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The radiative correction to the decay 2S», 1S„,+ ly in hydrogenlike atoms is calculated to
relative order a. All terms of order a lna and a are found to cancel. The cancellation of the order-a
terms does not occur in other relativistic Ml transitions in hydrogenlike atoms.

I. INTRODUCTION

The M1 decay 28~, -18~,+1y in hydrogenlike
ions and the related decay 2'8-1'8+1y in helium-
like ions have been intensively studied, both theo-
retically' and experimentally, ' in recent years.
There remains a small discrepancy between theory
and experiment in the decay rate of heliumlike
Ar'" and Cl'". The previous calculations' give a
leading matrix element of order (Z n)' for both the
hydrogenlike and heliumlike decays, and various
corrections of higher order in Zn have been cal-
culated' or estimated. ' In this note, we present
the results of a calculation of the radiative correc-
tion to the hydrogenic decay 28~, 18~, +1@, and
of other M1 decays of hydrogenlike atoms. The de-
tailed calculations will be presented elsewhere.
A calculation of radiative corrections to a decay
rate does not appear to have been carried out pre-
viously in detail, although order-of-magnitude es-
timates exist. 4

The radiative correction to the decay matrix
element, to relative order o., is given by the sum
of graphs in Figs. 1(a)-1(e). We omit graphs in
which the emitted photon emerges from a closed
electron loop, as those graphs are higher order
in Za. In these graphs the double lines represent
electron propagators, or represent external elec-
tron lines, each including the effect of the nuclear
Coulomb potential 7'. Experience in the calculation

of the Lamb shift' suggests that it is inadvisable
to expand such propagators in powers of V, and in-
deed it is easy to see that such an expansion would

give an infinite series of terms, all of which are
the same order in Ze. Instead, we have followed
the method of Erickson and Yennie, ' retaining the
Coulomb potential in the propagators whenever
possible, and expanding instead in powers of the
external Coulomb field E, = -BV/sx, This does
give a series of increasing powers in Zo. , and we
have calculated the leading term in this expansion,
whose relative order is n. In FS, it was suggested
that terms of relative order o. lnZa might occur in
the answer. Although such terms do occur in indi-
vidual graphs such as 1(c) and 1(d), they cancel
when all graphs are added. ' This cancellation has
been checked by a different calculation along the
lines used by Fried and .Yennie' to calculate the
Lamb shift. However, the latter method is not
easily extended to obtain the terms of relative or-
der a. The latter terms also cancel for Ml transi-
tions of the form nS,~, -mS~, +ly (n&m), but do
not cancel for transitions such @s nP~, -mP~,
+ly (n&m), or nsg, -nSg, +ly.

IL. CALCULATION

The calculation of the terms of relative order n,
with no additional powers of Zu, is simplified by
several observations. One is that the "vacuum

10



DONQ .I.. LIN AND Q. F E INB IRQ

tor g", in an external potential, through the fol-
lowing identitys:

e„A„(s,q) =lim —[Z"(w —gee„e"'*)],d
(2.1)
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where the inner parentheses on the right-hand side
indicates functional dependence. Here n =p
—e7, e„ is the photon polarization, A„ is the
proper vertex oyerator of diagram 1(e), and Z" is
the electron self-energy operator of Fig. 2. The
value of this identity is that it expresses A in
terms of g", where the latter is evaluated for the
total "external" potential V +g& e"". Since we
must evaluate Z' for the external field V in order
to calculate the self-energy graphs 1(c) and 1(d),
little extra work is needed to obtain AN, and sev-
eral cancellations between graphs can be seen with-
out detailed evaluation.

.The sum of the graphs 1(a)-1(d) gives the expres-
sion
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FIG. l. (a) and g)) Vacuum polarization graph contrib-
uting to the decay matrix element. (c) an~ (d) Electron
Self-energJJ graph contributing to the decay matrix ele-
ment. (e) Vertex graph contributing to the decay matric
element.

where 5„,=p" +p& is the total self-energy opera-
tor in the Coulomb field, originating from Fig. 2.
The initial and final states satisfy

(g-m)li)=0, (}i-m)lf)=0,
where Q=-Pa. X+PA, for any four-vector A. &u,

is the photon energy, and e„ its polarization vec-
tor, which we choose to have no time component.

Ne write

Z"=Z,",+(}f—m)Z'„'+Z", (pf -m). (2.3)
polarization" graphs 1(a) and 1(b) do not contrib-
ute to this order. This will be shown below. A
second observation is that the calculation of the
vertex graph, 1(e), can be reduced to the calcula-
tion of the mass renormalized self-energy opera-

Therefore g~~ is the part of the electron self-en-
ergy operator contributing to the energy shift of
bound- states. However, the other terms in g" will
contribute to the matrix element we consider here

iiiE=O'l((z" +z~) e"'+ e"' l&'" +z'& li&+&f1 z" e"'+ e"'*E")&i&.1 e . e . 1 e . e
}f—m 42(u, v'2(u, g -m ~ v'2', 42 re,

(2.4)

In writing Eq. (2.4), we have used a naive cancel-
lation of (g-m) against (}f-m) '. This procedure
is questionable because Eq. (2.2) implicitly in-
volves intermediate states for which j-m =0. It
is known that a similar procedure must be carried
out with some care to get the correct cancellation
of wave function and vertex renormalizations in
scattering problems. In the present case we have
made a careful examination of this procedure,

based on an expression for M as the imaginary
yart of the fourth-order self-energy operator. '
The result is that the procedure we follow here,
and our subsequent neglect of terms such as (i lZli)
or (f]zlf) when they occur, is valid to the order
we are calculating. Further aspects of this ap-
proach are given in Ref. 9.

%e note next that the contribution of the vertex
graph 1(e) can, through Eq. (2.1), be written as
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The terms involving g„or Z~ now cancel in M
=MA+ME, as they should by gauge invariance, and
we are left with the matrix element

(Z
el

+Z g )(g ~)-lge j0'x
v'2~,

+pe" *(8-m) '(Z" +Z~)

d+~ Iz" (w, —a',ue"' ')I, =,) Is).

FIG. 2. (a) Z1eetron self-energy operator Z". (b)
Vacuum polarization operator Z&.

(2.8)

Ag e&

~A (I ~

~ re 4 iq'xze1
V 2cvq dg g-0 v 2(dq

(2.5)

The terms N~ in (2.6) are evaluated by inserting
a complete set of eigenstates of the Dirac equation
in the external Coulomb field, omitting, in accor-
dance with the above remark, those terms cor-
responding to wave function renormalization ef-
fects:

g'utp(z", +Z~)~u„(& 8„) 'u-~pge '& "I,+~'2 Q "u~~pge 'q'"u„(&, E„).—'utp(z", +Z~),u,

Here the sum Q'„omits the state n =f and the sum
p'„' omits the state s =f The .notation (Z~e +Z &), z
implies that the operator, which is energy depen-
dent, is to be evaluated at the energy of the state
i,f. This rule follows from the fact that the exter-
nal field is time independent, so the operator Z
carries the energy of the external line it acts upon.

The intermediate states that contribute to (2.7)
include positive-energy states with the same orbit-

tal parity as i, and "negative-energy" states with
opposite orbital parity to i. Of the positive-energy
states, it is easy to see that the only ones that con-
tribute to relative order e are the state n =i in

~ and the state s =f in P'„'. All other bound states,
and the positive-energy continuum give contribu-
tions of higher order in Ze. Hen&. e the positive-
energy states contribute

M, =~ [uz~p(z~e+Z&)zu, co, 'u, pjfe 'q ' "u, +ulp(ge '~ ")uz( ru, ) 'uz-p(z~ee+Z&), s, ]+higher-order terms.
(2.8)

Note that the energy denominators are equal and opposite (s~,) in the two terms. Since the self-energy
operator is rotation and reflection invariant, it can only link states with the same O', L. Therefore, to the
order of interest, M, only contributes to transitions between states of equal J. It is easy to prove that

u~~Pge '~ '
"u~ =utPge '"' "u, = ((u, /m) O(l) (2.9)

whatever the principal quantum number of f and i, provided that J;, I-; ~J&, L&. The corresponding off-
diagonal matrix elements are order (~,/m)(Zo. )', which is why those terms are neglected in (2.8). There-
.fore

(2.10)

In this expression, only terms in Z that depend on
energy will not cancel. To leading order, there
are no such terms in g&, so that term cancels.
Furthermore, the term proportional to a(Zo) lnZn
in g~~ is independent of energy, and so also can-
cels. There are other terms in Z~~ of order
n(Zn)', which produce the Bethe logarithm in the

Lamb shift, and are energy dependent, and so
survive. However, we shall see below that they
cancel against part of the vertex contribution MA.

%'e consider next the contribution of negative-
energy states to M~. For these states, the two
energy denominators in 2.7 are approximately the
same, and equal to 2m. Therefore
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Mr= g uztp(Z~iz+Z&')u„(1/2m)ut pge '~ "u;+
2

Pu&~pge '~ "'u„(1/2m)ut p(Z~z+Z")u, .
v 240a 42(da

(2.11)

To the order of interest, we can approximate the sum over negative-energy states by the projection
operator for a free negative-energy electron at rest. Therefore

—u~[p(Z" +Z~)-'(I - p)(I/2m)pge ''i "'+pge " ",''(1-—p)(I/2m)p(Z), +Z~)]u, . (2.12)

The vacuum polarization operator Z" has a leading term proportional to P~ V, an even operator, and there-
fore does not contribute to relative order +. However, the interaction of the external electric field with

the "magnetic moment operator, " i.e.,"
Z" =ieci E(a/4'),

does contribute to this order:

(2.IS)

Mt = — ut[it'~2(I —p)e ''i "o.'~ E+n ~ E2(l —p)it'e i'i' "]u
Sn'm 42&, 2 ' j

SQ 8
u o &c e'q "—c Ecr &e'q "u

Smm2 $2~ g

(2.14)

u~[2ig ~ exEe '~' "]u, .
8KPPl Q2 (gpa

(2.15)

The g& and g, in the last two lines are Pauli wave
functions. To leading order, we expand the expo-
nential in (2.15), and retain only the iq ~ x te-rm.
Then

wrltlng

[g, g] = 2 (ig ~ q x e + ci f}4)~ .

Therefore,

Mr =, uzt(g ~ e x E)(iI x)ui .
4FPl 42Gga

(2.16) M~ = ' utp(io qx R+ a e) e "' "u,
mm g2 4~m I

QA — u'ip [g g]&-iq' xu (2.1V)

This matrix element is easily evaluated for any
specific states. If u~ and u, are S~2 states, the
angular integr al is easily done, and gives

ME( 8, 9—, ir a'xi —,
' fgvg r dr,.

4Z5g $2 4/a

From Eil. (2.6), the remaining vertex contribu-
tion M~ can be written as a derivative of &~1~. In
our discussion above of &~1~, we have divided it into
the magnetic-moment operator terms, and the
Bethe terms. Correspondingly, the vertex opera-
tor will have two parts. The part coming from the
derivative of the Z' mill give just the anomalous
moment operator of a free elect;ron, with correc-
tions of relative order (Zn) This occu.rs because
the deviations from the free-electron operator in-
volve at least one extra power of the external Cou-
lomb field E„which is of order (Zn), and this
factor generates a correction of either Zo, or (&e)',
depending on whether the initial and final states
are the same or different. The contribution of the
anomalous magnetic moment to M~ is given by

(2.16)

The second term, involving z ~ 0, can be eval-
uated to leading order, by expressing the small
components of g, and uz in terms of the large com-
ponents. Again, for a transition between 8 states
the angular integrals are simple, and yield

-so e 2M-, 2.=-4 2 V2
0 exq3 g.sVg.sr dr

(2.19)

which exactly cancels M . It is possible to prove
that this cancellation actually occurs for any tran-
sition between states of equal 8, providing that the
states i,f belong to different principal quantum
numbers.

The other term in hfh gets several contribu-
tions, from the product of large components mul-
tiplied by the first and third terms in the expansion
of e 'q ", and from the product of the small com-
ponents. 'lf the states i,f are S states belonging to
the same principal quantum number, the term of
relative order n comes only from the first of those
contributions, and reduces to

As usual, this can be divided into two parts, by M (uS IS) = ——g ~ qxe.
(oa 4m m

(2.20)



RADIATIVE CORRECTIONS TO REI ATIVISTIC. . .

This is simply o./2w times the uncorrected. matrix
element for such a transition, corresponding just
to the change in the total magnetic moment of the
electron. These are the only terms of relative
order n for g S g S transitions.

On the other hand, for a transition between S
states of different principal quantum number, all
three terms are comparable, and add to zero. In

other words, for the terms of relative order a,

M A, (nS, mS)=0 for m &n. (2.21}

This can be proven by direct evaluation of the ma-
trix element to the required order. Alternatively,
we can write M, for S~, to S,~, transitions, as

$8 &(dq
& d&8~s

2 p'

The sum of the first two terms gives exactly zero
because of the orthogonality of the nS and mS
states. The sum of the last two terms can be
transformed, using a commutator identity, to a
form involving only

This integral is of order (&o„w/m)(Zo. )', because of
the approximate orthogonality of g„s, g s, end the
resultant contribution to MA, is of relative order
o.(Zo.}', and so is negligible to the order being con-
sidered. This vanishing of M, does not occur
for transitions between P~, states, because of the
different angular wave functions involved.

Vfe must finally consider the contribution to MA

coming from the even operator terms in Z~s.
These terms, which obtain contributions from low-

energy virtual photons, have been analyzed by the
methods of Erickson and Yennie. ' The relevant
terms in g~s are those involving what these authors
call Iz, , and Iz, Furthermore, the d/du operation
required to calculate MA from g" need act only on

the denominators in Erickson and Yennie's expres-
sions for II,, and IJ, The result we get is that
these terms exactly cancel the term M„ for 3ll
nS~, to mS~, transitions. That is, we obtain the
result

(mS) —[Z" (I., +L,}]„=,~ns)

= -(1/&u, )(S'S)([Z"(L, +I„}],—[Z"(I„+L,)]„,) ~mS)

xu,.P)e 'q "u„, , (2.22}

where g"(L, +L,) are the terms that give the self-
energy contribution in (2.10}, of relative order o, .
No simple reason for this exact cancellation is
known to us. The details of the calculation and the
results for transitions between other J states, will
be published elsewhere.

The result of all of these considerations can be
summarized simply. The total matrix element for
a magnetic-dipole transition between S~, states of
hydrogenlike ions is given by

M(nS, nS) =MD(nS, nS)(1+ n/2w)

+higher-order terms in Zo. , (2.24)

M(nS, mS) =M, (sS, mS)[1+Oxo/2w]

+higher-order terms in Zu. (2.25)

Here, M, is the matrix element to lowest order
in Zn, without radiative corrections. M, is of or-
der &u, /m for nS nS tr-ansitions, and of order
(Zo)'(&u, /m) for nS-m S transitions. The vanishing
of the order —n correction for the nS-m S transi-
tions appears fortuitous, and does not appear to
occur for nil/2 to ppl++2y or other transitions.

The experimentally more interesting cases of
the decays 2'S-1'S+ly in heliumlike ions have
additional graphs to the hydrogenlike decays. Those
of heliumlike decays will be discussed else where.
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