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Calculation of the fine structure of the a 'X+ state of molecular helium*
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Using a published correlated wave function computed by Poshusta and Matsen, we have obtained'a

vibrationally averaged first-order spin-spin constant of —0.04089 cm ' for the a'X+ metastable state of
molecular helium. This is in good agreement with the experimental value of —0.0367 cm ' recently

reported by Lichten et al. Our results strongly suggest that second-order spin-orbit effects are small.

The spin-spin constant ~' of He, a'Z„', which
essentially determines the fine structure of this
state, has recently been deduced experimentally
by Lichten and co-workers" to be -0.0367 cm '.
This value is an order of magnitude smaller and
opposite in sign to values of other Z states deduced
semiempirically' for systems which had been pre-
viously studied experimentally such as N, 'Z„', '
NH'Z-, ' O X'Z- ' SO'Z-, ' S, 'Z- ' and Sea'Z-. '

Experimental results on He, have been limited
to the gross structure of Rydberg-like states. "
Scattering experimentalists have been interested
in the potential-energy surface of the a'Z„' state
due to the possible existence of a barrier beyond
the minimum. " This has stimulated accurate
calculations for this wave function" and one of
them, that of Poshusta and Matsen, " is utilized
here.

The theoretical value reported here for ~' is
-0.04089 cm ', in good agreement with experi-
ment. The analysis of our calculations, which
hopefully can provide insight into more complex
molecules, shows that: (i) The fine-structure
splitting of the He, a'Z„' state is determined by
the first-order spin-spin constant X', contribu-
tions to which come mainly from o orbitals, and
to a much lesser degree from )T orbitals. (ii) The
contributions to the fine-structure splitting of the
He, a'Z„' state of second-order spin-orbit cou-
pling, the spin-rotation coupling, and the correc-
tions of Schlapp" are negligible.

Theoretical investigations of spin-dependent
operators in molecules have been carried out by
van der Avoird and Wormer, "Chiu, "Chiu, "
Fontana, "Matcha and co-workers, "and Walker
and Richards, "for example. The general theory
for the evaluation of reduced matrix elements in
molecules has been discussed by Cooper, Musher,

and Walker. " Much quantitative work on diagonal
and off-diagonal spin-dependent matrix elements
has been carried out for atoms by Beck,"Blume
and Watson, "Froese-Fischer, "Lo et al. ,

"Malli, "
and Nicolaides, "for example. For our calcula-
tions, which in effect involve two open-shell elec-
trons, we have utilized the expressions of Judd"
and Carrington et al."

I. FIRST-ORDER SPIN-SPIN CONSTANT

The total wave function for a given rotational
state, within the Born Qppenhe-imer approxima-
tion in Hund's case b, is the product of a vibra-
tional wave function, and an electronic-rotational
wave function. For Z states, the latter is also
a product function. For molecular helium of
atomic mass four, the nuclear spin is zero, J
represents the total angular momentum of the
molecule, and only odd rotational levels (K) are
present.

The spin-spin interaction energy H „ is (in a.u. )

in the space-fixe8 system. The contact part of the
spin-spin interaction does not contribute to the
splitting. The first-order spin-spin contribution
to the fine-structure splitting is given by the ma-
trix element

(vAKS J(H~ [ vAKSJ).

The quantum number p refers to the vibrational
state, and A is the z component of K in the molec-
ular system. Utilizing the results of Judd" and
Carrington et a/. ,

"which involve application of the
Wigner-Eckart theorem, and transformation of a
second-order spherical harmonic from the space-
fixed system to the molecular system, we obtain
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(vAKS J~H„~v'A'K'S'J') =5~-.[(2K+1)(~'+I)]'~ ( I)~+' A

S' S ~. &A' A -A' -A

x (vASZ iH„'
i
v'A'S'Z'=Z+A —A') (S 2 S'

( -Z A'-A K+A-A'
(2)

where the K and J dependence is given explicitly.
For the case of interest, A'=A and S =S' so the
spin 3j symbol does not vanish. The electronic
matrix element is written as the product of X'(R)
and a function of Z,

(ASZ]H„' ~ASZ) = s &'(R}[3Z'—S(S+1)]. (3)

It is well known that it is very difficult to obtain
theoretical potential-energy surfaces in good
quantitative agreement with experiment. "' ' How-
ever, for atoms, properties other than total en-
ergies (especially one-particle properties), fre-
quently place less stringent demands on the wave

11

y(a'Z„') =PC, y, .
f=o

The g, 's given in Table I are built from bond
functions [(ab)cd], where just a and b have been
bonded. " In terms of Slater determinants, we
have

(4)

function. " There is some evidence that this may
be true for the spin-spin constant of O, "and the
analysis of this section strongly suggests that this
is the case in He, as well.

To evaluate the spin-spin constant A, ', we used a
considerably sophisticated Slater-type-orbital
(STO) wave function".

[(ab)cd] =A[a(1)a(1), c(2)n(2), b(3)P( )3, d(4)P(4)]+A[b(I)a(1), c(2)a(2}, a(3)P(3), d(4)P(4)]

+A[a(1}a(1), d(2)n(2), c(3)P(3), b(4)P(4)]+A[b(1)a(1), d(2)a(2), c(3)P(3), a(4}P(4)], (5)

where A. is the four-electron antisymmetrizer and
a, b, c, d are normalized STOs centered on one of the
nuclei. Such bond functions are automatically eigen-
states of S', S„and L, . The projection operator P
produces the ungerade and + symmetries.

We consider the evaluation of matrix elements
which involve nonorthogonal functions. Because
of the highly overlapped functions, the expansion
coefficients" have no obvious meaning. A deter-
minantal matrix element is given by"

have opposite signs to those required in the inte-
gral routines owing to the differing b-centered
coordinate systems. ' ' ' '

The configuration-interaction (CI) calculation
was carried out with the first seven configura-
tions to give

A. '(R) =-0.03525 cm '

at R = 2.015 a.u. The dominant configuration, gp,
contributes -0.04125 cm '. First-order perturba-

«elg g.~ I' s&

=(detU)(detV)g Qd (b, (1)b, (2)~
nl "1,j .g,.(1 —P,.) Ia, (I)a,(2)).

TABLE I. Configurations of ft~(a 3Z~+). The P' s are
symmetry projection operators and primes distinguish
different STO exponents. Complete details are found in
Ref. 12.

(6)
d „and h~ are two Slater determinants having
spin-orbital sets (a,) and(b, ) which are internal-
ly orthonormal and unitarily transformed to the
sets(a, ] and(b;) by V and U. If the overlap ma-
trix is givenby D; =(b;~a. ) then U and V are
eigenvectors of DD and DtD, respectively, and
d is the positive square root of the eigenvalues
of D~D.

The two-electron matrix elements of Eq. (6}are
evaluated using the programs of Pritchard et al. ,"
recognizing that the 2pob and 3d„b STOs of Table I
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TABLE II. Individual contributions to V (R) atR =2.015 from the two-particle STO integral. s,
( +f &&}~j(z}Ifssoz,}l~~( o"«2) ) .

Name Restrictions Contribution (cm i)

One-center
Coulomb

Exchange
Hybrid
Total

i, j, k, l on same center
i, k on same center; j,l on same,
but different center
i, k (j,l ) on different centers
three ofi, j, k, l on same center

-0.000 12
-0.093 92

-0.01153
+ 0.069 96
-0.035 59

tion theory; for which the perturbative contribu-
tions to A.

' are proportional to (26t(t; (H„' ( gg,
yields -0.03519 cm '. The individual contribu-
tions are +0.00249, +0.00147, +0.00676, +0.00215,
-0.00316, and -0.00366 cm ', respectively. Note
that the corrections to the basis set are added
perturbatively to the zeroth-order wave function.
This is similar to the procedure of Nakatsuji
and Musher, "which adds d orbitals perturbatively.

In Table II, we give the contributions of the STO
Coulomb, exchange, hybrid and one-center inte-
grals to X'(R}, for R =2.015. It can be seen that
all two-center integrals give sizable contribu-
tions, while the one-center contributions are neg-
ligible. In the qualitative model introduced pre-
viously, ' the hybrid terms were assumed to be
negligible.

The values of A. '(R) as a function of R are given
in Table III. The CI computation time per value
of R was 7 min on the NYU-AEC CDC 6600, in
contrast to the estimated time of 1 h for the full
wave function.

When R approaches zero, all but t(I4, f„and g,
vanish, and the molecular state becomes the Mi
=0, M~ =1, 1s'2s2p'P state of Be I. We point out
that for such a limiting procedure to be valid,
the wave function must contain the essential unit-
ed atom configurations and be optimized as re-
gards both STO exponents and mixing coefficients
as R-0. We obtain the value of ~' at R =0, -0.092
cm ' from the measured fine-structure separa-
tions, "using the relationship"

W~=X+AZ(J+ 1) —2 X' J (J+I) .
The calculated value of -0.09539 cm ' at R = 1.500
is larger than this. Since A.

' at R =1.500 is still
dominated by the purely molecular contributions
from o orbitals, we expect that X'(R) may increase
somewhat, then decrease to its atomic value as
R decreases.

We used a simple harmonic-oscillator wave
function for the ground vibrational state, centered
at the equilibrium distance, "to perform the vibra-
tional integration. The numerical results for

X'(R) were fitted to a quadratic polynomial"

X'(() =A~ +X,' )+I' (, (8)

by a, one experimentally' obtains a =-2.5. On the
other hand the change in A. '(R) compared to the
change in R at R =R, is given by

(R,/~')(d~'/dR)„„,

and this quantity, which is essentially a, is com-
puted to be -4.71.

The fine-structure constant was rather sensi-
tive to the addition of various wave functions,
suggesting that further improvement would in-
volve enlargement of the number of configura-
tions and/or the basis set. The stability of X,

'
$

(Eq. (8)] seems to indicate the need for more con-
figurations, rather than improvement of the basis
set.

TABLE III. Values of A,'(R) as a function of R. The
experimental equilibrium distance is 1.981 a.u.

R (in a.u.) A,'(R)(in cm i)

1.800
1.900
2.015
2.130
2.245

-0.057 29
-0.046 44
-0.03525
-0.025 52
-0.017 30

where $=(R R,-)/R, and the fourth power of the
vibrational wave function was used as a weighting
factor.

The vibrationally averaged result of -0.04089
cm, given in Table IV, agrees with the experi-
mental value' of -0.0367 cm ', to within 11%.
Such agreement does not occur often.

Due to centrifugal stretching, "the two rotation-
al levels measured (K =1 and K =3}'have slightly
different A'(K} corresponding to the slightly dif-
ferent equilibrium distances. Denoting the quantity

(R, /X')(dX'/dR, )



10 CAI CULATION OF THE FINE STRUCTURE OF THE a 'Z„'. . . 1525

II. SECOND-ORDER SPIN-ORBIT CONTRIBUTION

TO X

For Z states, the first-order spin-orbit energy
is zero, and the second-order energy is given by

'; X"(R)[3E' —S(S+1}].
The only states interacting, through the spin-orbit
operator, with a'Z„' are ' ''II„and '''Z„as
Kayama and Baird have shown. ' This is true for
the full spin-orbit operator, which includes all
two-particle contributions, as well as modifica-
tions thereof. The molecular-orbital (MO) con-
figuration which dominates the a'Z„' state is
1cr~21o„2o„and it can be seen that both the quin-
tets, involving four singly occupied molecular
orbitals and the ' 'Z„states, such as le~1m„1m~
are too highly excited to contribute significantly.
This is distinguished from O„where the dominant
configuration can produce both a singlet Z' and a
triplet Z state. The remaining ' 'II„states arise
from configurations such as 1o~10„ndm." It is
well known, however, that the major part of the
full spin-orbit operator can be written as

,A, (», )T; ~ s, . The residual two-particle part
is only significant when the reduced one-particle
contribution is very small. An example of this
occurs in om"4 states. " The two-center contri-
butions to the reduced one-particle spin-orbit
operator have been shown by Walker and Richards
to be negligible in most cases." Since 20, has
predominantly s symmetry, and num has pre-
dominantly d symmetry, the one-center contri-
bution must be very small. The spin-orbit cou-
pling of 1o'1o„2o a'Z„' and la' 1'„ndm ' 'II„ is
therefore negligible. As argument based on either
the separated-atom' or united-atom fine-structure
splittings produces the same conclusion.

III. SPIN-ROTATION CONTRIBUTION TO THE
FINE STRUCTURE

Phenomenologically, the spin-rotation operator
is given by

TABLE IV. Vibrationally averaged first-order spin-
spin constant &' and parameters of the least-
squares-fit parameters (in cm ~). A,

'
($) is fit to Eq. (8).

If sR=AK'5~ (10)

H&~ 4g~~N ~~ Z~ "K -.
SR g A ~ +3aj

(12}

where P, P„are the electron and nuclear magne-
tons, g is the electronic g factor, A/M» is the
dimensionless atomic mass, and r„ is the vector
from the ath nucleus to the jth electron with an
internuclear component of z„. Since K, = 0, Hs"„
will only connect electronic states which differ in
Z by +1.

The second-order spin-rotation constant p"
arises from the product of matrix elements be-
tween the full spin-orbit operator H and the
orbital-rotation operator H„.' For the a'Z„' state,
only 'II„states will contribute significantly to p, ".
Frequently it is found that p, is at least as large
as p'. Ab initio evaluation of p,

" is difficult. '
For the a'Z„' state of He„p." is expected to be

considerably smaller than normal due to the small
size of the spin-orbit coupling and because the
orbital-rotation operator will have a small one-
center part. Lichten et al. ' however, have esti-
mated p.

' to have an order of magnitude of +5 MHz;
while the measured value of p. is -2.5 MHz, sug-
gesting that (

p" (&(g'(.
Although p. makes a small contribution to the

fine structure (5 out of 1000 MHz}, the experi-
mental precision is such that it can be obtained.
The high-frequency nuclear shielding constant
o» is related to g" as Ramsey has shown. " We
are calculating p.

' and from this we will be able
to obtain p.

" semiempirically by subtraction.
Further contributions to the fine structure aris-

ing from the perturbation of the rotational levels
by the fine-structure operators" are small since
&, /B, for this state is approximately 5 x10 '.

and hence any microscopic operators having ma-
trix elements proportional to K ~ 5 contribute to
the spin-rotational constant p, . The first-order
operator is

If"&= ~~+ [r xV] sSR & &3 jE E j 2

E, j
which has been reduced by Tinkham and Strand-
berg, for Z states of homonuclear diatomic mole-
cules to""

Quantity

~Reference 1.

Theory

-0.03993
+ 0.1881$
-0.2237$ 2

-0.040 89

Experiment

-0.0367

IV. COMPARISON OF THE FINE-STRUCTURE
SEPARATIONS

The fine-structure separations are given by

2A. 'K~'r, Z=r ~g, Z=r-& =~ 1 2

X'(K + 1)
Wr i=@+i W» z=s = 2

(2K. 3)
~ (13)
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W~, ~
Theory Experiment

-2.451
+0.9806
-1.471
+ 1.091

-2.199968
+0.873 668
-1.323 911
+0.964 992

~Reference 1.

TABLE V. Fine-structure separations for theE =1
and 3 rotational levels of the a &~+ state of He& (in GHz).
The chief source of disagreement is due to the differing
values of the spin-spin constant (Table IV).

V. CONCLUSIONS

We have calculated the first-order spin-spin
coupling constant for the a'Z„' state of He, . This
cb initio calculation has firmly established the
sign of the constant. ' While the wave function
employed here does not give a particularly good
dissociation energy, yielding 0.94 eV instead of
1.76 eV,""' the spin-spin constant agrees with
experiment to 11%. The hybrid integrals are
found to make a significant contribution to A. '.

Our results show that it is consistent to neglect
second-order spin-orbit coupling, the spin-rota-
tion coupling constant, and the corrections of
Schlapp. "

These are just Kramers formulas" when the spin-
rotation constant and the K dependence of X' are
neglected. Our results for the fine-structure
separations are given in Table V. The agreement
with experiment is good.
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