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Capture of negative muons in atoms*
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The frictional force derived from the stopping power of an electron gas is used in the classical

equation of motion for the negative muons. We calculate the energy spectrum of the captured muons

and the angular momentum distribution of muons at the energy of the electronic E orbit. The resulting

P(l) distribution closely resembles the statistical 21 + 1 distribution.

As was stressed by Fermi and Teller in 1947,'
the capture of a negative muon in an atom may
well be treated in terms of classical physics. A
muon moving through an atom experiences a grad-
ual loss of energy and angular momentum due to
collisions with the electrons, and the effect of
these collisions on the muon can be described by
introducing a frictional force in the classical
equations of motion. This picture breaks down
when the muon has lost so much energy that it
moves in the region of the electronic K shell,
where the Auger transitions that give rise to the
frictional force should be treated quantum mechan-
ically.

Several workers have used this prescription to
study the capture of negative heavy particles. The
most recent calculations have been made by Leon
and Seki.' The present note follows the general
lines of their work, but differs in the conclusions
mainly because it includes the crucial interrela-
tion between stopping and capture.

The initial slowing down of a muon to velocities
of the order of v= voZ'" (with vo=s'/ff and Z be-
ing the charge number of the atom) proceeds ac-
cording to standard stopping theory. For lower
meson velocities, distant collisions do not contrib-
ute to the energy loss, and the stopping is mainly
a function of the local electron density p(r) Ac-.
cording to Lindhard, ' the stopping power in this
region of velocities and for not too large impact
parameters can be described by the frictional
force

v dE 4pg2e4F= ———=- C (X)v ,v dx

where m is the electron mass and v is the muon
velocity. The function C, (g) can be estimated from
the stopping power of a free-electron gas4 as

1 1+3g 1 —
~3

2(I+X'/3)' X' I+4X'-
(2)

It is a slowly varying function of the electron den-

sity p(r) through

y' = (me'/5')[3w'p(r) j (3)
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FIG. 1. Energy loss ~E for X =55 as a function of the
squared impact parameters in angstroms squared. Each
curve is labeled by the energy of the incoming muon in
eV.
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as given in Ref. 4.
In the numerical calculations we have used the

Lenz-Jensen model' for the electron density and

for the average potential U(r) of the muon in the
atom. The effect of radiation is rather insignifi-
cant. In our calculation it was included approxi-
mately by using the force

g2
(4)

Introducing the forces (2) and (4) in the classical
equations of motion one may follow the trajectory
of the muon through the atom. For a given impact
parameter and initial energy the muon may either
leave the atom with a loss of energy &E or it may
be captured. The energy loss for Z=55 is illus-
trated in Fig. 1 as a function of the square of the
impact parameter b2 for different initial energies
E. The points where these curves reach the values
&E =E indicate the limits of the intervals in b2

where capture will take place.
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From these curves one may in principle calcu-
late the energy distribution of the captured muons,
but the problem is nontrivial, leading to equations
of the type discussed in Ref. 6. We have instead
used a Monte Carlo calculation where the fate of
a muon with an initial energy of 250-500 eV was
followed from collision to collision until it was
captured. The trajectories for the captured muons
were followed until they reached a binding energy
where quantal effects become important for the
further transitions to the muonic ground state.
The transition between this third stage of the
capture process and the classical region was
studied by comparing existing quantum mechanical
Auger-cascade calculations with the classical rate
of energy and angular momentum loss, and it was
found that they agree rather well when the princi-
pal quantum number of the muon is & = 13-14.
Thus the classical trajectories were followed un-
til this region was reached, i.e., until the total
energy was E= —Z'(R . The angular momentum
was then recorded.

The resulting distribution P(L) of angular mo-
menta L is illustrated in Fig. 2 for Z=55. Trans-
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lating L into the quantum number & by L (&+ &)g,
it is seen that the distribution follows the rule
P(l) -(2l +1)e with o. =0.001(8) in agreement
with experiments on. muonic x rays. 7 A similar
P(&) distribution was calculated for Z= 19 with the
result n =0.045(11). The P(l) distributions ob-
tained with the initial energies 250 or 500 eV are
statistically indistinguishable.

The disagreement between these results and
those of Ref. 2 is mainly due to the assumption
in Ref. 2 of a flat energy distribution of the cap-
tured particles. In our case no a priori assump-
tion about the energy distribution is made. In-
stead, it is calculated using the same mechanism
for both the capture and slowing down processes.
This is a crucial step; we were able to reproduce
in a qualitative way the angular-momentum distri-
bution function P(&) of Ref. 2 when we made the
assumption that the mesons are captured with the
same probability at all energies.

In our calculations the muons are predominantly
captured at energies near the plateau of Fig. 1.
Figure 3 shows the calculated energy distribution
of the captured muons; a similar histogram for
Z= 19 has a maximum at 15-20 eV.

We plan to use the above described method for
the more complicated cases of the capture of neg-
ative particles (muons, pions, kaons, etc. ) in mix-
tures, crystals, and molecules.

We thank Professor T. Tombrello for many in-

terestingg

discussions.
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FIG. 2. Histogram of the Ng, ) distribution for Z =55
obtained by a Monte Carlo calculation with 1306 samples.
The last bin is squeezed because the maximum classical
angular momentum equals 13.28 at the cutoff energy
E=-Z (R =-41140 eV.

FIG. 3. Histogram of the muon energy distribution
N(E) for Z=55 obtained by a Monte Carlo calculation
with 1306 samples. Of the samples 57 were captured
above 95 eV and are not included in the figure.
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