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A short review of Hermann Weyl s theory for singular second-order differentia equations is given and

its numerical aspects are discussed. It is pointed out that this method is suitable for the treatment of
perturbations which make the spectrum continuous. The Stark effect on the ground state of the

hydrogen atom is taken as an example. The spectral density, the imaginary part of Weyl's "m
function, " is calculated numerically using Runge-Kutta integration and Airy integrals for the asymptotic

region. Showing 8-function-like behavior with poles of m on the real axis for the discrete levels, the

spectral density involves approximate Lorentzians for the metastable states of the continuous spectrum,

corresponding to poles of m in the complex plane. Trajectories of these poles for electric fields up to
0.25 a.u. are shown for the one-dimensional as well as for the full three-dimensional problem.

I. INTRODUCTION

In the first sections we discuss theoretical and
numerical aspects of Weyl's theory for singular
self-adjoint second-order differential equations.
While well known to and frequently used by mathe-
maticians since 1910, Weyl's results do not seem
to have received much attention by physicists and
chemists.

This theory is not only very interesting from the
theoretical point of view, but also highly practical
as a numerical method. A computer program,
DECO, has been developed and was tested on the
radial equation of the simple hydrogen atom.

One of the special features of Weyl's theory is
that it requires a complex parameter and complex
solutions to the differential equation, making it a
natural tool for the treatment of "metastable
states. " By keeping a nonzero imaginary part in
the "complex eigenvalue, " square-integrability
can still be ensured even for the continuum.

Since the hydrogen atom perturbed by an electric
field is a prototype for the change of a discrete
spectrum into a continuous one, we have chosen
the Stark effect as an application for our numeri-
cal methods. In general terms this problem has
already been analyzed by Titchmarsh. In a series
of articles entitled "Theorems on Perturbation
Theory, " he devoted three papers' 4 to the study
of perturbations which make the spectrum contin-
uous. The last one' deals with the Stark effect
and concludes that the poles of the perturbed
Green's function no longer are situated on the real
axis as they are for the unperturbed one, but have
moved away into the complex plane.

The main objective of our present treatment is
to replace his estimates by accurate numbers and
to trace the trajectory of the complex pole as the
field strength increases. Physically, these poles
contain very important information: Their real

part is the resonance energy of the metastable
state, associated with the least amount of leakage
through the potential barrier produced by the elec-
tric field, whereas the imaginary part determines
the lifetime.

II. WEYL'S LIMIT POINT —LIMIT CIRCLE THEORY

For a detailed treatment we refer to Weyl's
original paper, ' to Titchmarsh's book, ' and to
Chap. 9 of Coddington and Levinson. ' In the follow-
ing only the main results are quoted. The notation
is very close to the one employed in Ref. 6.

We consider the second-order differential equa-
tion

(0;X)=
Pv' Pl'

(-m/2- o. & m/2) .

sino. cosa

-cosa sina

Any solution of (1), except P, can be written as

y(t; y) = q (t; y) +m y(t; y. ) . (4)

Imposing on g the real boundary condition at t =b,

cosp y(b; y) +sinpp(b)y'(b; y) = 0

( ~/2- P«/2), -

I[u] = —(pu'}'+qu = yu,

where

X=E+ie (e w0),

and p(t) and q(t) are real and continuous on [ 0, ~).
In order to discuss the general solution, we start
from two linearly independent solutions y(t; y) and

g(t; X), which are determined by the initial condi-
tions
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we obtain

Iml. —(pX'/X) ~=&1
= o

which can also be written as

[xx] (b) =0

if one defines the square bracket by

[uv] =p(uv'* —u'v*) .

(6)

(6)

MQ

(v*L[u] —(L[v])*ujdt = [uv](b) —[uv](0) (10)

to verify

[yg*](t)=1 (all t),

The asterisk denotes complex conjugate quantities.
Inserting (4) into (7), one arrives at

([q q 1+m[tv]+m*[q Cl +mm*[00]je ~
= o ~

After division by [gg](b) and some manipulations
involving the use of Green's formula

limit point. Equations (14) and (15') imply that the
norm of f will be infinite for this case. Still,
X =rp +m„g (where m„denotes the limit point) is
square-integrable and since X and P are linearly
independent, X must be the unique square-inte-
grable solution.

According to Coddington and Levinson there is
a rather simple rule for the distinction of the two
cases mentioned above: If q(t) & —k, where k is a
positive constant, and

then L is in the limit-point case at infinity. For
the special case p(t} =1 for 0 & t&~ the rule simpli-
fies to: If q(t) & —kt' for some positive constant
k, then L is in the limit-point case at infinity.

Weyl's theory establishes a connection between
classical Sturm-Liouville theory for a finite inter-
val and the complex theory for an infinite interval.
Instead of (1) write

we finally obtain u] =(du (16)

(12)
where ~ is real. Define an eigenvalue problem on
[0, b] by adding to (16) the boundary conditions

which is the equation for a circle in the complex
m -plane soith center

c.= —[q 4](b)/[0y](b)

and radius

(14)

sina u(0) —cosa p(0)u'(0) = 0,
cosPu(b)+sinPP(b)u'(b) =0

(-w/2 & a, P& v/2).

Then there exists a sequence

(»aj (k=1 »

(17)

(16)

When inserting our solutions y and g of (1), both
associated with the same parameter X, Green's
formula (10) reads

(x- ~*) v e*«=[re](b}-Iq e)(0},
kp

(15)

"'
I ~ I. d, [44](b)

+0
(15')

it is seen from (14) that PE L'(0, ~). Since,
further, X, as defined by (4) with m lying on the
circle, is square-integrable, all solutions of (1)
must be square-integrable.

(b) As b- ~, r~ tends to zero; i.e., one has a

which shows the connection between inner products
and boundary values. Employing this technique,
it is easy to show that Weyl's circle must shrink
as the interval increases, leading to the following
two cases for the infinite interval.

(a}As b -~, r, stays finite; i.e., one has a limit
circle. Since

of eigenvalues and a complete and orthonormal set

(u„j (k=1, 2, . . . ) (20)

of eigenfunctions.
Consider solutions g(t; &u») characterized by the

same initial conditions (3) as Weyl's complex solu-
tion P(t; E}. Since P(t; &u») satisfies the left bound-
ary condition (IV), we have

u»(t ) = C»$(ti K») (21)

with a value of cbk independent of t. Any continuous
function f (t) which vanishes outside 0 & t & c
(0& c& b) can be expanded in the orthonormal set
(u» j, leading to the comPleteness relation (Parse
val equality)

pb t b 2

J~ If(t)l'dt= Q ' u»(t}f(t) «
0 k=i

(22)

By means of (21), the right-hand member becomes

b

y(t; »,}f(t) dt
k=I
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Finally, defining

g(~) = 0(t; ~)f (t) « (24)

Im[m (E +'L e)] = e dp((d)
(d —E +e (28)

Jp

and p~(&o), the sPectral function as a monotonic
nondecreasing step function of ru having jumps of

I c» I' at each eigenvalue v» and being constant
otherwise, (22) can be rewritten as

Finally, if E and EB both denote points of continu-
ity for the spectral function p(&o}, we may integrate
over E, take the limit e- 0, and get

g
p(E z) p(-E ) =lim — 1m[m„(E+ie)]dE, (29)e~p 77g~

dp
I z(~) I' dp, (~) . (25)

In the limit b the right-hand member must be
written as a Stieltjes integral involving the mono-
tonic nondecreasing function p(v).

To establish the desired connection to Weyl's
complex theory, we first observe that g(t; X) de-
fined by (3) satisfies the left boundary condition
(17) of the real problem. However, the function
satisfying the right boundary condition (18)—which
has been chosen equal to (5) for the purpose of
comparison —is X(t; X) given by (4) and with a value
of m (X, b, P} situated on Weyl's circle. If E =Re(X)
equals a Sturm-Liouville eigenvalue, both g and X

tend to the corresponding eigenfunction in the limit
e =Im(X)- 0. This leads us to the conclusion that
the meromorphic function m(A. , b, P) has poles
whenever

x
= liras((o» +ie) (k = 1, 2, . . . ) .

So the poles of m(A. , b, P} are the zeros of

(26)

cosp $(b; E) + sin p p(b)g'(b; x} .

Again consider the Parseval equality, but now for
the complex-valued function x(t):

a 2

I x(t) I'dt =g u,*,(t)x(t) dt
kp a=i ~ o

(22')

1m[m(X, b, P)]=

Being the eigenfunctions of the Sturm-Liouville
problem (16)-(18), the u»'s are real and the aster-
isk can be omitted in (22'). Use of the Green's
formula in both the left- and the right-hand mem-
bers of (22'), together with the fact that x and u»
satisfy the same right boundary condition, leads to
the important relation

which is an example of the Stieltjes inversion for-
mula. Equations (28) and (29) indicate that the
imaginary part of Weyl's m function can be identified
with the spectral density. It is of central impor-
tance in the theory and also the main tool in our
numerical applications.

Next we consider the angle a in the initial condi-
tions (3) in more detail. For any a and any com-
plex X it is possible to find a solution X

+m„P„which satitdies a given right boundary con-
dition. However, among all "initial phases" a in
the interval -v/2 & a& w/2, there exists, for any
given X=E+i e, a unique "quantizing phase" a
such that the m function associated with a has a
pole at E. In other words, az is the angle one has
to use in the left boundary condition (18) to make
E a Sturm-Liouville eigenvalue. To understand
this, one has to remember that the discrete spec-
trum of a differential operator is easily shifted
just by changing the boundary conditions.

In order to derive an explicit expression for az,
we first have to find out how m„=m (X, b, P} varies
with the initial phase a. As indicated by Eq. (27),
it should be possible to detect the poles of m by
looking at its imaginary part. For a =a+ and
e-0, it tends to be a 5 function which becomes
approximately a Lorentzian with increasing half-
width for increasing distance c from the real axis.

To proceed, we first have to express our com-
plex solution matrix

&a kn,
Z~(b) = (b)

&ma Pg
(30)

y=a —a
Then

(31)

in terms of Z, (b) (the subscript 0 stands for ao},
where a p is an arbitrarily fixed angle, and the dif-
ference

Z (b)=Z,(b)Z. '(0)Z (0), (32)
e dp, (~)

„co-E +6 (27)

Letting b go to infinity and assuming the limit-point
case, w'e obtain

where Z, (0) and Z„(0) are initial matrices (3) char-
acterized by the phases a, and a, respectively.
Using the addition theorems for trigonometric
functions, we get
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p, cosy+ ),siny —y, siny+gocosy
(b) = (b).

pep„' pg„' p(y,'cosy+$0 siny) -p(y,' siny —g,'cosy)
(33)

From (4).and (5) we derive

cotP@ —py'
cotP 0„-P4' t=a

Inserting (33), we finally find

m, coty —1 m, —tany
m, + coty mptany+ 1

(34)

(35)

for m as a function of the phase.
As y varies from -v/2 to v/2, tany lies between

-~ and +~ and (35) may hence be compared with
the general linear fraction

where

Mo=rtP»+rrP, . (41)

III. WEYL'S THEORY AS A NUMERICAL METHOD

Equation (40) is easily programmed to determine
the quantizing phase ao. Since cot(w/2 —y)
=(coty) ', it follows further that m and m cor-
respond to initial phases which differ by an angle
of v/2, a fact which is associated with the defini-
tions of y and P in (3).

az +b
K = ( &&z&~)

cz +d (36)
The second-order equation (1) can be rewritten

in the form

which represents a mapping of the real z-axis on
a circle in the complex w plane with radius

1/P

PV' P0' 7-~ 0 PV' P0'
(42)

iad bci-
i
c*d cd*i—

and center

(37)

ad~ —bc*C= dc* —cd~ (38)

For our special case (35), the formulas (37) and
(38) become

i I +re, )

imp-m, i

(37')

1 +m, m p~ . 1 +mp, +m~' =Z
m p mp 2mp2

(38')

maxim(m„) =[minim(m„)] ' (39)

between the extremal points of the circle.
To actually derive explicit expressions for np

=a. and a, we separate (35) into its real and
imaginary parts, put the real part equal to zero
or maximize the imaginary part. The resulting
quadratic equation has the form

coty, , = (I/2m») (I -Mow[1+Mao+2(mo, —nP )]'t2},

(40)

where mp, and mp, denote real and imaginary parts
of m„respectively. Equation (38') implies that
the circle generated as a varies must be centered
about the imaginary axis. Consequently, the ex-
trema of the imaginary part correspond t'o the
zeros of the real part of m .

When n =Q. , the highest point on the circle must
be obtained. Using (37') and (38'), it is further
seen that there exists the simple connection

m„(h, ) = —lim y(b; X)

t
(43)

This relation is easily verified, e.g., by starting
from (34) and observing that Ji is arbitrary in the
case that the circle has shrunk to a point.
To solve a given eigenvalue problem, it is con-

venient to utilize the idea of the quantizing phase
discussed above. Letting ni be the angle char-
acterizing the left and n~ the one characterizing
the right boundary condition, the following steps
are necessary: (i) Choose a trial X=E+ic (e e0);
(ii) integrate from t = 0 out with arbitrary initial
phase Q. p and determine a from the value of
mo(X, b, n„) according to (40); (iii) compare o.c
with ni, and if they coincide, an eigenvalue has
been found.

In this fashion one may scan the entire eigen-
value spectrum. Some interpolation scheme can
be used to locate the eigenvalues more precisely.
Often it may be convenient or necessary (e.g., if

and integrated numerically. Since both complex
solutions and their derivatives are required, this
form seems to be the most convenient one from
a computational point of view. In our program
SECO the Runge-Kutta method is implemented and
two alternatives are available, namely the classi-
cal fourth-order method (e.g., Ref. 7) and a
sixth-order method. '

As apparent from Sec. II, the key quantity to be
calculated is Weyl's m function. When dealing with
an infinite interval and limit-point case —as is
usual in most physical examples —m„may be cal-
culated by means of Eq. (13) or, even simpler, by
means of



1498 HE HE NBERGE R, McINTOSH, AND BRANDAS

the potential at one end point of the interval is
singular, as is the case for Coulombic problems)
to divide the interval into two parts. A left and a
right integration may be performed and the quan-
tizing phases matched. Then two m functions,
m and m,„„have to be calculated. If, as in the
case of the Coulomb potential, the potential is
infinite at the origin, the integration has to be in-
terrupted at a small distance t, from t= 0 and the
power-series expansion around the origin used
to obtain the appropriate angle P to put into
m (A., t „P) in order to provide a left boundary
condition equivalent to the requirement that the
solution has to be zero at the origin.

On Figs. 1-3 the method is illustrated by means
of the radial equation of the hydrogen atom,

0.00

-1.20
I

-0.90
I

-0.60

ENERGY {Ry}

-0.30
I

0.00

(
d' 2 l(i+1)

n)(r) =En(Pni(r),

in which the energy is measured in rydbergs.

(44)
FIG. 2. Same as Fig. 1(a), except ImP) is 5x10 2 R .

N ote the bad resolution of the higher states, resulting in
an asymmetric shape of Im(m).

IV. STARK EFFECT IN THE HYDROGEN ATOM:
GENERAL CONSIDERATIONS

0.00—

I

-1.20

Re(mj

I I

-0.90
I

-0.60

25

-0.30

35

I

0.00

In 1913, Stark' observed the effect which bears
his name and. which comprises the changes in the
spectrum of the hydrogen atom under the influence
of a homogeneous electric field.

For 60 years the Stark effect has been a favorite
example for application of new theories and meth-
ods. There are two main reasons responsible for
this fact: The first is that the nonrelativistic prob-
lem is exactly separable (the relativistic problem
is not'0) in parabolic coordinates, and secondly,

-1.25—

ENERGY {Ry)

-1.00

K
~ -o.75

IZ
UJz -o5o
UJ

0.0
Re {m)

FIG. 1. (a) Real and imaginary part of Weyl's limit
point for the radial equation of the unperturbed hydrogen
atom. Parameters: l =0 (s states), -1.35 ~ Re(A) & 0.0,
Im(A) =10 Ry. Re(m) changes sign and Im(m) has maxi-
ma at the eigenvalues EI,=-1/4 Ry (A'=1, 2, ...). (b)
Trajectory of m(A) in the complex plane, sarge data as
Fig. 1(a).

-0.25

0.00
/2

~
3s ~R

I

QUANTIZING PHASE &

/2

FIG. 3. Radial equation of hydrogen atom, s states.
Right (0.'z) and left (~z) quantizing phases at a matching
distance 0.5 a.u. from origin.
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one deals with the interesting problem of a pertur-
bation which makes the spectrum continuous. The
separability had already been used by Epstein"
and Schwarzschild" who in 1916 applied the "old
quantum theory" of Bohr and Sommerfeld and were
able to explain surprisingly well the experimental
results available at that time. In 1926, Schrbdin-
ger himself~ and further Epstein' and Wailer"
treated the problem by expansion-type perturba-
tion theory, hereby neglecting complications due
to the continuum.

First in 1930, when experiments with extremely
high electric fields" could be carried out, it be-
came obvious that conventional perturbation theory
was not fully applicable. It was Lanczos'7 who

clearly pointed out its limitations and who first
discussed the very particular nature of the contin-
uous spectrum of the perturbed hydrogen atom.
In a series of papers he started to treat the prob-
lem by means of various approximations, involving
Bessel functions of order 3 for the asymptotic so-
lutions and elliptic integrals for the eigenvalues.
Finally, in the last paper of the series, he used
the WKB technique. It is interesting to study this
paper, since he even points out the similarities
between the Stark effect and the problem of radio-
activity as discussed by Gamow" and by Gurney
and Condon. " He also gave a short treatment of
the Auger effect. Many workers, especially in
the last two decades, have continued along Lanc-
zos's lines, employing the WKB approximation.
Rice and Good' used an "improved WKB method, ""
Alexander" combined the WKB solution for the
asymptotic region with a highly accurate numeri-
cal method due to Rosenthal and Wilson, "and
Hirschfelder and Curtiss'4 did essentially the same
but generalized to other states than the ground
state and used numerical integration of the differ-
ential equation to be solved. Berkenstein and
Krieger" compared the WKB method with fourth-
order perturbation theory. Redei" gave an inter-
esting discussion of boundary conditions which could
be imposed in order to ensure convergence for
formal perturbation theory and Mendelsohn" seems
to be the one who has exploited the possibilities of
finite-order perturbation theory to the fullest,
using "large-Z expansion theory" up to tenth order.
However, at a field of 0.065 a.u. (-3.34x 10' V/cm)
he was forced to the statement that "the tenth-or-
der term gave a larger correction than the eighth-
order one."

As already mentioned in the Introduction, we are
essentially following Titchmarsh's analysis of the
problem which is based on Weyl's theory. Before
proceeding, we give a short review of the separa-
tion of the Schr5dinger equation for the perturbed
one-electron problem into parabolic coordinates.

For a homogeneous electric field of absolute
strength E (in atomic units) in the z direction, we

get, using the rydberg as the unit for energy, the
Schr5dinger equation

(6 +2Z/r —2Ez +E)g(r) = 0. (45)

There are two sets of parabolic coordinates in
which (45) can be separated:

(i) Conventional parabolic coordinates ($, q, y):
x = (]q)'h cosy,

y = (]q)'t' siny, (46)

.'(& -q)-
After separation of the p-dependent part, we get,
putting

y(r) =u($)v(q)e'

the second-order differential equations

(47)

d d E m2 F
E +——g ————g'+Z u(g) = 0, (48a)

df '

dg 4 4$ 4

Zg+Z2 Z e

Substituting

u(g) =g 't'u, ($),

v(q) =q ' 'v, (q),

(49)

(50a)

(50b)

we arrive instead at eigenvalue problems for the
energy:

(
d' 1-m' ~Z F E
d~" 4~ '~ -4~'4 "(~)=0

(
d2 1-m' Z F E—,+, + + —q+ —v (q)=0.4n' q 4 4

(51a)

(51b)

Even here (49) is the only condition which couples
the equations. We have called the coordinates
($, q, y) "conventional" ones since they have been
used in all quantum-mechanical treatments of the
Stark effect known to the authors. Equations (51)
are very convenient because of the appearance of
the energy as an eigenvalue parameter, letting
them resemble the ordinary type of Schrodinger
equation. For further details we refer to Bethe
and Salpeter. "

(ii) "Squared"'9 parabolic coordinates (p, , v, y):

x=pvcosp y

y= pvsiny,

z=2(p v )'
(52)

After separation of the y-dependent part,

d d E m' F,
q—+ —q —,+ q'+Z—, v(q)=0, (48b)

dq dq 4 4q' 4

which are coupled by the requirement



1500 HE HE NBERGER, M cINTOSH, AND BRANDAS 10

P(r) =M(V )N(v)e'

and substitutions

(58) m'-1 Z F
q(I)) =, ~--n-

4g q 4
(5V}

M(iI)=P 'i'M, (V, ),
N(v) =v 'i' N, (v),

we get

(54a)

(54b)

2+ 2 +EI 2 Fi 4+Zl Mlf =0, 55a
d2 1 tn

( ,+, +Ev'+Fv'+Z2 Nj v =0&
1 m'

dv2 4v2
(55b)

where

Z, +Z, =4Z. (56}

V. NUMERICAL TREATMENT OF THE STARK

EFFECT BY MEANS OF WEYL'S THEORY

Unfortunately, no transformation brings (55) «
a form as convenient as (51}. While used frequent-
ly in classical mechanics and in the "os quantum
theory" (cf. Ref. 11}, they seem to be less useful
in quantum-mechanical treatments. Their most
interesting feature is their resemblance to the
radial equation of the harmonic oscillator in polar
coordinates, which is important for understanding
the symmetry and degeneracy of the hydrogen atom.
Most of this regularity is lost in the Stark effect.

Both separation schemes were tested numerical-
ly in the present treatment. For given accuracy
of the eigenvalue to be determined (known exactly
in the unperturbed ease), we found the "squared"
coordinates to be less time consuming than the
"conventional" ones. The explanation lies presum-
ably in the faster convergence of Weyl's circle to
a point due to the more rapidly increasing potential
occurring in (55a) as compared with (48a).

As described below, however, for the solution
of the unbounded problems, analytic representa-
tions of the asymptotic solutions were needed. The
fact that it seemed to be easier to find such solu-
tions for Eq. (51b) than for Eq. (55b), together with

the advantage of using the transformed equation
(51b), caused us to decide in favor of ($, I), y).

0.0

Im(mj

of Eq. (51b) to determine the corresponding output
resonance energy E,„,. Only if E and E,„, coin-
cide, one has picked the proper value correspond-
ing to the perturbed level E(F) On. ly for zero
fieM are bound states possible, whereas a nonzero
field produces a continuous spectrum from -~ to
+. Physically, the continuum arises from the
possibility of tunneling through a potential barrier,
leading to metastable states with finite lifetimes.

From the point of view of Weyl's theory, the m
function has poles on the real axis for Eq. (48a),
necessitating a small imaginary part in the param-
eter Z, in order to avoid infinities when passing an
actual eigenvalue. For Eq. (51b}, however, the
poles gradually move away from the real axis as
F increases and even for X =lim, ,(E+fe) the spec-
tral density stays finite, having Lorentzian char-
acter with a half-width increasing with the field
strength.

Figures 4-6 show the function m(E) correspond-
ing to the one-dimensional problem (5 lb) for three
different values of the electric field strength F,
but with a common fixed value of the separation
constant Z, . The asymmetry of 1m[m(E)] must be
attributed to the influence of the next-higher levels
and it is more pronounced for stronger fields, i.e.,
for larger imaginary parts of the complex pole.
This effect is accompanied by an increasing dis-
tance between the zero of Re[m(E)] and the maxi-
mum of the spectral density 1m[m(E)].

Figure 2 shows a similar shape of m(E}. How-
ever, in this case we deal with a discrete spectrum
and the effects described above are introduced by

The problem in the determination of the Stark
shifts as functions of the field strength F is the
necessity of simultaneously solving two equations
coupled by (49), where one of the equations con-
tains a potential which is unbounded from below.
It is most convenient to use Eqs. (48a) and (51b)
together. Choosing a trial input energy E. for a
given fixed field, (48a) can be used to determine
the corresponding "effective charge" Z, . From
(49) we readily obtain Z, =Z —Z, and both & and Z,
can then be used in the potential [cf. Eq. (1)]

-1.6
I

-1.2
I

-0,8 -0.4
I

0.0

ENERGY (Ry)

FIG. 4. Weyl's m function for the unbounded equation
(51b), calculated by means of (60). Parameters: m =0,
+=0.4, -1.8 —Re(X) &0.0, Im(A) =10 Ry, fieldS'=0. 05
a.u. Note sharp Im(m) and good coincidence of
max [Im(m) j with zero of Re(m) (thinner line).
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using a big value of e rather than by the physical
problem itself. The imaginary part e used to pro-
duce Figs. 4-6 had a value of 10 ' . Since a change
from 10 "to 10 ' did not affect the results, we
have practically extrapolated to zero.

This leads us to the interesting question whether
it is possible, for continuous spectra, to proceed
with e = 0. In case that lim, ,m(E +ie) exists the
answer is yes, but we have to realize that in es-
tablishing the limit we abandon Weyl's circle the-
ory which rests on the requirement of a nonreal
parameter A, . Numerically, a real treatment has
the great advantage of being much less time con-
suming. With our real version of the Runge-Kutta
integration program we have been able to cut down
the computer time necessary to evaluate m(E) al-
most by a factor of 2. In using real functions y and

I(t we are, however, no longer able to use formulas
of type (13) or (43) for the evaluation of the m
function. Instead we have utilized and extended an
idea due to Titchmarsh, ' namely, to use the known

asymptotic behavior of X to determine the desired
value of m„.

The "generalized Titchmarsh formula" for m„
is obtained by considering

x=y+m„P,
x'=y'+m„g',

and solving for m„, which yields

(58}

(59)

XV' —X 0
4x'- I('x

(60)

The limit point is hence expressed as a ratio of
Wronskians. The applicability of (60) rests on the
knowledge of the square-integrable solution X.
Having this property, X must vanish asymptotically,
and for simple potentials leading to known analytic
solutions, it is usually easy to find the desired X .
The potential (5V) fortunately falls into this cate-
gory. As seen from Fig. 7, it is approximately
linear in the variable g =r -z in the asymptotic re-

gion, allowing us to deal with the problem

d2
, + X+d, + —I) v, (I)) =0

-dn'

instead of (51b) for the interval [b, ~).
As seen from (5'I),

(61)

m —1 Z
b 4~2 (62)

v', ( )I)-X' H ' 3(X}(X+d3+3FI))'~ (64)

where

X =(6/3F)(X+ d, + ,'F3)}3~'- (65)

Jeffreys has remarked" that "Bessel functions of
order 3 seem to have no application except to pro-
vide an inconvenient way of expressing the Airy
integrals. "

Indeed, Airy functions seem to be a more natural
representation of the asymptotic solutions required
for our problem. We start again with (61), but
introduce the substitution

f = (3F ) "(&+d3+4F3))

(
3X)3/3

(66)

(67)

which leads to Airy's differential equation (see,

a quantity which becomes more and more negligible
for increasing distances b. By suitable substitu-
tions, Eq. (61) can be transformed to Bessel's
equation of order 3 or, equivalently, to Airy's
differential equation.

The first alternative has been carried out in
great detail by Titchmarsh' and his derivation
needs no repetition here. He obtains

v, (I)) -X'~ H~j~ (X) (63)

and

0.0

0.0
I

-1.6
I

-1.2
I

-0.8
I

-0.4
I

0.0
I

-1.6
I

-1.2
I

-0.8
I

-04
I

0.0 ENERGY (Ry)

ENERGY (Ry)
FIG. 5. Same as Fig.' 4, but field increased to 0.15 a.u.

FIG. 6. Same as Figs. 4 and 5, but E changed to
0.25 a.u. , the highest field considered in this paper.
Very pronounced asymmetry of Im(m).
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e.g., Ref. 31)

(68)v" +tv =0,l 1

the standard solutionshaving e

(69)Ai(-t), Bi(-t) .
or ar -f =w, both Ai(-t) and Bi(-t) are of trigo-

'c e. For the exponen
'

solution for q -~, we e p t reex ect ere
combination of the type

At(-f) -iBt(-f) . (70)

standard relations between +g/3I X') and the"on one hand and between I»/3(X)g
an d H (X) on the other (e.g. , Re .
explicit connection

X"H',c„(X)= i-. /
e-—(-')' G '" '[Ai(-t) iB-1(-f)].

(71)

ion to (5lb) and its derivativeThe asymptotic solution to
ce iven byin terms o iryf A' functions are hence given y

v, (q)-At(-f) -i Bt(-f), (72)

(73)

) — (+0/2ed-E/4)~ 2
v i 'g J = 7/ e

've to determine the angle a of Eq.and its derivati
in so we obtain a unimo u ar s

to =Oat th o i i . Thenmatrix corresponding to g = a e

(74)

v,'(q - L- -,- [-(-'F)' '] [Ai'(-t) iBi'-(-t)] .
ords about the actual computations.Finally a few words a u

ial (57) is singular at the origin, itpo
t to start the numerica in egis convenien o

ower seriesa small distance, using the power se '

i te ration of our 2x2 matrixthe Runge-Kutta in eg o
1 turning point.eouter classicacarried on eyon

0 15 a.u. where there
tu

'
g po t we integrated at

hi h fields above . a.u.
are no longer any turning poin s, w
least until the mam

with values of y and g' obtaine vi
f' t t' e to compute

ont1nu

be used for the irs im
m „. The numerica '

g1 inte ration is en
ins a stable value. The in epen

see Fig. 8 as we
by (72) are oscillating functions o q, u
into (60) they give rase

increases. Forall fluctuations as q increase .
5 6ffields this stability comprises

hi h fields even more.g r art, for ig
The real part is slig yli htl less s a e.

d doubleo mention that we use ounection we have to m
he IBM 370/155' hmetic throughout on theprecision arithme i

C) For theof Uppsala Computing CCenter (UDA
1th e =10-")arison, both complex (with e =sake of comparison,

e carried out,and real numerica g
' e c1 inte rations were c

merical evaluations o reatogether with num

1 . For the cal-ctions respective y. ocomplex Airy functi, ' . o
1 Air functions we use rculation of rea iry

ones we used"' to obtain the complex ones w
UDAC Th f 1g 1 rovided by

its for m(E) turned out to coinci e wxsu s
-7 fi res in all cases consi

th f' alproblem of the loca-
(E) some remarks

ceedin to the ina pr
lex oleforgivenm, s

ut the accuracy o our nushould be made about
ith ana-function. From comparison wi

e- d
' xtremely accurate,

11 iven solutions, we know a
e-Kutta method is e re

ste size is taken sma
illatin region. A convenien

f th sol t on mat ixdeviation of the Wronskian o e
Th error intro-from its exact value W )=1. e

Z /g ——F'g-4E displayed as a'"' '" """ ""'
d - l"...'-'function of g, 0.0 —g—~56.0 a.u. , an or

F=0.05 is the one0 05~F ~0.25 a.u. , whwhere the curve
c server. The zeros of xsth' function, the

oints, are mark y
15 Th alce forF &0.15 a.u.their disappearance 15 u

and 2 ared Z re E = E eg p') and Z2 ——Z2 „p' .

. 8. Independent solutions 'f(g) (thickest curve,
ential barrier inne

=Z Nt i fl tioIm A,) =0.0, Z2-—Z2 „. o
points for ob th f and 9/at the classic r '
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1m[m(E)] =P„(E)/Q„(E), (75)

where M and N are orders of numerator and de-
nominator polynomials, respectively. Taking M
=0, N=2, the right-hand side of (75) reduces to a
Lorentzian,

duced by the numerical evaluation of the Airy inte-
grals is also very small. For the complex algo-
rithm the accuracy as compared to the tables
given by Miller" was 6-8 figures and Gordon's pro-
gram is known to yield Ai, ry integrals even with
considerably greater accuracy.

' The disturbing effect of the linear approximation
for the potential in the asymptotic region is also
very small, as could be judged from the repeated
calculations of m(E) with increasing distance t7.
Even a much more drastic approximation, namely,
to put the potential outside the considered value
of q equal to a constant, did not affect the results
considerably. In this case the asymptotically van-
ishing solution g is given by a linear combination
of trigonometric instead of Airy functions.

Finally we have to turn to the problem of the
actual determination of the complex poles. The
asymmetry in the spectral density already men-
tioned above and displayed in Figs. 4-6 requires
quite elaborate methods of analytical continuation.
We developed a numerical procedure based on a
fitting of 1m[m (E)] to a rational fraction,

Z, (E)
Q.(E) (E -E...)2+(I'/2)2 (76)

For small va&ues of the electric field strength this
representation is quite adequate, but as E in-
creases M must be greater than zero to account for
the asymmetric shape. Practice showed that a con-
venient choice is N=2, M=2, corresponding to a
fitting of the rational fraction to five calculated
points of 1m[m(E}].

To obtain the desired pole E„,-f I'/2, we have
to find the roots of the denominator polynomial
Q„(E). The trajectories of these poles for the one-
dimensional problem (5lb} for five different con-
stant values of the effective charge are shown in
Fig. 9. As long as they stay close to the real axis,
conventional expansion-type perturbation theory
is capable of giving a good approximation to E„„
but as the poles move off, it is bound to diverge.

Figure 10 shows the trajectory of the poles for
the ground state of the full three-dimensional prob-
lem (45), i.e., taking for any field E and energy E
a "self-consistent" value of Z, which via (49) also
satisfies Eq. (48a}.

Figures 11 and 12 illustrate the way the reso-
nances and half-widths can be obtained by simul-
taneous use of both Eqs. (48a) and (Slb}, the dotted
lines indicating the one-dimensional half-widths.
Returning to Fig. 10, we note that the curve starts
at zero field at the ground-state energy -1.0 Ry,
stays first close to the real axis indicating long

,0.05
CD

CE

Z
0. 25

0.0 0. 1 0. 2

I N. PART ( Ry )

I

0. 3

FIG. 9. Trajectories of complex poles for Eq. (51b)
for five different fixed values of the separation constant
Z2. From above: Z2=0.4, 0.425, 0.45, 0.475, 0.5.. All
five curves start from the real axis E=O; increases of
0.01 a.u. in F are marked and corresponding points
connected by dashed lines. The numbers written at the
highest curve Z2 ——0.4 indicate X in a.u.

0.25

0 F 00
I I I

0.06 0. 12
IM. PART ( Ry )

I

0. 18

FIG. 10. Trajectory of the complex pole for the full
three-dimensional problem (45); i.e., the values of Z2
are chosen self-consistently to satisfy both Eqs. (48a)
and (51b). Increases of 0.01 a.u. in + are marked; the
values 0.05, 0.10, ... characterize field strengths in
a.u.
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0.592 0.00 0.06
I

FIELD ( a. u. )

0. 12 0. 18
I I I

0.24
I

0.562

0.531

0.500
-1.156 -1.087 -1.018 -0.9I 9

ENERGY(Ry)

FIG. 11. Determination of resonance energy and self-
consistent separation constant for E=0.10 a.u. The
single full line represents Z&(E) as calculated from
eigenvalue equation (48a); the line running from the
left lower corner upwards shows Z&(E) = 1-Z2(E) as
calculated from (51b). Half-widths are indicated by the
dotted lines above and below.

lifetimes of the metastable states, but moves for
higher fields rather quickly into the complex plane.
A comparison with Fig. 9 shows that the "Stark
shifts" of the three-dimensional problem are much
smaller than the ones for the one-dimensional one.
Figure 13 makes this statement even more explicit.
Apparently, the self-consistency requirement for
the effective charge diminishes the effect of the
electric field on the levels. Table I contains our
numerical results as compared to the ones obtained
by Alexander. " He states that he could not detect
any resonance behavior above 0.12 a.u. for the
field strength. As shown in Fig. 6, the resonance
is still pronounced even for a field of 0.25 a.u. ,
which was a quite arbitrary point for us to stop
the calculations.

As a final illustration of our results we show the
behavior of the resonance wave functions. Figure

0.592

FIG. 13. "Three-dimensional" [Eq. (45); lines fully
drawnj and "one-dimensional" [Eq. (51b) with fixed Z2
=0.4, 0.425, 0.45, 0.475, 0.5 from above; dashed lines'
energy changes due to the electric field. The thinner
curves above and below indicate half-widths.

TABLE I. Complex poles and separation constants
for the ground state of the hydrogen atom under strong
electric fields.

Field
(a.u.)

Present results
~ res r/2
(Ry) (Ry)

Alex~er' s results
&~s r/2
(Ry) (Ry)

0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12

-1.004 148 5
-1.007 543 6
-1.012 210 8
-1.018407
-1.02615
-1.03512
-1.0448
-1.0549
-1.0649
-1.0748

0.000 000 02
0.000 003 9
0.000 077 2
0.000 515
0.001 85
0.004 54
0.0088
0.0145
0.0216
0.0299

-1.004 148 546
-1.007 543 0
-1.012 21
-1.01840
-1.0260
-1.0350
-1.0444
-1.054
-1.062
-1.072

0.000 000 02
0.000 004
0.000 078
0.000 52
0.0019
0.0046
0.0088
0.015
0.022
0.031

14 gives a perspective view, where each curve
corresponds to a certain field and the calculated
values for E„,and Z, contained in Table I. Figure
15 is a contour plot using the same data. It is seen
that outside the barrier the number of oscillations
and their amplitudes increase with the field,
whereas their behavior inside the potential barrier
does show few changes when going from small to
big perturbations.

z)

0.562

0.531

0.500
-1.266 -1.192 -1.117 -1.04 2

ENERGY (Ry)

FIG. 12. Same as Fig. 11, but S' =0.15 a.u.

0.13 -1.0843
0.14 -1.0935
0.15 -1.1024
0.16 -1.1108
0.17 -1.1189
0.18 -1.1266
0.19 -1.1340
0.20 -1.1411
0.21 -1.148
0.22 -1.154
0.23 -1.160
0.24 -1.166
0.25 -1.172

0.0392
0.0493
0.0600
0.0714
0.0832
0.0955
0.1080
0.1209
0.134
0.147
0.160
0.174
0.188
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VI. DISCUSSION

The hydrogen atom perturbed by an electric field
is a classical example of the change of a discrete
spectrum into a continuous one. For this reason
it is suitable as an application of Weyl's theory
which allows the treatment of both kinds of spectra
in the same manner. The Weyl-Titchmarsh m
function, whose imaginary part can be related to
the spectral density, is the essential quantity in
the theory. Its calculation requires a complex
eigenvalue parameter A, . For the discrete spec-
trum, m has simple poles on the real X axis,
whereas for the continuum it may exist even on
the real axis as a limiting value for e = 1m(X)- 0.
By analytical continuation across the real axis it
is then possible to find poles on the other half of
the complex plane. The positions of these poles
have physical significance in terms of resonance
-levels and associated lifetimes.

Although the extremely high fields considered
in this paper may not have immediate interest with

respect to comparison with experiment, we carried
the calculations until 0.25 a.u. to study mathemati-
cal aspects. Indeed, some interesting phenomena
occur above the highest field of 0.12 a.u. considered
until now by Alexander. " First, there is the semi-
classical concept of a "critical field" which, by
some authors (cf. e.g., Refs. 24 and 27), has been
defined as the field at which the top of the potential
barrier just touches the resonance level. As seen
from Fi'gs. 9 and 10, the trajectories of the com-
plex poles do not exhibit any particular misbe-
havior in these regions which are characterized
by the disappearance of the classical turning points.
The transition from "tunneling through a potential
barrier" to "feeling the barrier below" is a per-
fectly continuous one from the wave-mechanical
point of view.

Another observation we were able to make con-
cerns the problem of proper definition of the reso-

nance energy. As already mentioned, our approach
is to let the position of the complex pole determine
both the resonance energy and the lifetime. The
question arises now whether the result obtained
via the phase-shift method is completely equiva-
lent.
. Alexanders's results up to 0.11 a.u. seem to con-
firm this hypothesis. However, led by our obser-
vation (cf. Figs. 4-6) that the zero of Re[m (E)]
coincides almost exactly with the maximum of
1m[m (E)] for small fields, whereas significant dis-
crepancies first appear about 0.12 a.u. , we were
interested in comparisons even above this value
of the field strength.

In note 23, Ref. 22, Alexander declares that by
his method it was not possible to detect any reso-
nance behavior above 0.12 a.u. It is true that the
WKB connection formula he used depends on the
existence of classical turning points, but accord-
ing to our results they exist at least up to 0.15
a.u. Therefore we checked his results, replacing
his numerical "boundary-condition method" by
our Runge-Kutta integration. Agreement could be
found up to 0.11 a.u. , but from 0.12-0.15 a.u. (we
could hence not confirm Alexander's observation)
the phase-shift results did no longer coincide with
the ones listed in Table I. Instead the "phase-
shift resonances" seem to be close to the positions
of the zeros of Re[m(E)].

Another phenomenon which does not occur in a
very pronounced way as long as the pole is close
to the real axis (or, in the discrete case, as long as
e is chosen to be small) is the asymmetry of the
shapes of both the m function and the phase shift

FIG. 14. Perspective view of g(g; E) according to Eq.
(51b). The curve in the foreground shows the wave func-
tion for +=0.05 a.u. , 0.0 ~ g ~ 56.0 a.u. , E = Efes, and

Z2 ——&2 „.The subsequent curves arise from increases
in~ of 0.01 a.u. , respectively, up to 0.25 a.u. Again the
spikes mark classical turning points.

F1G. 15. Contours of p(g;8'), dxsplayxng the same data
as plotted in Fig. 14. Abscissa is g of 0.0 ~ q ~ 56.0 a.u. ;
ordinate is field for 0.05 «I ~0.025 a.u. Borders be-
tween shaded and unshaded regions mark nodes of the
wave functions. Note the increase of amplitudes and the
number of nodes in the oscillating region of g for in-
creasing 5'.



1506 HEHENBERGER, McINTOSH, AND BRANDAS 10

with respect to variation of the energy about the
resonance. In the region of extremely high fields
it is hence necessary to go beyond both the simple
fitting of Im(m) to a Lorentzian and the Breit-Wig-
ner parametrization of the phase shift.
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