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The behavior of a two-level system interacting with a bichromatic classical field is studied. Analytic
expressions are found for the Green's-function operator for the system if the field is weak and near
resonance, and a systematic procedure is developed to obtain the Greens-function operator in a more
general case. The results are used to calculate the probability of a transition from the lower to the
upper state; resonance conditions occur when the level spacing of the system, cob„ is near
n cuq —(n —1)co„, where n is a positive or negative integer, and eo& and co„are the frequencies of
the components of the field. The resonance frequency depends on the intensity of the field components.
In addition, the cross section for scattering photons out of the field has been calculated. It is found
that the spectrum of the scattered radiation consists of lines at frequency cok ——co„, wz, and odd
harmonics of these, combinations of the fundamental and the harmonics with 5 = co& —co„, and
satellites shifted from all of these features by an amount which depends on the intensity of the field
and mi„. The cross section is intensity dependent particularly insofar as the location of resonance
peaks is 'concerned. It is suggested that this effect may be exploited in transferring intensity modu-
lation of one component of the field to phase modulation in the other component.

I. INTRODUCTION

The behavior of an atomic system in an intense
electromagnetic field has become of considerable
practical and theoretical interest as a result of the
availability of powerful lasers. Because the field
may rapidly induce large changes in the atomic
wave function it is necessary, in order to calculate
physical quantities of interest such as transiti. on
probabilities and scattering cross sections, to
find, for example, the complete Green's-function
operator of the system interacting with the field.
To make this problem tractable, one is naturally
forced to adopt some simplifying assumptions. The
primary one adopted in this paper is that only two
states of the atom are effective in its interaction
with the radiation. That is, the atom is replaced
by a two-level system endowed with an electric
dipole moment. Furthermore, the energy levels
are considered sharp, all relaxation processes
being ignored.

The problem of a two-level system in a mono-
chromatic field has been dealt with in some detail
by several authors, ' but the case of a bichromatic
or polychromatic field has received much less
attention because of its complexity. Although a
general formalism to deal with these cases has
been introduced by Chang and Stehle, 2 they did
not treat examples. Using an entirely different
approach, Mollow' has discussed a two-level sys-
tem. interacting with a pump field and a weak-signal
field whose frequencies are very close to the reso-
nance frequency of the atom. Two allied problems

to the one discussed here may also be mentioned:
the spontaneous emission by a two-level atom into
a multimode cavity, treated in the rotating-wave
approximation by Swain'; and a three-level atom
in the presence of a two-mode electromagnetic
fieM, studied by Walls' and Chiarini et a/. ' Ex-
periments involving the application of two oscil-
lating fields to an atomic system have been carried
out by Oka and collaborators. '

Whereas the problem of finding the Green's func-
tion of a two-level system in a monochromatic
field could be solved by summing a perturbation
series, ' it does not appear to be possible to do this
in general when another component is added to the
field. However, if the two components of the field
are relatively weak, and have a frequency which
is near resonance, it is possible to sum the most
important terms in the perturbation series, ob-
taining the Green's function in terms of continued
fractions. The general case is attacked by pos-
tulating that the wave function of the two-level sys-
tem in the bichromatic field has the form of a
double Fourier series; the coefficients in this
series satisfy certain recursion relations which
permit their evaluation in principle. It is then
shown that the Green's function may be expressed
in terms of these coefficients.

From the Green's function, the probability of
transition from the lower to the upper state may be
evaluated, and several illustrative examples were
calculated numerically. The two-level system
displays nonlinearities, there being resonant tran-
sitions at sum and difference frequencies of the
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10 TWO-LEVEL SYSTEM IN A BICHROMATIC FIELD 1475

two components of the field and significant intensi-
ty-dependent shifts in the resonance frequencies.

The cross section for the scattering of a photon
out of the incident field has also been calculated.
Here too, the system shows nonlinear effects,
because, in addition to Rayleigh scattering, one
finds photons emitted at sum and difference fre-
quencies and satellite emission lines, the fre-
quency of which depends on the field intensity.
It is found that the scattering cross section depends
on the field intensity, and this implies that the
index of refraction of a gas of two-level atoms
would be intensity dependent. This could have
practical implications.

II. THEORETICAL BACKGROUND

The properties of a two-level system interacting
with a classical field may be deduced from its
Green's-function operator. This operator satisfies
the equation

[If, +V (t) —N 6/st] G'(t - t,) = ft6(-t t,),-(2.1)

where Ho is the unperturbed Hamiltonian and V (t)
is the interaction potential. The solution to (2.1)
may be written in a perturbation series,

G'(t —t )=o O —( )+5 ' JdvG'(t —v) v(v)c(v —t', ) I) Jffpvpv'Q+($ v) v(v)o'(v v)

X V(t")Go (t" —to)+ ~ ~ (2.2)

where Go(t —to) is the zeroth order -Green's-func-
tion operator,

I

and

&r = &al~ ' E„lb&/&al& ' E&.lb&. (2.9)
1 ~f ftf~ (t to)

G,'(t —t, ) = —lim d&o,
0+ 27K ~ ~ —lE

&&(la&&ale &"o" '()'+lb&(ble &"o" '()')

(2.3)

(2.4)

where

G, —-lt&&pie ' &&' ' & (f&(& e &&' 'o&8 (&(& )
1

if if 1'

In (2.3) the lower and upper eigenstates of the un-
perturbed system, la) and lb&, of eigenenergy
h, and k&„respectively, have been introduced.
In what follows the Green's-function operator will
be expressed as the sum of four parts,

G+ = G„+G„~+G,~ + G~, ,

When V(t) is introduced into (2.2) contributions
to G' result which can be interpreted as describing
processes in which photons of type X or type p. are
absorbed from or emitted into the field, although
the latter is classical. The kernel 9,f may con-
sequently be expressed as the sum of distinct con-
tributions 9,'f '"', corresponding to the net emis-
sion of N ~-type photons and M p, -type photons.
Of these contributions, 9,", ' has a special signifi-
cance because it describes the process of forward
scattering, that is, the propagation of the system
in the ground state la) with no net emission or
absorption of photons into the field. This forward
scattering propagator has an expansion in terms
of the self-energy Z of the system:

(2.5) 9 90 + 90~90 + 90+90+9O + (2.10)

where

= 2&o,k (cos&o zt + &&(cos&o„t), (2.'I }

o&, =-&all E~lb&/2a (2.6)

The kernel 9&&(&o,} is the complete propagator of
the two-level system interacting with the field.

It is assumed that the interaction of the system
with the external field E(t) takes place through the
electric dipole moment 3, and the interaction po-
tential equals

V(t) = -d (E&,coso» t+E„cos&o„t) (2.6).
The matrix elements of V(t) are assumed real and
are defined as follows:

&alVlb& =&blVla)

where 9, is the unperturbed system propagator
1/(o&, —ie) The self. -energy Z is the sum of all
proper zero-net-photon-absorption diagrams, that
is, those which do not contain 90. The series
(2.10) can be formally summed to yield

g,&o, '& = I/(o0, —Z —te). (2.11)

As will be shown later the general term 9,'f '~' is
closely connected to 9,', ' ', hence the determination
of the self-energy is the first step in the calcula-
tion of G'.

As a preliminary to the more complicated bi-
chromatic case, the self-energy of the system is
first found for the monochromatic case, that is,
choosing e equal to zero.
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A. Propagator for monochromatic case:

Perturbation theory

A general term in the perturbation expansion for
9,&

will be proportional to a product of factors of
the type ((o, —sruti —ie) ', ((u, +&a~, -m&uq i-e) ',
and &,e" ~'0, where ~=&~ —+,. The former

two factors are propagators and the latter factors
are vertex contributions. Referring to a descrip-
tion of the perturbation series using diagrams,
the integers n and m indicate the number of photons
emitted above the corresponding propagator. For
example, the second-order contribution to 9„is
the following sum of four terms:

QP ~$2&gto 1
(d

q
—i e (&d q + (0~ —GP g—i E ) (4P~ —2 GJ g —i6 ) ((d ~ + (d~ —(d g —i6 )(hl

q
—iE)'

1 t2(dgto
+ +

(~, +to&, +&g- if)(&, —ie) (~, +~~+~g- i6)(&, +2(dq- it) (2.12)

The second and third terms, to be identified with
forward scattering processes, contribute to the
second term of (2.10}and are represented by dia-
grams in Figs. 1(b}and 1(c). The central lines of
these diagrams, that is, the propagators
((o, +~~ —arg-ie) ' and ((u, +(o~ +~g-ie) ', are
the lowest-order contributions to the self-energy.
The first and fourth terms, shown in Figs. 1(a)
and 1(d), are contributions to 9@,' and 9,',", re-
spectively.

It is convenient to normalize all frequencies in
the problem to , and rename them as follows:
q =(d~/hf, q' = (QP~+(d~)/(d, and A. =(dg/M . Fur
thermore, the following compact notation is intro-
duced: [m] = (q -mX —ie}, if m is even; [m]
=(q' —m& —ie), if m is odd; and [m, m +1]
=(q' —mal —ie)[q —(m al)A. —ie], if m is odd.

In higher order of perturbation theory more
complicated contributions to 9 and to Z are found.
Some examples of the latter are given in Fig. 2.
All diagrams contributing to Z can be divided into
two classes, those beginning and ending with the
propagator [+1] ' (Z') and those beginning and
ending with [-1] ' (Z ), where Z =Z'+Z . It may
be shown, following arguments developed in I, that

-2, -3 m~ -4, -3
1 1 1

g +~- c~ — g+2~ —c~ — g'+3~ —c~—
~ ~ ~

(2.13}

9,'P =I/(q -Z' -Z —i~). (2.15)

1 1 1
~ ~ ~

g' —X —i & — q —2~ —i & — g' —3~ —i E—

(2.14)

The zero-photon-emission propagator in the mono-
chromatic case equals .

a 0

0 2

(&) (&)

FIG. 1. Second-order diagrams contributing to 9,N .
The letters a and b refer to the state of the two-level
system, and the numbers refer to the integers n and '

~ in the propagators (& -n~g —&6) and (GJg+ N~~ —may
—i~), where e is even and ~ is odd.

FIG. 2. Second- and fourth-order contributions to the
components Z+ and Z of the self-energy.
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Introducing (2.13) and (2.14) into (2.15) one obtains
an expression for 9,'," in terms of continued frac-
tions identical to that in I, equation (2.14), ob-
tained without recourse to the notion of self-ener-
gy.

As mentioned previously, not only is 9,'a' deter-
mined by the self-energy, but so are those parts
of 9,&

involving the net emission or absorption of
photons. For example, consider the propagator
which takes the system from the state lb& to the
state la& with the net emission of one photon. This
propagator may be visualized by means of graphs
shown in Fig. 3. It is clear from the construction
of Fig. 3(b} that the lower blob in Fig. 3(c) is none
other than Z'. For, if a free propagator had ap-
peared in the lower part of the diagram, the re-
sulting graph would contain a repetition of a graph
already contained in 9,',". Hence

tions to 9,&
involving an arbitrary number of pho-

tons can be built up.

B. Wave function and Floquet's theorem

The wave function lg(t)& of the system results
from operating on the initial state with O'. Sup-
pose, for example, that at time t0=0 the initial
state is la&, then

lt(t)& =G'(t)la)

la&-e ' "
2

dye' ~"'Q„(&I)

lb&e-' "a' dq e' ~"'Q„(q) .(2.20}-f~ t

As was shown in I the poles of g„and gba are lo-
cated at

g(1) g(0) g+~t fdytp
ab aa

and, similarly,
9(-&) g(0) g- -$(ttytp

ab aa

(2.is)

(2.1'I}

q~ = -2y+ i&+2m~

gp = gy+lf+2mA. ,

(2.21a)

(2.21b)

Furthermore, a propagator which takes the sys-
tem from state la& to state la), but in which, for
example, a net number of two photons is emitted,
can be obtained multiplying 9,"b' by the sum of all
zero-net-photon-emission diagrams which do not
contain either [0] or [+I]. That is,

respectively, where y=(&o~ —&u&,}/&o„ l =+I, m is
a positive or negative integer, and & is a parameter
which depends on A. and 5 =~~/&, . Denoting the
residues of Q„and Q„by R(aal Im} and R(bal Im},
respectively, one may write

9"' =9")Ae' &tp
aa ab

where

(2.is}

+lb&g R(baltm}e '

(2.19}

is a constituent of Z'. In a similar way contribu-

(2.22)

This result suggests that one could write for a
general wave function the expression

(&} (b)

FIG. 3. Graphs representing the one-photon-emission
contributions to 9, b.

where g is a parameter. Indeed, reducing Schrik-
dinger's equation

(ff, +v(t }}Iy(t)& = N
I j(t}& (2.24)

to a Hill's equation (which is possible here) and
then invoking Floquet's theorem, ' one is led to
postulate for the wave function of the system the
form (2.23). This procedure was used by Autler
and Townes. '

The close connection between the parameter X
and the poles of the complete propagator suggests
a possible approach to determining the Green's-
function operator without recourse to perturbation
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theory Clearly, in order that (2.23) be a solu-
tion to (2.24) y may assume only certain allowed
values. Suppose that the relation which yields the
values of y has the form y. —E(X) =0. Then the
self-energy of the system is, to within an additive
constant, none other than E(g), and g"' must be
equal to I/[y, —E(y)]. This turns out to be a more
powerful way to obtain the Green's-function opera-
tor than by summation of the perturbation series.

The relation which must be satisfied by g is
found by substituting (2.23) into the Schr5dinger
equation (2.24) and multiplying from the left with

(al and (&I. One finds that

~t» g d g-I( L+ p)t)
ff ~ fll

(3.1)

By introducing (3.1) into (2.24) and projecting re-
spectively on (a) and (b~ one obtains the following
conditions on the expansion coefficients A„and
B„:
()i —ttX —m»t) A„

As a trial wave function a simple generalization-
of Eq. (2.23) is postulated:

(t» -dX ([g}Q~ 8 II" k pl
g 0 tel

(X+~.-n~~)A. = -~.(B. , +B...)
(y+ ,(dn-p~))B„=- (d(A„, +A„„).

(2.25a)

(2.25b) (q' —tt)( m(t}—B„„
(3.2a}

In particular, from (2.25a) with n=0 one has

(g+ 0),}/0),+B,/A 0+B„/A, =0. (2.26)

= -(A„, ~+ A„„„)—o'(A„,„,+ A„~+,),

(3.2b)

The ratios B,/Ap and B„/A, are obtained by sys-
tematic elimination of unknowns from Eqs. (2.25):

-1 1 1B,/Ap = ~ ~ ~

g'+ ~ — g + 2& — g'+ 3X—

where the variables»7 = (g + 0),)/(d, and )i' = (y+ (0,)/
&0, and the parameters X = &o~/0), and )t = 0)„/(d,
have been introduced. In particular, if n and m

are set equal to zero in (3.2a} one obtains the rela-
tion

(2.27) )I + (B (0 +B(0+aB~, + nB0()/A~ =0. (3 3)

9 (I) 9(0) (B /A }et0) ytp

g( I) g(0)(B /A )e (~gtp

and furthermore it may be shown that

g'"' =9"'(A„/Ap)e'" )'0 N even,

(2.28)

(2.29)

(2.30a)

g'"' = 9"'(BN/Ap)e(N~) '0 N odd. (2.30b)

It follows that the entire Green's-function operator
can be built up from the coefficients A„and B„.

III. BICHROMATIC CASE

Except for a special case, to be discussed short-
ly, where the bichromatic problem can be'solved
with both the perturbation theory approach and the
Floquet-theorem approach, it is necessary to
attack the bichromatic case using the method out-
lined at the end of Sec. II.

-1 1 1
B„/Ap = ~ ~ ~

0 ~ g ~ 2

In Eqs. (2.27) the variables ti = h+ (t),)/0», and»7'
= h+(0, )/(d, have been introduced Subst. ituting in
(2.26) the expressions for B,/Ap and B„/A, given
by (2.27) one obtains the denominator of the propa-
gator (2.15), and one sees that the self-energy
equals the sum of -B,/Ap and -B+,/Ap. Referring
to equations (2.16}and (2.17}one may write that

Following the arguments of the previous section
one is led to postulate for the zero-photon-absorp-
tion propagator the expression

g(0'0» =[@+(B,p+B,p+ (»(Bp, + ()(Bp,)/A~ —ie]

(3 4)

At first sight it is not at all obvious how to solve
Eqs. (3.2) because there is no a Prio reason that
one coefficient or group of coefficients is more
important than another. Furthermore, direct
numerical solution with a computer is restricted
to a relatively small number of coefficients. As
a guide to solving for the A„and B„ in an arbi-
trary case, it will first be assumed that both com-
ponents of the field are weak and near resonance
with the two-level system. This is a case which
can be solved both in perturbation theory and using
the Floret's theorem approach. It is found that
there is a close connection between the propagators
obtained in perturbation theory and the coefficients
obtained from (3.2). This connection, which we
assume can be generalized to an arbitrary case, is

g ~ g(pip)(A /A }et( rd)+Nw»)) 0

g(N, ) g(0,0)(B /A )et( Id'+ Ntdp)tNp

(3.5)

These relations are extensions of Eqs. (2.30).
Referring to Eqs. (3.5), it is seen that the proba-
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bility that the two-level system makes a transition
from, for example, state ~a) to state ~a), emitting
N ~-type photons and M p-type photons into the
field depends intimately on A». This interpreta-
tion of the coefficients assists in judging which
ones might be the most significant in a particular
problem. For example, for the near resonance
case cited above only coefficients of the type A„
and B„„+,will be important, these corresponding
to nearly energy-conserving processes. In this
way one has a physical argument for focusing one' s
attention on a restricted group of coefficients.

A. Ladder approximation

I. Perturbation-theory treatment

In the case that the frequencies ~& and ~„are
close to &„and the field is weak only a certain
class of diagrams is important, and they can be
counted, in contrast to the general case. These
have the appearance of a ladder, in which a photon
absorption is followed by a photon emission, and

vice versa, and in which for 9„, for example, the
first interaction is an absorption. A diagram of
this class hence consists of a sequence of nearly
unperturbed propagators. This is an extension of
the rotating-wave approximation of the monochro-
matic case.

Consider now diagrams in which the number of
photons emitted minus the number of photons ab-
sorbed of either type equals zero. The second
order ladder contribution to the system propagator
from these processes equals

Eo]

[0] [0]

P-v3 [-w+2IJ,]

9(0,0) l~ 1 1 C 1

g —g6 g —X —g6 'g —p, —gf g —gg

(3.6)
Graphs corresponding to Eq. (3.6) are shown in
Fig. 4(a), where the following compact notation
for reciprocal propagators has been introduced:
[s]] +m p]= (g-n]]. —mp —ic),s+m everi; [s]].+my]
=(q'-nX-my, —ic),n+m odd; and

[s}].+m p, , (n a 1)X +m g ]= [n]].+m g ][(sa 1)l]. +m p ].
As in the monochromatic case, to obtain 9„"

we now sum the self-energy diagrams only. Of
these there are two classes, those commencing
and ending with [X] ' and [p, ] ', respectively.
Some examples are shown in Fig. 4(b). The self-
energy in the ladder approximation may hence be
written

Z' = Z++Z+
X py

where

(3.V}

FIG. 4. (a) Second-order ladder diagrams contributing
to 9~&,' &. The square vertex indicates absorption or
emission of a p-type photon. (b) Examples of self-ener-
gy diagrams.

and

Ix] ~ (]&-v&]) ( n, ) (]z-yaw-w]) (' n, ) (]2& —2gn& —w])

1 Q 1 CP
~ ~ ~

—X —g6 —'g —A, + p. —ge —g' —2A. + p, —iE —q —2k+ 2p, —i6— (3.8}

Q' 1 +2 1
~ ~ ~

—P —g& —g +~ —p —g6 —g +X —2 p, —g E' —g + 2g —2 p. —gg—
(3.9)

We note that Z& and Z'„consist of products of
propagators [sX+mp] ', withn+m =0 and
n+m =1, only.

The zero-photon-emission propagator conse-
quently equals,

9~0 0] =1/(q- Z'„- Z'„- i~). (3.10)

The rotating-wave approximation to 9„for the

monochromatic case is obtained by putting e
equal to zero in (3.10). That is,

9~0~ = 1/(q —ie —1/(vf —]].—ie)), (3.11)

in agreement with Eq. (2.22a) of L On the basis
of Eq. (3.11) one might have guessed that the
propagator for %e bichromatic case in the ro-
tating-wave approximation would have the form,
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9.',"'= [q i-e —I/(g' —X —ie) —n'/(ri' —p, —fe)] '.

(3.12)

However, this guess is seriously in error. Nu-
merical analysis of Eq. (3.10) reveals that the
continued fractions which follow I/(q' —X —ie) and
a'/(g' —p —fe) in Eqs. (3.8) and (3.9), respective-
ly, have a profound effect on the pole locations
and residues of 9„' . This is because A —p is
assumed a small quantity. Equation (3.12} results
from considering those ladder diagrams which

contain only the propagators [0] ', [a] ', and

[p] ', that is, diagrams where every other pro-
pagator is [0] '."

We next consider contributions to the system
propagator arising from diagrams in which, for
example, there is a net emission of one A.-type
photon and a net absorption of one p, -type photon.
Although energy is not conserved, these diagrams
are nevertheless sighificant because of the close-
ness of p, and A.. Two typical diagrams are shown
in Fig. 5. Summiag all those diagrams which do
not contain a free propagator one has

(3.13)

9(1,-1) g(o, o)g(l, -1) j(eg -u~) toaa aa (3.14)

a with 5 everywhere and replaciag A and p. with
-A. and -p, .

g (x.o) g(o.o) ~+
aa = aa 0 (3.15)

The poles of 9,~' are the same as those of 9„'
which follows from the form of (3.15), the prop-
erties of 9~,"~, Eq. (3.10), and Z'„, Eq. (3.9).

The propagators 9„"' and 9~ ' " ' are ob-
tained from 9„"'" and 9,~"'"" by exchanging

This procedure can be readily extended to calcu-
late 9„" " for arbitrary N. There are no other
contributions to 9„in the ladder approximation.

The propagator involving the net absorption or
emission of photons can be obtained using the
same method outlined in Sec. II. It is readily
shown that, for example,

2. Floquet 's-theorem approach

As has already been stated, to obtain the
Green's-function operator using the Floquet's-
theorem approach it is necessary to solve Eqs.
(3.2) for the coefficients B,o, B», Bo „and Bo,.
Because the factors on the left of Eqs. (3.2),
(q-nX-m p) and (g' nP-my), -have. formally the
appearance of reciprocals of propagators, to
obtain an expression for 9„' ' similar to the one
obtained in perturbation theory one must set equal
to zero all coefficients A„with n +m &0 and all
coefficients B„with n +no + 1. The connection
between the perturbation theory approach and this
approach is in fact the following. If, in the pertur-
bation theory, one takes into account all propa-
gators up to some maximum, n =N and-m =M,
then to obtain an equivalent result here one must
include all coefficients up to A» or B». With
these simplifications the set of equations (3.2} can
be solved by iteration, and one finds,

Bjp 1 6' 1
App g A g A, +p g 2&+p

(3.16a)

Bp. 1 CP

App g —p —'@+A, —p, —g +A, -2p, —

P-~1
-xo = o-i =

(3.16b}

(3.16c)
FIG. 5. Examples of ladder diagrams contributing to

9(i, -i)
Na If these relations are introduced into Eq. (3.4) one
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obtains a propagator identical to that given by Eq.
(3.10). Moreover, an inspection of Eqs. (3.15)
and (3.16a) reveals that the propagator 9(," is
simply related to Byp In fact,

9,o 9(o,o) (B /A )e'

Concurrently with the solution for Byp one finds
an expression for A;,:

(3.1V)

A l-1
Aoo g —A. + p. —g' —2A. + p —g —2A, + 2p, —

X
1 Qf 2 1

~ ~ ~

g' —A. —g —A. + p. —g' —2A. + p—

(3.18)

and it is seen that A, , /A„ is identical to Z(' '),
defined in Eq. (3.13). It follows, therefore, that

9(1,-1) 9(o,o)(A /A )ei(&ux ~o)to (3 lg)

These results make it plausible that in general
the propagators corresponding to the absorption
or emission of any arbitrary number of photons
have the form specified in Eq. (3.5).

3. Applications

The Green's-function operator can be used, for
example, to calculate the probability that a two-
level -system, suddenly immersed in the field,
makes a transition from the lower to the upper
state

W,.=I —1&alG'(&- &o)Ia) I'

2

=1 —— d&}e " o(' 'o&9 ()I)
21r ea (3.20)

To evaluate W„ it is clear that one requires the
poles and residues of 9„. These have been ob-
tained by numerical analysis on a digital computer.

In practice, the continued fractions in (3.16a)
and (3.16b) are terminated at a certain level. The
depth to which one must go depends on the value
of X —p. and is determined empirically. That is,
in the computation, the depth is systematically
increased until the addition of a new layer makes
no significant difference in the pole locations and
in the residues. Certain checks were applied to the
residues obtained. In particular, the sum over
all the poles of the residues of 9„" " equalled
unity for n =0, and equalled zero for n &0. Also
the sum of the residues of 9~,

" " ' equalled zero,
and the sum of the squares of the residues of 9„
and 9„equalled unity.

It is found that the poles of 9„are located at

negative integer, and l has the values +1. The
quantity & must be determined for each choice of
)(., )i, a, and 6 = (o„/(o,. A typical set of pole loca-
tions along the g axis is shown in Fig. 6. The lo-
cation of the poles of 9„as a function of 5 is
shown in Fig. 7 for the case X =100, p, = 98, and
n = 1, 0.5, and 0.1. As seen in the figure there
are values of 6 for which the poles approach each
other closely; these define resonance conditions
in ~~.

Denoting the residues of 9„"' " by the symbol
R,„, the probability (3.20) can be expressed in
the following way:

The time-independent part of W~ equals the aver-
age probability 8",, that the system be in the state

b) having started at an uncertain time in state
a):

Wo, =l — g /R (3.23)
m, 1,n

In Fig. 8 six curves of 8'~ are plotted as a func-
tion of 6 for the case )(.=100. In Figs. 8(a), 8(c),
and 8(d) the value of a has been chosen to be
unity, and the values of p have been chosen equal
to 90, 97, and 98; respectively. " The curve cor-
responding to p. = 90 was in fact calculated using
a procedure to be described later, because the
ladder approximation is not valid for such a large
separation between p. and A. It is included here
in order to aid in the interpretation of the reso-
nance peaks. Referring to this case, 8",, con-
sists of two broad features centered near 5 = 90
and 6=100, and two sharp peaks near 5=80.28
and 6 = 109.7. The broad peaks correspond to
absorption of single p. -type photons and single
A.-type photons, respectively. The sharp peak at
5=80.28 corresponds to the absorption of two
p-type photons and the emission of one A, -type
photon, whereas the one at 5 = 109.7 corresponds
to the absorption of two A.-type photons and the
emission of a p, -type photon. In the case of p. =97
the two multiphoton peaks have shifted to 5 =95
and 102, respectively, whereas the taro main

o
-1 i +1

+1

W„=1 — Q R,„exp[io),P', (t —to)] exp[is&to]
m, l, n

(3.22)

P', =-&y+lg+m~, (3.21} T/2

where y= ((d~ —(d„}/(d„E=)(—)), , m is a positive or FIG. 6. Qlustrating the pole locations of 9«.
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W,.=A+Bcos[~,(X- p)(t —t,)],
+ C cos[2&u, (X —p. )(t —to)]. (3.24)
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eluded in the ladder approximation.
In the recursion relations (3.2) every coefficient

of type A or B is related to four coefficients of
type B or A, respectively. This suggests that it
may be convenient to assign the coefficients A and
B to points in a square lattice in such a way that
each coefficient has as nearest neighbors the four
coefficients to which it is directly related by the
recursion relations (3.2). The resulting diagram
is shown in Fig..11. We note that all the coeffi-
cients A„„(B„)lying along a diagonal line with

slope -1 are characterized by the same index
r= m+n, the net number of emitted photons.

With reference to Fig. 11 the two cases so far
treated can be discussed in the following terms.
In the monochromatic case, that is a=0, the only
nonzero coefficients lie in a vertical line through

A«. A given coefficient is hence connected only to
two neighbors and a solution is readily obtained.
In the more restricted case of the rotating-wave
approximation all coefficients except A» and Bgo

are neglected. In the ladder approximation to the
bichromatic case only the central diagonal section
of the array, where ~=0 and x=1, is taken into
account. In this case again any point has only two
nearest neighbors and consequently a relatively
simple expression can be found for a given coeffi-
cient.

An obvious improvement to the ladder approxi-
mation is to include in the analysis coefficients
with x=2, 3, —1, and -2, that is, coefficients
along diagonals parallel to the "ladder" diagonal.

~ ~

1 -j.

g'+ A. —ie —q+ 2A.—ie (3.25)

This is a very good approximation for 5= 100 or
greater, but it would become questionable if A,

were of the order of 10. It is of course necessary
to extend the diagonal array of coefficients only a
finite distance away from A«. In practice one
terminates it at the coefficients A„~ and A „~,
where N is determined empirically.

With this selection of nonzero coefficients it is
possible to express all of them in terms of the co-
efficients A„„. One then must solve numerically
2N simultaneous equations for the ratios A„„/AM.
From these solutions one calculates the coeffi-
cients BO„B, „B,o, and B «, from which 9,;
may be evaluated and its poles and residues de-
duced. Since all the coefficients in the chosen
array may now be calculated, 9,"."' and 9,",'"' are
known through Eqs. (3.5).

1. Numerical examples

In terms of perturbation theory this choice of co-
efficients is equivalent to including propagators
(in 8„)in which as many as three successive
emissions, or two successive absorptions of
either X- or IL-type photons take place. If n were
equal to zero this approximation would lead to the
zero-photon propagator

(p), 1 1 1
9,', = g-ic- y'- A, —ie —g-2A. —ie - g'-3A, —ie

5
so

2~3
A s A B

I-3

A B
-I - I -IQ

A 8
-20 -2I

I

A B A3-3 3-2 3-I

B
I2

A

A-28 -N

A B-32 -35 -3+
I

The foregoing procedure was used to calculate
the Green's function for the following values of
the parameters:. A. = 100, p. = 98, n = 1; A, = 100,
p = 97, a = 1; A. = 100, p, = 90, n = 1-0.1. From
these Green's functions the probability that the
system makes a transition from state

~
a) to state

~
b) was evaluated, and two of the results have

already been presented in Figs. 8(a) and 8(b).
The difference between W,', calculated in the lad-
der approximation and W~ calculated using this
procedure was small in the cases p. =98 and p. = 97,
and was essentially confined to a frequency shift
in the location of the sharp maxima due to multi-
photon transitions. The Green's functions were
also used to calculate the probability of scatter-
ing, to be discussed in Sec. IIIB2.

In comparison to the ladder approximation, this
more complete calculatipn reveals the existence
of additional poles shifted away from the ones
given by Eq. (3.21) by 2 my, . That is,

FIG. 11. Coefficients A„and B„ laid out on a square
lattice. In the ladder approximation only those coeffi-
cients joined by the solid lines are taken into account.
The dashed lines mark the boundary of the array used
in the calculations with A, = 100 and p = 90.

P' „,= —~y+ l)+ nA + 2m @.. (3.26)

These additional poles are to be expected, of
course, on the basis of the form of the postu-
lated wave function (3.1). Corresponding to each
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pole of 9~~ "' is a residue denoted by the symbol
R(ij (mnlNM), and the Green's-function operator
equals

G ( & ) (j ( e i ((c(s -&()) dq e& s)(cc(s so)
2w

The two-level system is coupled to a quantized
field via the electric dipole moment. The part of
the interaction Hamiltonian effective in photon
emission may be written

R(i 2(mnINM) ((g(cg+e(c)) ) sx ~~
m, . . .,N 9 Pmnl

(3.27)
(3.28)

In practice only one pole need be located by solving
Eq. (3.3), all the rest following by the application
of the above relation (3.26). The accuracy of the
numerical results was tested in the same way as
for the ladder approximation to the Green's func-
tion.

2. Scattering

In the discussion of the Green's-function opera-
tor in the previous sections the language of photon
emission or absorption has been introduced as a
matter of convenience; these photons are emitted
into and absorbed from the applied field and are
hence not observable. Vfe would now like to cal-
culate the probability that the system emits pho-
tons accessible to an observer, that. is, the prob-
ability of photon scattering.

AG= dt'G' t- t' H t' G' t'- t (3.29)

where G' is the Green'e-function operator satis-
fying Eq. (2.1). The amplitude of a transition in
which the two-level system immersed in the clas-
sical field at time t= t, goes from the state (q) to
the state (P) at the time t and the quantized field
goes from the vacuum state (0) to the one-photon
state (x) equals,

where v specifies a field mode of frequency ~„and
momentum ~„and e„ is the polarization vector.
b~ is the creation operator for the field and V the
quantization volume. The units are chosen so that
c=h= I.

This interaction potential introduces a first-
order change in the Green's-function operator
equal to

2~ 1/2
S ci( (x(p(e' &'nGe ' c'o (q)(0) = " e'( ~&' ""()g(d» e„) g R(p (km lnNM)R(k'q( mn' ' I'NM)

)&
exp i ([(N+N') &u), + (M+ M')(d&] t, + ,'(d, [Pc„,+P'.„—,.+ (I/(s), )((s)». + N(d), +M&@„+e„)](t —t, )]

sin((dc/2)[Pc„, —P"„, —(I/(d, )((s)» +N(s)), +M(d„+ (d„)](t—tc)
~, [P'„,-P"„, —(I/(d, )(~» +N(d, +M(d„+ (u„)]

(3.30)

To obtain (3.30) use has been made of the definition
of G', Eq. (2.4), and the relation (3.27) for G,~.

The cross section for scattering will be propor-
tional to

( Sc,('. In order that it be independent of
the initial and final time it is clear that restric-
tions on the sums over the indices in (3.30) will be
necessary. Furthermore, for t- t, large, the
frequency of the emitted photon is well defined and

equal to

c ( mn) c('n')') (s)»' (s)x M(d)( ~ (3 31)

(s)„=(2r+ 1)v„(„)+s(u„-(uq)+(/g(u, , (3.32)

where r and s are positive or negative integers
and v has the values 0, +2.

Assuming the system to be initially in the state
(a), the cross section for emitting a photon of
frequency u„without regard to the final atomic
state equals

Introducing the pole locations (3.26) one sees that
possible values for ~„are,

=A„g g g [R(aj (x)R(ka(x') R(aj '(x")R(k'a(x"')+R(bj (x)R(ka (x') R(bj '(x")R(k'a(x'")] . (3.33)
jap j'wg' x, ..., x'"

In (3.33) the symbols x, x', etc. , have been intro-
duced to stand for the set of five indices mnLNM,
required to completely specify a residue. The
prime on the sum over the indices x, x', etc. ,

means that restrictions have been imposed on the
indices m, n, L, m', n', etc. , so thatcr is station-
ary, and furthermore, so that u„has the desired
value. ' The quantity A„equals
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FEG. 12. Scattering cross
section (divided by A„) as a
function of 4, for the case
A=100, p, =90, and 0. =1.
(a) Scattering at ~, = ~u,
and ~),. (b) Solid curves,
for scattering into the
satellites of ~u M, = ~u
+2&~, . Dashed curve, for
the satellite at frequency
(d „=2(c7 y —(d

u
—2 gM . (c)

Scattering at u„=2~u —co~

(solid curve) and u„= ~u
—2f~ (dashed curve). (d)
Scattering at ~„=2(dq-(du
(solid curve), K =2wy —(du

+2/co, (dashed curve), and
4l = 24) y —

Aalu
—2 f(d (dot-

dashed curve).

K (2 )3(f / I / )
K L lib Kl

(3.34)

where I„and I„are the intensity of the X and p,

components of the bichromatic field, and dQ„ is
an element of solid angle into which the photon is
emitted.

The cross section for scattering at &„=&u, ~)„
2+& —eu, and values shifted from these by + 2$
has been worked out numerically for the specific
case A. = 100, g = 90, and a = 1. These results are
presented in Fig. 12. In Fig. 12(a) is plotted, as a
function of 5, the cross section for Rayleigh scat-
tering, that is, for scattering at the frequency of
the components of the incident field. These curves
have maxima for co~ near co„and +&, frequency
shifts present being similar to those exhibited by
W,', . It may be noticed, in addition, that the cross
section for scattering at ~, = ~u shows minima
near w~ = 100 and 80.22, while that for scattering
at m„= u& has minima near co„=90 and ~„=109.74.
At these values of co&, the scattering cross section
is large for other values of the frequency ~„, for
example, for ~„=sou and 2coz —co„, respectively,
in the latter case.

In Fig. 12(b) is shown the cross section for
production of the satellite lines at co„=co„+2/,
eau -2f, and 2cuz —~„—2f. The maximum cross
section for these features is approximately half
the maximum cross section for the Rayleigh lines.
In the insets, Figs. 12(c) and 12(d), are shown
details of the cross section on an expanded m~,

scale. Fig. 12(c) corresponds to scattering near
co„=2&su —co&. Only one satellite is shown; the
other, which would belong to 3&u —2cgz was not
calculated. Fig. 12(d) corresponds to scattering
near +„=2~-„—co„. The satellites are similar in
behavior to the satellites in the monochromatic
case, discussed in I. The frequency of all the
satellite lines as a function of co„ is shown in Fig.

100

90 =;.

80'=
80 90 100 110

FEG. 13. Frequency of the scattered radiation as a
function of 6 for the case A, =100, p=90 and & =1. Those
components of the spectrum which are most intense are
indicated by heavier weight lines. The dot-dashed diag-
onal line is the curve ~K

= ~a a.
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FIG. 14. Cross section for scattering as a function of
0'. for the case ~=100, p=90, 5=109.74, and (a) ~,
=2'~-co&,. (b) cu„= co~.

13. The highest intensity features have been in-
dicated with a line of heavy weight, while the weak
features are indicated with dotted lines. Roughly
speaking, the most intense scattering takes place
at the frequency co„which is closest to co„.

The frequency ~„at which maxima occur in p

depends on the intensity of the p, component of the

field. This is illustrated in Fig. 14(a), which is a
plot of the scattering cross section at w„=2&z —+&
as a function of n for the fixed value 5 = 109.74. It
is seen that by varying the intensity of the g com-
ponent the system can be caused to pass through a
resonance. In Fig. 14(b) the c'ross section for
scattering at co„=~), is also shown as a function of
z for the same value of 5. It is seen that this
cross section passes through a minimum, and for
n= 0.65 the system would not scatter any photons
of frequency uz. This rapid change in the scatter-
ing cross section as a function of e is one of the
most interesting results of this investigation, be-
cause it implies that the index of refraction of a
gas of these two-level atoms may be made strongly
intensity dependent. That is, the index of refrac-
tion at frequency co&, say, can be made sensitive
to the intensity of the p, component of the field by
appropriate choice of all the system's parameters.
In practical terms, this means that one could
phase modulate the A, component of the field by
intensity modulating the p. component. In the ex-
ample chosen, the two components of the field
have a similar frequency, but an analogous effect
would exist if, for example, the A. component were
radiation from an infrared laser and the p. com-
ponent were a microwave field. Experiments are
underway to investigate these effects.

~R. Gush and H. P. Gush, Phys. Rev. A 6, 129 (1972)
(and references therein), to be referred to as I in the
text.

2C. S. Chang and P. Stehle, Phys. Rev. A 4, 641 (1971).
SB. R. Mollow, Phys. Rev. A 5, 2217 (1972).
4S. Swain, J. Phys. A 5, 1587 (1972).
~D. F. Walls, J. Phys. A 4, 638 (1971).
F. Chiarini, M. Martinelli, S. Santucci, and P. Bucci,
Phys. Rev. A 6, 1300 (1972).

~T. Oka and T. Shimizu, Appl. Phys. Lett. 19, 88 (1971);
S. M. Freund, J. W. C. Johns, A. R. W. McKellar, and
T. Oka, J. Chem. Phys. 59, 3445 (1973).

E. L. Ince, Ordinary Differential Equations (Longmans,
Green and Co., New York, 1927).

9S. H. Autler and C. H. Townes, Phys. Rev. 100, 703

(1955).
The spontaneous emission of a single, excited two-level
system into a quantized field of two modes, initially
empty, has been treated by S. Swain (see Ref. 4). In
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