
for this problem. As a result, a number of ap-
proaches have been suggested and used. Some
approaches are empirical and adjust the EP to
match some experimental data. ' ' Other approach-
es are theoretically based and adjust the EP to
match the results of gg initio calculations. ~ '

In this paper we present a theoretically based
method which has evolved from an approach pre-
viously applied by Qoddard, Kahn, and Melius~ "
to some simple systems. The method has been
formulated to yield ab initio quality wave functions
for the valence electrons'~ while remaining com-

putationally simple and straightforward.
Various empirical and gb initio approaches to

EP's are described in Sec. II. The general forms
of EP's and methods for determining the potentials
are presented in Sec. III. Section IV contains the
specific EP's obtained for alkali-metal atoms.

II. AB INITIO EFFECTIVE POTENTIAL

HF (2)

where the one-electron HF Hamiltonian (for P„)
is given by

H"" = —IV 2 —Z/r y2Z„—K~ (3a)

where —~V' is the kinetic-energy term and —Z/r
is the nuclear attraction potential. The quantities
J„and K depend upon which orbital @& is used
in (2}. For the valence orbital J~ is equivalent to
the classical Coulomb potential due to a charge
density corresponding to the 4 „. The exchange
operator K~ is an integral operator resulting
from the antisymmetric form of the wave function
(i.e., from the Pauli principle).

It will be important in our later analysis to note
that the valence orbital in (I) is not determined
uniquely by the variational principle. One can

In the Hartree-Fock (HF) approximation for,
say, the Na atom, the ground-state wave function
has the form

4 =8(4 „P,X},
where 4 „is a product of (ten) spatial orbitals
very similar to the orbitals of Na+ and Q, is the
valence orbital (the one removed in ionizing to
Na'). (X is an appropriate product of spin func-
tions. ) To obtain the HF wave function we solve
for the orbitals of (I}self-consistently, leading
to variational equations of the form
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modify Q„by mixing in an arbitrary amount of
any core orbital (doubly occupied. in 4„)without

changing the energy. In order to obtain unique
solutions for Q, one generally requires that Q„
be orthogonal to the other occupied orbitals. In
this special case the variational equation for Q,
has the form (3a). Although this orthogonality
restriction has the desired consequence of leading
to a prescription for a unique valence orbital, there
is no reason to consider the orthogonal valence
orbital P, to have a special significance over any
other combination of Q, with the various core

rbitals

4'v =go —Q ~,4, .

[Of course, with a nonorthogonal orbital P„, the
form of the variation Eq. (3a) is modified, with
new potential terms in addition to 2J„-IC„.] We
will find it useful below to use a representation
P„of the valence orbitals in which the A,, in (3b)
are chosen so that P„has small amplitude in the
region where the core orbitals are large.

For the excited states of Na, the wave functions
are also given by (1) with nearly the same C „so
that only Q„changes. Ignoring the slight changes
in the core orbitals, the valence orbitals for the
excited states will also satisfy Eq. (2). We would
therefore expect that the core orbitals could be
replaced by the effective potential

(3b)

U~" =2Jot-K„ (4)

h = —~V~+V~p (r) . (5b)

Thus the HF theory provides a basic foundation
for the use of EP's.

However, (4) does not allow us to forget about
the core orbitals, since K„ is an integral opera-
tor and, upon operating on a function Q„, leads to

For a molecule involving Na bonded to something
else, we might also expect that the core orbitals
of Na could be replaced by the U"" given in (4),
just as for the atomic states.

The J„ in (4) can be expressed as a function of
If U ""could also be expressed as a function

of r,
U EP (y)

we could merely replace the core on each atom
with U Ev (r) and consider only the valence elec-
trons in all further considerations. In this case
the nonkinetic part of (3) can be combined into
one function representing an effective potential

V„(r)=-Z/r+U (r),
so that the total one-electron Hamiltonian (3) be-
comes

terms involving integrals over products of Q,
with core orbitals. Thus, in order to replace the
core orbitals by an effective potential of the form
(5), we need to approximate somehow the effect
of the exchange integral K . There are many

ways of doing this, leading to a number of types
of EP's.

A. Empirically adjusted potentials

The first work on effective potentials was by
Hellmann' and Gombas, ' who used a simple, re-
pulsive potential of the form

U(~) =(&/r)e '" (6)

TABLE I. Comparison of the theoretical (ab initio
Hartree-Fock) and experimental ionization potentials
(V ). All energies are in hartree atomic units.

State
Ionization potential

Theor (HF) Expt
Error in V

I I~ Expt-VTh

Li 2S
Li 2P
Li 3D
Na 3$
Na 3P
Na 3D
K 4S
K4P
K 3D

0.1964
0.1287
0.0556
0.1819
0.1094
0.0557
0.1478
0.0955
0.0566

0.1981
0.1302
0.0556
0.1889
0.1116
0.0559
0.1595
0.1002
0.0614

0.0017
0.0015
0.0000
0.0070
0.0022
0.0002
'0.0117
0.0047
0.0048

'1 hartree = 27.211 eV.
The theoretical ionization potential is taken as the

orbital energy of the valence orbital from an HF calcu-
lation.

with A and K determined empirically so that the
first few excitation energies [of (5)] match the
experimental values. Since their work, more
general forms of the potential in (6) have been
used with fits to a larger number of experimental
excitation energies. '

Since the spectrum of states using (6) is matched
to the experimental spectrum, the potential (6) in
some sense corrects for differences in correla-
tion energies in the various states (see Table I).
However, inclusion of correlation (i.e., super-
position of configurations) effects involving Q„
invalidates the use of (2) and hence invalidates
the use of (5) to solve for the excited states of a
system, even one with only a single valence elec-
tron. Thus determining a generalized form of the
potential (6) to fit the excitation energies of the
atom does not imply that the wave functions and
other properties are well described. The use of
such atomic potentials in a molecule could lead
to large errors in describing molecular binding
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energies (and a fortiori other properties) despite
good atomic excitation energies.

B. Theoretically based potentials

A different approach to EP's was suggested by
Phillips and Kleinman' (PK}, who modified the
HF equations (2} (for a one-valence-electron sys-
tem) into the form

(- -'V' —Z/&+ U"" +U'")X. = &.X. (7)

where g, differs from the HF valence orbital Q„
in that core orbitals are subtracted from Q„as
in (3b} in order to obtain a valence orbital with
no large oscillations in the core region. With this
transformation the total potential

y Z/» + U HF + U PK (8)

is relatively weak. This work stimulated a great
deal of theoretical analysis on the electronic prop-
erties of solids, since the weak potential in (8)
permitted the atomic cores to be considered as a
perturbation to the free-electron gas. Phillips
and Kleinman showed that (7) leads to the same
energy c, as (2} if U " has the form

U'" =g (e, —~.)Iy.&(y. I . (9)
C

In this viewpoint of the EP, U " (called the pseu-
dopotential} is a repulsive potential which plays
the role of enforcing the Pauli principle, prevent-
ing X& from collapsing into the -core. The U "
was generalized by Weeks and Rice"" in order
to account properly for the off-diagonal Lagrange
multipliers necessarily present in the HF equa-
tions for open-shell systems. (A detailed discus-
sion of these methods and others has been pre-
sented by Weeks, Hazi, and Rice' and by Kahn
and Goddard. ')

Although (7}and (2) are equivalent for the first
state &„, they are not equivalent in general for
the excited states. In addition, (7) is not unique
since an infinite number of possible choices exist
for U ", corresponding to all the ways of changing
the amount of core character (Q,) in P„ to form Xv,

X.=4.—g ~.4. . (10}
C

Furthermore, the effective potential in (9) is still
an integral operator and hence is not as convenient
as a local potential such as (6). To obtain an EP
that is a function of r, one can let (9) operate on
g„(r) and then divide by g„(r}. (If y„has a node,
this approach leads to a difficulty since the result-
ing potential has a singularity, forcing all the ex-
cited-state orbitals also to have a node at that
point. ) However, we still obtain an infinite num-
ber of such local potentials, each with its own
spectrum of excited states.

C. GVB ab initio effective potential and

minimum-kinetic-energy effective

Vovs l&(+(1/2)V') 4. (12)

This approach was applied by Kahn, Melius, and
Goddard' ' to the ground and excited states of
several small diatomic and triatomic molecules
and was found to provide good quality wave func-
tions and properties as well as energies.

While the GVB valence orbital Qovs is unique,
a combination of occupied HF orbitals as in (3b}
or (10}can be found that is similar to Qov~.

Surratt and Qoddard" found that if X in (10}is de-
termined to minimize the kinetic energy of X„,
the resulting orbital X"„ is very close to the GVB
orbital. The resulting minimum-kinetic-energy
effective potentials (MKE EP's) are therefore
similar to the GAEP's. Austin, Heine, and Sham"
had previously suggested that the MKE EP would
be a reasonable choice for defining a unique EP.
Both of these potentials have been used for calcu-
lations on solids. ' ' Since the potentials are
weak, the crystal eigenfunctions are plane-wave-
like and can be well described in terms of a lin-
ear combination of just a few plane waves, there-
by reducing the computational effort (a very large
number of plane waves wouM be required in the
expansion of the usual HF orbitals}.

D. Coreless Hartree-Fock effective potential

The above results indicate that one need not go
to the GVB wave function to obtain an effective po-
tential. The HF valence orbital can be used if
one removes the condition that it be orthogonal to

Goddard included dominant correlation terms
missing in the HF method by using a wave function
corresponding to a generalization of the valence-
bond-type wave function (denoted as GVB) in which
the orbitals are solved for self-consistently. "'"
With this approach the orbitals are given by a set
of equations similar to (2}

H "A,. =Elk&

where SP is similar to JI""but contains a more
complicated exchange term than K (involving
integral operators). A major difference is that
the GVB method" (also called the Gl method'~)
leads to GVB valence orbitals that are not orthog-
onal to the core orbitals. In addition, these
orbitals are smooth in the core region and are
uniquely determined. This suggested using the
GVB ab initio method on the atoms to determine
the unique (smooth) orbital Q„and then choosing
the effective potential (called the GVB atomic EP
or QAEP~'~) for replacing the core as
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HC, =E;C]

where

(13a)

(13b)

The cost of computing the molecular eigenfunctions
generally varies as the fourth power of the number

of basis functions that must be included, and hence
we wish to keep the size of this set to a minimum

but without sacrificing accuracy.
For example, consider the K atom. With Gaus-

sian basis functions, it requires about nine func-
tions to obtain a good description of the valence
4& HF orbital (since it must contain 1s, 2s, and
3s character). By using instead the GVB or MKE

description, the valence orbital is relatively
smooth in the core region (see Fig. 1) and requires
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FIG. 1. Comparison of the K 4s orbitals obtained in
the Hartree-Fock giF), minimum kinetic energy (MKE),
and coreless HF (CHF) descriptions.

the core orbitals. One should next determine
whether some choice other than MKE would lead

to useful potentials. From considerations of
the effective potentials obtained from different
forms of Q, [as in (3b)], we have concluded that
the main consideration is that the A., of (3b} be
chosen such that the resulting Q„ is as small as
possible throughout the entire region where the
core orbitals are large. We will refer to the re-
sulting orbital as the coreless Hartree Foc-k (CHF)
orbital since it has minimal amplitude in the core
region. The resulting CHF orbital cannot be zero
in the core region since it must have the form
(3b). In addition, the CHF orbital will not in gen-
eral be orthogonal to the core orbitals.

A major reason for using the CHF potential is
computationally based. '9 In carrying out molecular
calculations we expand each valence orbital in
terms of a set of basis functions jy„} (e.g. , Slater
or Gaussian functions) of appropriate shape cen-
tered on the various atoms. In this case the dif-
ferential equation (2) becomes a matrix equation

fewer functions (only about six) for a good descrip-
tion. Even though these GVB and MKE orbitals
are relatively smooth, they do have a cusp at the
nucleus and possess some wiggles at small r. To
describe such cusps and wiggles requires basis
functions in the core region. In order to minimize
the basis-set requirements, we would like to sup-
press ale unnecessary cusps and wiggles in the

core region. This suggests starting with the HF
valence orbital and mixing with it core orbitals

X + =X+ ~cXc (14)

[where t =(-2e)'~']. This leads to a g„ that is
smoothly decreasing in the core region, the de-
sired property for reducing the size of the basis.
As indicated in Fig. 1, X~" goes to zero at the
origin but has no other nodes in it. The corre-
sponding EP can then be obtained, for example,
by inverting the orbital [as in (12)]:

ycs'p [& + (I/2)V'] XF"
c~

Xv

The resulting CHF EP's for the alkali atoms are
presented in Sec. IV.

The computational advantages of this smooth
Hartree-Fock orbital are obvious. Since the new
orbital has small amplitude throughout the core
region, no tight basis functions (i.e., basis func-
tions with high exponents) are required in the mo-
lecular calculations. In particular, one can use

with the requirement of minimizing the number of
corelike basis functions needed to describe X„.
Since each HF orbital satisfies the cusp condition
at the nucleus,

d Z
t+1

a cusp [(d/dr) It„w0, for r =0) and the concomitant
corelike basis functions are avoided only if It„(0}
=0. Thus we want the coefficients in (14) to be
such that It, (0) =0. One might then define the other
conditions (if any) on the coefficients so that high-
er-order derivatives would also be zero at r =0.
However, we found for Na that requiring the first
two derivatives to be zero led to a function that
becomes slightly negative for small &, changes
sign at small r, and then becomes large and posi-
tive. This character near & =0 would tend to in-
crease the size of the basis set.

We have instead formulated the CHF criteria
that place conditions on the over-all shape of X„
rather than upon properties at one point. Namely,
we choose the coefficients in (14}so as to obtain
a best fit of X, to an m=3 Slater orbital"
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Gaussian basis functions. Gaussian basis functions
are advantageous because the one- and two-electron
integrals can be evaluated analytically, thereby
greatly reducing the computational time. These
same properties of the Gaussian basis functions
can also be used to evaluate the effective potential
integrals analytically (see Sec. IIIB).

The usual difficulty with Gaussian basis func-
tions has been their poor description of the sharp-
cusp character of the orbital near the origin.
Since Gaussians are flat at the origin, many tight
Gaussian basis functions have been required to
describe adequately the steep slope of the cusp
(with the integral time growing as the number of
basis functions to the fourth power). On the other
hand, using the smooth CHF orbital, the orbital
is flat at the origin and. no such difficulty arises.
As a result only valence-type basis functions are
needed, leading to a significant decrease in the
computational effort.

As an example, we compare in Table II the basis
functions required for the HF and CHF descrip-
tions of the K 4& valence orbital. " We see that
both the HF and CHF orbitals use two valence-
type basis functions (&„„=0.017 vs gc„„=0.018 and
f„„=0.036 vs fc» =0.041) as well as a somewhat
tighter basis function (I'HF=0.31 vs pcs„=0.27).
However, while the CHF 4s orbital needs only
these three basis functions, the HF 4& orbital
needs six additional tight core basis functions to
describe the oscillations in the core region and to
provide comparable accuracy in the orbital ener-
gy

22

III ~ FORMATION OF EFFECTIVE POTENTIALS

A. General form of effective potential

Empirical methods of generating EP's have
generally concentrated on fitting the energy spec-
trum of the atom. However, we are not interested
in just the energy, but also we want to obtain many
other properties for molecular systems. Thus
we want the EP to be such that the whole wave
function is accurately described, not just the en-
ergy. Indeed, even to obtain good potential-en-
ergy curves, it is necessary that the various
atomic orbitals have the right shape so that the
interatomic overlaps (and other quantities related
to bonding) behave properly with R. This suggests
that the EP be chosen so that its eigenfunctions
(not just its eigenvalues) are as close as possible
to the eigenfunctions obtained with ab initio poten-
tials.

In the self-consistent field approaches, such as
HF [Eq. (2)] or GVB [Eq. (11)], each orbital (sin-
gly occupied) is an eigenfunction of a one-electron

Hamiltonian which includes the effect of all the
other orbitals (and includes exchange or nonlocal
terms). That is, for each Q, (e.g. , gMKE, Qov~,

CHF )

H(
A

H, =-2V2+ V

(17a}

(17b)

1 - [e ( + (Il2)&'] Q; (18)

we obtain an effective potential which is equivalent
to the nonlocal. potential for that particular. orbital.
Solving for the ei'genfunction of H; = T+ V&(R) then
leads back to the original P, .

Let us now consider another electronic state of
the system Ag.ain, each orbital QI is obtained
from a one-electron Hamiltonian,

H~ Q~
—e~ p]

] A

H~ =——~V + Vg

(19a)

(19b)

for which one could obtain a new effective poten-
tial

[e] + (I/2) V'] 4] (20)

In general, the V& obtained in (20) is not equal to
the corresponding V, of another state [say (18)]
for the molecular system. In some cases, how-
ever, when V, for orbital P, is used in place of
V& in Eqs. (19), the new PPP and ez

~ will be very
similar to the original Q,

' and ez."
TABLE II. Orbital exponents (&~) and coefficients

(c~ ) to describe the K 4s HF and CHF orbitals in a
Gaussian basis set (all functions are Gaussian orbitals).

HF CHF

150 591
22 629.6

5 223.16
1 498.06

495.165
180.792
71.1940
29.3723
8.688 63
3.463 82
0.811307
0.312 555
0.035 668
0.016 517

-0.000 01
-0.000 04
-0.000 19
-0.000 76
-0.002 53
-0.006 81
-0.01337
-0.010 81

0.050 66
0.090 76

-0.14349
-0.301 29

0.701 02
0.407 65

0.270 275
0.040 528
0.018 283

—0.215 71
+ 0.594 88
+0.51810

A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1969).

where V(e.g., V;"~, VPv~, VP"}is a nonlocal
potential operator depending on the other orbitals. '4

Replacing V, by the local operator V, (r),
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To understand when this will happen, we need
to consider more closely the form of the nonlocal
potential operators V& and V&. Since V, is nonlocal,
it depends explicitly upon all the other orbitals of
the system. Thus the effective-potential method
will be appropriate only for those systems for
which the other orbitals (i.e., the core orbitals)
do not readjust significantly from one state to
another. (We will refer to this as condition 1.)
However, because of the exchange operator, we
see that the potentials also depend upon the va-
lence orbital

K,(1($,(1)=d, (1(I d'r,
12

Thus the two localized potentials will be similar
only if the two (valence) orbitals are similar. Of
course, the two orbitals cannot be similar every-
where, since they must be orthogonal to each
other. But the exchange operator weights only
that part of the valence orbital for which

p, (2)Q, (2)/r» is large and hence only the region
near the core. Therefore, as long as the excited-
state orbital has the same shape in the core region
as the valence orbital, "one would expect the local
potential for the excited-state orbital to be similar
to the local potential for the valence orbital. (We
will refer to this as condition 2.}

As an example we consider the Li atom, with
three electrons. In particular, we will examine
the GVB representation, for which each of the
orbitals is uniquely defined. The excited states
of the Li atom represent the excitation of the outer
or valence electron, while the two inner electrons
remain essentially the same as the ground state.
Therefore condition 1 is satisfied. However, in
order to replace the core by an effective potential,
we also require that the valence orbital for each
excited state have the same shape in the core re-
gion. To determine if this is reasonable, we have
plotted in Fig. 2 the valence orbitals for several
of the low-lying states of the Li atom. We see
that the 22P orbital is very different from the
2'S orbital in the region of the core and thus we
would not expect the effective potentials for these
two states to be similar. On the other hand, the
3'S orbital has essentially the same behavior as
the 2'S orbital in the core region" (within a scal-
ing factor), as do the higher 'S orbitals. Thus for
the 'S states we would expect the effective poten-
tials to be similar (condition 2 is satisfied). Like-
wise, all the 'P states can be represented by the
same effective potential, and so on for the other
(bound) angular-momentum states. We would
therefore expect that the core orbitals can be re-
placed by an effective potential of the form

I

O. IO— I I

Li ATOM

Ld
C)

CL

0.05—
~ e ~

~ddt

0.00
!/

0 05 22P~ g]

3 P

-0. IO—
I I I

-I0.0 -5.0 0.0 5.0
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0-
~ g ~
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I
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FEG. 2. Valence orbital for various excited states of
Li (a11 for self-consistent GVB wave functions).

V„, = P V, (r}(l)(l),
1=0

(21)

I 5.0

Li ATOM

Ug=V+ Z
r~ IO.O

O

Z
UJI-
O~ 0.0

0.0
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DISTANCE (bohr)
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FIG. 3. U~, U&, and U& local potentials for Li atom
obtained from the GVB orbitals.

where (l)(1 ( denotes the sum over m of )lm)(lm(,
where

~
lm) denotes the spherical harmonics and

the projection operator (lm ~
involves integration

over angular coordinates only. While there is a
different potential for each angular momentum,
one local potential V, (r) is sufficient for describing
the various (bound} excited states of the same an-
gular momentum.

The V, (r), V~(r), and V~(r) obtained for the Li
atom (excluding -Z„/r) are shown in Fig. 3. While
V, is quite different from V~ and V„, we see that V~ and
V& are quite similar. This results from the Pand d
orbitals having similar character in the core region
(zero amplitude at the origin but no other nodes),
since there are no core orbitals of these symmetries,
while the valence s orbital is greatly affected by the
presence of core orbitals with s symmetry. The
higher-angular-momentum orbitals should be very
similar to the d orbital in the core region, yielding
V&'s essentially equivalent to V„~ V~. From such
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considerations we expect that for angular momenta
~ greater than the maximum angular momentum ~
involved in the core (X =0 for Li, & =1 for Na and
K) the V, should be approximately equal,

V, = Vx+, for l&~ .
I

ln this case (21) becomes

V,«-V&„,(r)+g aV, (r)ll&&f I, (22)
l=0

where &V, —= V, —Vq+, .
Thus far we have considered the electron moving

in a spherically symmetric potential of the atom,
obtaining an effective potential which is valid for
the spherically symmetric atomic case. We must
now consider whether the potential is still valid
for an electron moving in a molecular system.
To proceed, we can expand the electronic orbital
in terms, of the spherical harmonics of the atom
and use the potential as defined in (22). However,
for the potential to be accurate, the radial part
of the orbital for each angular term must have
the same character near the core as did the cor-
responding atomic radial function. For most
molecules this is indeed the case. That is, near
the atom, the wave function can be expressed quite
well as a linear combination of the lower-lying
states of that atom. "

The effective-potential approximation will break
down if the cores (which are taken to be frozen)
are greatly perturbed. Furthermore, the effec-
tive-potential approximation will not be accurate
if the valence electron is located within a portion
of the core region (for example, by bringing a
highly charged ion into close proximity with the
core). The reason is that the local effective po-
tential obtained in (18) represents the actual non-
local potential only in a global sense (averaging
over the region of the core) and is not valid in a
pointwise sense. These are not serious problems,
however, if care is taken when applying effective
potentials to molecular systems. In general,
therefore, we find that effective potentials defined
as in Eq. (22) can be used in a wide range of mo-
lecular wave functions yielding results that should
be in close agreement with the ab initio results.

B. Analytic form of effective potential

In order for effective potentials to be utilized
advantageously in SCF calculations, the integrals
involving these potential+ must be evaluated effi-
ciently. Therefore, the effective potentials must
have a simple form yet sufficient flexibility to
reproduce the effect of the replaced electrons.
It was shown in Sec. IIIA that effective potentials
can correctly represent the effect of the core '

electrons in molecular systems if the EP has the

form

(21)V (r)l f&« I,
1=0

where V, is a function only of r [i.e., V,« is a
local potential not depending explicitly (as an in-
tegral function) on the core orbitals]. We have
further found that the effective potential can be
put into the form

f U(r)r"e ~" r'dr,
0

r U(r)r"e ~' M, (ar)r'dr,
0

(23a)

(23b)

U(r) r"e ~" M, (ar)M, (br)r ' dr,
0

(23c)

where the M&'s are modified spherical Bessel
functions. Since the V, depend only on the scalar
coordinate r, the angular integrations in (23)
have been carried out explicitly. One could evalu-
ate these integrals by direct numerical integra-
tion. However, we found that this procedure
leads to computation times comparable to that
for two-electron molecular integrals, thereby
partly defeating the purpose of using effective
potentials.

Instead, we will use an expansion of the potential
U(r) in terms of a standard set of convenient func-
tions of r, (p, ~(r)} and we will evaluate each of the
integrals analytically. The expansion functions

V.«= V~.i(r)+Q ~V&( )lf&&f I (22)
S=O

where & V, = V, —V&+] We now wish to find a
simple form for V,«as defined in Eq. (22).

In evaluating the integrals, we will take the
basis functions to be Gaussians. The well-known

f

advantages of Gaussian functions for evaluating
multicenter molecular integrals can also be used
in evaluating the effective-potential integrals.
[As previously mentioned, by using the CHF ef-
fective potential the major drawback of Gaussians
(i.e., the need for many basis functions) has been
eliminated. ]

The types of molecular integrals that must be
evaluated are

& x. I U. I x.&,
&x~ IU. lx.&,
&x. lU. lx.&,

where the a, 5, and c indicate the origin used for
the basis function (x) or potential (U= V, or A V, ).
Substituting the Gaussian form for the basis func-
tions then leads to integrals of the form
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pa(r) =r 'e (24a}

can be combined with the &"e ~" parts of the in-
tegrand to yield a new integral of the same form
as (23) but with the U(&) deleted. Thus expanding
the potential as

U(&)=g c p (&) (24b)

y, ~(r) must be chosen both (i) to allow accurate
expansions of the U,(r) and (ii) tow, liow for simple
analytic forms for the integrals in (23). From
the form of (23}we see that an expansion function
of the form

2.0

z ~ 0.0
t—oO~
CL

-2.0
2.0

V
MKE

S

Li EP

(b)
DZeff

V„,(r)=- Z.„(r)/r . (25)

At the origin Z,«(0) will equal Z„. Letting Z,„,
represent the number of electrons that are re-
placed by the potential, Z,«(~) equals the differ-
ence between the nuclear charge and Z„„[Z,ff(~)
=Z„—Z„„].Defining &Z,«(x) as the difference
between effective charge at infinity and the actual
effective charge, i.e.,

AZ, «(r) =Z,r, ( ) —Z„f(r), (26)

we see that &Z represents the modification of the
potential (by the core electrons) from that of a
hydrogenic system [with charge Z„f(~)].

As an example, we consider the V, potential
of the Li atom. The effective potential obtained
from the MKE HF Li 2'S orbital (which has essen-
tially the same behavior as the GVB orbital) is
shown in Fig. 4(a). In Fig. 4(b) we show &Z,« for
the MKE Li 2s orbital. The function &Z,«(r) is
localized in the region of the core orbitals. It
rises smoothly from a value of -Z„„at the origin
to a maximum at -0.5 bohr and then falls off quick-
ly to zero (by R =3a,}. The positive region of the
potential represents the repulsive character of
the effective potential (due primarily to the Pauli
principle), keeping the valence orbital of Li from
collapsing into the core. From Fig. 4(b) we would
expect that terms of the type in Eq. (24} with
&&= —1 and 0 could readily reproduce the shape of
+Zeff.

We now consider the new V, effective potential
for the Li atom resulting from the coreless Har-
tree-Fock orbital (CHF). This new potential is

and using (24) leads to integrals that are essential-
ly no more difficult to evaluate than the overlap
[U(r) =—1] and the nuclear potential [U(r ) = —Z/r]
integrals. These integrals can be readily ex-
pressed in analytic form. "

To determine what type of terms are required
in (24}, we multiply the effective potential by r,
generating the negative of what is called the
(radially dependent) effective charge

0.0
CI CHF

2.00.0
I I I

2.0
DISTANCE (bohr}

4.0

FIG. 4. (a) MKE V~ effective potential for Li atom,
(b) the resulting b, Zeff and the corresponding b Zeff for
the CHF Vs local potential of Li.

plotted in Fig. 4(b). Since this. new orbital has
zero amplitude at the origin, the effective poten-
tial must behave as & ' for small &. [It is this
repulsive singularity which prevents the lowest
(nodeless) solution of the potential from collapsing
into the core. ] Thus we need to include terms in
Eq. (24) with &, = —2.

In conclusion, therefore, we see that one can
express an arbitrary EP in the form given in Eq.
(24) using only terms with n, =0, —1, or —2.
Methods to determine values of the variables &I,

and &» for each term will be discussed in Sec. III C.

C. Methods for obtaining effective potentials

In order to use effective potentials, we need a
method for obtaining an analytic form for the EP
correctly representing the effect of the nonlocal
potential due to the core electrons. .

One method would be to obtain the potential V(r)
by inverting the orbital, ~ as defined in Eq, (18).
One can then fit the potential" by "least squares"
with the form given in Eq. (24), optimizing the ex-
ponents and the coefficients. By adding a sufficient
number of terms, one can obtain a fit to whatever
degree of accuracy is desired.

While this approach is straightforward, several
problems arise. For instance, how accurate does
the fit need to be (that is, how many terms are
needed)'? This problem is made more complex
when one realizes that the orbital used in the in-
version [see Eq. (18)] is not exact but usually is
an approximation expressed as an expansion in
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terms of some basis set. Therefore, the potential
to which we would fit is itself only an approxima-
tion. Furthermore, the potential for one state of
the system (e.g. , Li 2'S) is only an approximation
for another state of the system (e.g. , Li 3'8). We
might prefer to determine, say, V, of Li to yield
simultaneously a good fit for both the 2'S and 3'S
states.

Additional problems can arise in this method
from the over-all shape of the orbital used in Eq.
(18). The orbital must be nodeless (except at
r =0) to prevent singularities from arising in the
potential. Also, using this method effective poten-
tials can be obtained straightforwardly only for
those systems which support a bound state, since
we use the variational principle to obtain the
orbital to be inverted. Thus, for example, one
could not obtain a complete EP to replace the F
ion since the F 'S, "P, etc., states do not exist.

To circumvent these problems, we have devel-
oped an alternative method for obtaining effective
potentials. We require the local potential as
given in Eq. (24) to reproduce the same matrix
elements as those obtained from the original,
nonlocal potential. ' That is, we want V,„to be
such that

&x„l vfflx.) =&x, l vlx.) . (27}

However, a local operator V, (r) cannot be equiv-
alent to a nonlocal operator V„and (27) cannot
simultaneously be satisfied for all p and &. Thus
we require (27) to be satisfied in a least-squares
sense.

A method which makes direct use of this point
is to choose the basis functions g„ to be the va-
lence orbital(s) for some molecular system con-
taining the frozen core. That is, we define V,~
to be

&x~l ve«l 0 v) &x~l vl 4u)

=& x„l e. —& I y.),
(28a)

(28b)

IV. EFFECTIVE POTENTIALS FOR THE
ALKALI-METAL ATOMS

In this section we present examples of ab initio
effective potentials which have been obtained for
Li, Na, and K. The potentials were obtained using
methods described in Sec. III. The alkali-metal
atoms (Li, Na, K, etc. ) contain a single-valence
electron with a completely filled inner core of
electrons (isoelectronic with the inert gases).

where the g„are chosen to span the space of the
valence orbital. An immediate connection is seen
between Eqs. (28b) and (18). However, since the
inverse of Q& is not required, it is permissible
for Q, to have nodes in it. Also, we can include
other valence orbitals in Eq. (28a) [fitting then two
or more columns of (28b)], permitting one to ob
tain the best EP satisfying both Eqs. (18}and (20).
For systems which do not have bound states, one
can still use Eq. (27) defined oyer basis functions.

By defining the effective potential as in (27),
any new electronic orbital we obtain by solving
(sb) using the EP will experience the correct field
due to the core electrons (if the orbital is ex-
pressed in the same basis set as that used in fit-
ting the matrix elements). Thus we no longer find
it necessary to go through an intermediate stage
of evaluating V«(r) as a function of r [as is im-
plied from Eq. (18)]. The extent to which we can
reproduce the nonlbcal matrix elements by the
EP matrix elements provides a test of confidence
which can be applied to any calculations that would
be based on that EP.
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The excited states of the atom represent a one-
electron excitation of the valence orbital with the
core orbitals remaining essentially unchanged.
Therefore, the alkali atoms represent the ideal
system for using effective potentials.

We present here results for two different effec-
tive potentials for the alkali atoms: (a) the EP
obtained from the minimum-kinetic-energy Har-
tree-Fock orbital (MKE) [or from the nearly
equivalent GVB orbital (GAEP)]; (b) the EP ob-
tained from the newly defined coreless Hartree-
Fock orbital (CHF). Plots of these various orbitals
for Li, Na, and K are shown in Fig. 5 and com-
pared with the HF orbitals.

We see that the amplitude outside the core is

essentially the same for the HF, MKE, and CHF
orbitals. However, the HF orbital has large
oscillations and a significant amplitude in the
core region. Likewise, the MKE orbital, though
it is flat in the core region, still has wiggles in
it and for the s orbital has a cusp at the origin.
Therefore, both types of orbitals require tight
basis functions. On the other hand, the CHF is
smooth, having no wiggles in it.

To evaluate the EP's, Eq. (28) was used with

p, representing the MKE or CHF orbital. The
basis functions g „were taken to be the same basis
functions that were used in the solution of Q„.
Since the matrix elements for the most diffuse
basis functions represent integration over the

TABLE III. Expansion terms for the CHF effective
potentials. " 8.0

Li
(a)

Potential

Li Vg g)

LxVp g

Li VD

NaVg g

NaVp g

Na Vg)

KVg D

KVp D

K Vg)

c;

2.5378
1.1097
0.3527
0.008 94

-0.1261
-0.1901
-0.2393
-1.0

0.4296
-2.4256

2.0262
2.5342

-0.033 89
5.8539

29.4418
1.5541
0.006 67

51.5653
-46.9069

87.5679
16.1439
0.3582

-1.0
1.1004

-11.0951
9.3093

10.2369
-0.0220

8.2055
0.5086

-0.7927
6.8315
0.2874
1.1498

-1.0
-4.4701
-0.2924
-0.1675

~2
0
0
0
0
0
0

-1
-1
-1

0
0
0

-2
0
0
0

-2
-2

0
0
0

-1
-1
-1

0
0
0

-2
-2

0
-2

0
0

-1
-1
-1

0

1.9088
0.9470
0.4905
0.098 25
1.0147

13.1143
3.0810
0.0

11.0026
1.5083
4.3868
1.7530
0.7159
1 ~ 3940

28.4200
O.6150
0.0762
3.9264
1.7704
2.8630
1.5166
0.3031
0.0

12.2245
1.3859
4.2010
1.7972
0.2280
0.3538
0.0846
1.0910
0.4676
0.1496
0.4673
0.0
0.6990
0.2042
0.3325

4.0—

o .0

CHF MKEp

CHF, MKEd

I-4.0

8.0

4.0
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HFp

MKE p

MKE~

0.0

MKEd

-4.0

8.0

4.0—

N
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0.0

-4.0
0.0
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'V, =Q c)r"'exp(-t'(r2}.
V S =V S D+VD,' VP D+VD. -- FIG. 6. Various EZ,«'s for (a) Li, (b) Na, and (c) K,

where EZ,« =Z,«() —Z,«(r) [Z,«(~) =1].
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entire potential, "we wanted these matrix ele-
ments to be very accurate. Therefore, a weight-
ing of the matrix elements proportional to the in-
verse of the orbital exponent was used. Since cal-
culations using the CHF EP will not use tight
corelike basis functions (even if allowed to), we
deleted such functions in fitting the potential.

The resulting EP's are smoothly varying func-
tions. Therefore, very few terms are needed to
express the potential. We find that the EP's ob-
tained from these fits do not, in general, possess
the exact form of the potential near the origin
(e.g. , -Z„/r for the MKE orbital}, since the basis
functions and valence orbital do not weight this
region. However, such behavior near the origin
is not important, since use of the EP to obtain
matrix elements for molecular or atomic calcula-
tions will in turn also not weight these regions.

After performing the least-squares fit of the
matrix elements, we obtain effective potentials
for the various atoms. The ~Z,ff's for these po-
tentials are shown in Fig. 6. The expansion terms
for each of the EP's are given in Table III.

In general, we see that if the valence orbital
has the same symmetry as one of the core orbitals,
then the EP contains some repulsive character in
the core region to prevent the valence orbital
from collapsing into the core. For the CHF orbit-
als the repulsive character is represented by the
singularity at the origin. The MKE EP's, on the
other hand, are proportional to -4/& g& 0} near
the origin. "

Using these EP's we have determined a set of
optimized (Gaussian) basis functions for each
atom. The basis sets were chosen to provide. an
accuracy in the energy to within 10 4 hartree
( 3X10 ' eV or 6X10 ~ kcal). The resulting
basis sets (for CHF) are given in Table IV.

From Table IV we see that the larger atoms
(e.g. , K} require fewer basis functions than the
small ones (e.g. , Li). This is in direct contrast
with the case of the orthogonal HF orbitals, where
the number of basis functions required grows very
quickly with the size of the atom. Thus the CHF
effective potential provides a significant reduction
in computation of the integrals while still providing
ab initio quality.

V. SUMMARY

The justification for using effective potentials is
to. simplify the computational efforts required in
solving for the electronic wave functions of large
polyatomic molecules or solids. Toward this end
we have developed the ab initio effective-potential
method to provide reliable yet computationally
efficient results. We have defined a new type of

TABLE IV. Gaussian basis sets for CHF orbitals (all
quantities in Hartree atomic units).

Orbital Exponent g~ Coefficient c
&

Li 2s

Li 2p

Li 3db

Na 3s

Na 3p

Na 3d

K 4s

K 4p

K 3db

2.893 79
0.618 15
0.073 85
0.028 17
2.697
0.535
0.147
0.0528
0.020 14
0.075 69
0.022 60
0.008 30
1.229 99
0.451 96
0.057 80
0.021 91
1.243 76
0.10841
0.046 19
0.017 69
0.076 77
0.022 45
0.008 25
0.270 28
0.040 53
0.01828
0.442 96
0.038 88
0.014 39
0.103 66
0.024 85
0.00849

-0.01833
-0'.103 55

0.564 43
0.51544
0.01105
0.059 75
0.23126
0.508 62
0.366 86
0.11767
0.49639
0.526 00

-0.03546
-0.11338

0.673 83
0.415 26

-0.007 72
0.11749
0.475 86
0.507 38
0.10844
0.518 79
0.529 22

—0.215 71
0.594 88
0.51810

-0.02645
0.50049
0.574 13
0.10643
0.524 83
0.545 88

0.000 04

0.000 02

0.000 06

0.000 02

0.000 03

0.000 07

0.000 05

0.000 04

0.000 17

'b, E is the difference between the orbital energy for
the given basis set and the orbital energy for a very
large basis set.

The Li 2P, Li 3d, Na 3d, and K 3d HF orbitals are
unique (CHF = HF).

effective potential (CHF EP) derived from the
newly defined CHF orbital. Since the CHF orbital
does not contain core character, no tight basis
functions are necessary in the calculations. To
further simplify the computational efforts, we
express the effective potential in an analytic form
which permits rapid evaluation of the potential in-
tegrals over Gaussian basis functions. To ensure
reliability in the EP calculations, we derive the
local EP directly from the matrix elements of the
actual ab initio nonlocal potential defined over a
given set of basis functions. The extent of the fit
between the EP elements and the nonlocal potential
matrix elements provides a test of the reliability
we can expect from the use of similar EP matrix
elements in molecular calculations. Furthermore,
by using the matrix-fit method for defining the
EP's, we can obtain EP's for systems which have
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no bound states (e.g. , the 'S and "P states of
Cl '). In fact, using the matrix fit we can obtain
EP's representing the potential an electron sees
due to a molecular core such as a CO ligand in a
metal complex. The essential requirement is that
the electronic molecular core (being repla, ced)
can be taken as frozen (i.e., having the same form

for the various molecules, complexes, or excited
states of interest).

Thus, using the methods developed in this paper,
one should be able to use the effective-potential
method as a reliable tool for calculations of large
molecular systems.
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